利用不同组分原油逐级驯化筛选高效石油烃降解混菌

郑瑾, 季远玲, 燕纪星, 王晓玲, 陈宏坤, 于文赫, 杜显元, 李慧敏, 周龙涛, 宋佳宇. 利用不同组分原油逐级驯化筛选高效石油烃降解混菌[J]. 环境工程学报, 2019, 13(2): 406-413. doi: 10.12030/j.cjee.201807126
引用本文: 郑瑾, 季远玲, 燕纪星, 王晓玲, 陈宏坤, 于文赫, 杜显元, 李慧敏, 周龙涛, 宋佳宇. 利用不同组分原油逐级驯化筛选高效石油烃降解混菌[J]. 环境工程学报, 2019, 13(2): 406-413. doi: 10.12030/j.cjee.201807126
ZHENG Jin, JI Yuanling, YAN Jixing, WANG Xiaoling, CHEN Hongkun, YU Wenhe, DU Xianyuan, LI Huimin, ZHOU Longtao, SONG Jiayu. Stepwise domestication and screening of high effective petroleum hydrocarbon degrading bacteria by using crude oil with different components[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 406-413. doi: 10.12030/j.cjee.201807126
Citation: ZHENG Jin, JI Yuanling, YAN Jixing, WANG Xiaoling, CHEN Hongkun, YU Wenhe, DU Xianyuan, LI Huimin, ZHOU Longtao, SONG Jiayu. Stepwise domestication and screening of high effective petroleum hydrocarbon degrading bacteria by using crude oil with different components[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 406-413. doi: 10.12030/j.cjee.201807126

利用不同组分原油逐级驯化筛选高效石油烃降解混菌

  • 基金项目:

    中国石油低碳二期重大科技专项2016E-1205中国石油低碳二期重大科技专项(2016E-1205)

Stepwise domestication and screening of high effective petroleum hydrocarbon degrading bacteria by using crude oil with different components

