GO/PAN复合正渗透膜制备的影响因素及性能分析
Influencing factors of GO/PAN composite forward osmosis membrane preparation and its performance analysis
-
摘要: 以聚丙烯腈(PAN)为制膜基材,采用界面聚合法制备复合正渗透膜,研究了不同基膜组成、界面聚合条件对复合膜性能的影响及抗污染性能,并进一步添加氧化石墨烯(GO)进行共混改性,优化复合正渗透膜性能。结果表明,最佳基膜组成为,以16%的PAN为聚合物,以N,N-二甲基甲酰胺(DMF)为溶剂。最佳界面聚合条件为,将基膜浸没在2%的间苯二胺(MPD)水相溶液(pH=9)中120 s,然后与0.1%的均苯三甲酰氯(TMC)进行界面聚合反应60 s从而生成活性层,且活性层正面附着,最后于60 ℃下热处理3 min,所得复合膜具有较好的渗透性能。此外,经GO改性后,复合膜表面形成一种具有不同含氧官能团的层层堆叠式GO片层,导致膜的水通量上升了26%,截留率依然保持在99.90%以上,并且复合膜的抗污染能力得到明显提高。Abstract: The composite forward osmosis (FO) membranes were fabricated by interfacial polymerization method using polyacrylonitrile (PAN) as the substrate in this study. Then the effects of casting solution composition and interfacial polymerization conditions on the properties of synthetic FO membranes, as well as their anti-fouling properties, were investigated in detail. Furthermore, graphite oxide (GO) was added to blend modifying the composite FO membrane and optimize its performance. Results showed that the optimum casting solution was composed of 16% PAN as polymer and N,N-dimethylformamide (DMF) as solvent. The optimum interfacial polymerization conditions were following: immersing the base membrane in 2% m-phenylenediamine (MPD) water solution with pH=9 for 120 s, and conducting the interfacial polymerization with 0.1% trimesoyl chloride (TMC) for 60s to form active layer which was attached to the front surface of membrane, finally producing the composite FO membrane with good permeability after 3 min heating treatment at 60 ℃. In addition, a stacked GO sheet with different oxygen-containing functional groups was formed on the surface of FO membrane after GO modification, which contributed to a 26% increase in water flux and above 99.90% rejection rate, meanwhile the anti-fouling property of synthetic FO membrane was also significantly enhanced.
-
[1] SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis: Where are we now?[J]. Desalination, 2015, 356: 271-284. [2] KIM C K, KIM J H, ROH I J, et al. The changes of membrane performance with polyamide molecular structure in the reverse osmosis process[J]. Journal of Membrane Science, 2000, 165(2): 189-199. [3] RAHIMPOUR A, JAHANSHAHI M, MORTAZAVIAN N, et al. Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening[J]. Applied Surface Science, 2010, 256(6): 1657-1663. [4] 肖维溢, 管盼盼, 王铎. 新型聚酰胺复合正渗透膜的制备与表征[J]. 功能材料, 2016, 47(s1): 127-133. [5] XU K, FENG B, ZHOU C, et al. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination[J]. Chemical Engineering Science, 2016, 146: 159-165. [6] 倪木子, 夏圣骥, 袁方竹, 等. 新型氧化石墨烯膜的制备及去除天然有机物研究[J]. 水处理技术, 2016, 42(8): 40-47. [7] 方鹏, 曹兵, 淡宜, 等. 界面聚合法制备聚酰胺纳滤膜及工艺条件对纳滤膜性能的影响[J]. 高分子材料科学与工程, 2011, 27(10): 1-3. [8] 王磊, 呼佳瑞, 苗瑞, 等. 聚酰胺复合纳滤膜的制备与表征[J]. 膜科学与技术, 2014, 34(5): 16-21. [9] 谢颂京. 复合反渗透膜的制备研究[D]. 天津: 天津工业大学, 2017. [10] 邱实, 吴礼光, 张林, 等. 界面聚合工艺条件对反渗透复合膜性能的影响[J]. 化工学报, 2008, 59(8): 2027-2034. [11] GHOSH A K, HOEK E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1): 140-148. [12] 汤蓓蓓, 徐铜文, 武培怡. 界面聚合法制备复合膜[J]. 化学进展, 2007, 19(9): 1428-1435. [13] 赵卷. 界面聚合法制备分离CO2固定载体复合膜[D]. 天津: 天津大学, 2006. [14] 职瑞, 王磊, 王佳璇, 等. 双分离层复合纳滤膜的制备及其性能[J]. 环境工程学报, 2018, 12(6): 1600-1608. [15] 黄倩雯, 楚英豪. 氧化石墨烯性质及其应用前景[J]. 四川化工, 2017, 20(6): 30-32. [16] ZHANG Y, SU Y, PENG J, et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride[J]. Journal of Membrane Science, 2013, 429(4): 235-242.
计量
- 文章访问数: 4107
- HTML全文浏览数: 4044
- PDF下载数: 180
- 施引文献: 0