  • Fund Project:
  • 摘要: 利用不同组分原油逐级驯化的方法对克拉玛依油田的石油污染土样进行石油烃降解混菌的富集驯化,得到一组对稀油和稠油均具有高效降解能力的混菌M3。与采用单一原油驯化方法相比,混菌M3对稀油和稠油的降解率分别提高了12.5%和22%。该混菌具有较强的产表面活性剂的能力,能够使发酵液的表面张力从69.8 mN·m-1降至27.9 mN·m-1。通过混菌M3的生长条件优化实验得出:在温度30 ℃、pH 7~8、盐度1%、氮源选择尿素的条件下,混菌M3对原油的降解率最高。通过考察混菌M3在污染土壤中对原油的降解效果,发现:在修复期间,土壤脱氢酶呈先升高后降低的趋势;混菌M3可使饱和烃组分增加,并使芳香分、胶质和沥青质组分降低,对重质组分具有较好的降解效果。混菌M3的加入改变了原油性质,促进了土壤中原油的降解,经过56 d修复,土壤中原油降解率达到55.3%。
  • 加载中
  • [1] 刘五星, 骆永明, 滕应, 等. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 2007, 39(2): 247-251.
    [2] GAO Y, WANG J, XU J, et al. Assessing the quality of oil contaminated saline soil using two composite indices[J]. Ecological Indicators, 2013, 24(24): 105-112.
    [3] WILLIAMS E S, MAHLER B J, VAN METRE P C. Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement[J]. Environmental Science Technology, 2013, 47(2): 1101-1109.
    [4] ANDREOLLI M, LAMPIS S, POLI M, et al. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons[J]. Chemosphere, 2013, 92(6): 688-694.
    [5] CAPPELLO S, CALOGERO R, SANTISI S, et al. Bioremediation of oil polluted marine sediments: A bio-engineering treatment[J]. International Microbiology, 2015, 18(2): 127-134.
    [6] MA J, YANG Y, DAI X, et al. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste[J]. Chemosphere, 2016, 150: 17-23.
    [7] MUKHERJEE A, BORDOLOI N. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: A pilot-scale study[J]. Environmental Science Pollution Research, 2011, 18(3): 471-478.
    [8] 贤加欢, 张欣, 刘亚文, 等. 高效石油烃降解菌的筛选及其初步分类鉴定[J]. 化学工程与装备, 2015 (7): 19-20.
    [9] MARCHAND C, ST-ARNAUD M, HOGLAND W, al et, Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil[J]. International Biodeterioration & Biodegradation, 2017, 116: 48-57.
    [10] EBADI A, SIMA N A K, OLAMAEE M, et al. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium[J]. Journal of Advanced Research, 2017, 8(6): 627-633.
    [11] 张廷山, 任明忠, 蓝光志, 等. 微生物降解作用对稠油理化性质的影响[J]. 西南石油学院学报, 2003, 25(5): 1-4.
    [12] LLORI M O, AMOBI C J, ODOCHA A C. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment[J]. Chemosphere, 2005, 61: 985-992.
    [13] 宁长发, 沈薇, 孟广荣, 等. 产生物表面活性剂菌种的一种快速筛选模型[J]. 微生物学通报, 2004, 31(3): 55-58.
    [14] 马爱青, 陈连喜, 包木太. 表面活性剂对原油生物降解的强化作用[J]. 油田化学, 2011, 28(2): 224-228.
    [15] 易力, 押辉远, 李迪, 等. 几株石油烃降解菌的研究[J]. 广东农业科学, 2011, 38(6): 165-167.
    [16] 李平, 卓凤萍, 高立洪, 等. 烃类污染物降解菌的筛选及其生长条件研究[J]. 安徽农业科学, 2012, 40(21): 11017-11019.
    [17] RIFFALDI R, LEVI-MINZI R, CARDELLI R, et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil[J]. Water, Air & Soil Pollution, 2006,170(1/2/3/4): 3-15.
    [18] 张廷山, 兰光志, 邓莉. 微生物降解稠油及提高采收率实验研究[J]. 石油学报, 2001, 22(1): 54-57.
    [19] LAVANIA M, CHEEMA S, LAL B, et al. Potential of viscosity reducing thermophillic anaerobic bacterial consortium TERIB#90 in upgrading heavy oil[J]. Fuel, 2015, 144: 349-357.
    [20] 王新伟, 蔡婷, 刘宇, 等. 稠油重质组分微生物降解作用研究进展[J]. 生态环境学报, 2013, 22(7): 1255-1262.
    [21] 张晓博, 洪帅, 姜晗, 等. 微生物对稠油降解、降粘作用研究进展[J]. 当代化工, 2016, 45(2): 617-621.
  • 加载中
计量
  • 文章访问数:  4680
  • HTML全文浏览数:  4626
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

利用不同组分原油逐级驯化筛选高效石油烃降解混菌

  • 1. 中国石油集团安全环保技术研究院有限公司,北京 102206
  • 2. 石油石化污染物控制与处理国家重点实验室,北京 102206
  • 3. 大庆油田水务公司,大庆 163454
  • 4. 中国石油新疆油田公司百口泉采油厂,克拉玛依 834000
  • 5. 中国地质科学院,石家庄 050061
  • 6. 新疆油田公司工程技术研究院,克拉玛依 834000
基金项目:

中国石油低碳二期重大科技专项2016E-1205中国石油低碳二期重大科技专项(2016E-1205)

摘要: 利用不同组分原油逐级驯化的方法对克拉玛依油田的石油污染土样进行石油烃降解混菌的富集驯化,得到一组对稀油和稠油均具有高效降解能力的混菌M3。与采用单一原油驯化方法相比,混菌M3对稀油和稠油的降解率分别提高了12.5%和22%。该混菌具有较强的产表面活性剂的能力,能够使发酵液的表面张力从69.8 mN·m-1降至27.9 mN·m-1。通过混菌M3的生长条件优化实验得出:在温度30 ℃、pH 7~8、盐度1%、氮源选择尿素的条件下,混菌M3对原油的降解率最高。通过考察混菌M3在污染土壤中对原油的降解效果,发现:在修复期间,土壤脱氢酶呈先升高后降低的趋势;混菌M3可使饱和烃组分增加,并使芳香分、胶质和沥青质组分降低,对重质组分具有较好的降解效果。混菌M3的加入改变了原油性质,促进了土壤中原油的降解,经过56 d修复,土壤中原油降解率达到55.3%。

English Abstract

参考文献 (21)

目录

/

返回文章
返回