猪粪沼液的磁混凝预处理工艺优化及评估

罗国华, 张春, 郑利兵, 魏源送, 郁达伟. 猪粪沼液的磁混凝预处理工艺优化及评估[J]. 环境工程学报, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
引用本文: 罗国华, 张春, 郑利兵, 魏源送, 郁达伟. 猪粪沼液的磁混凝预处理工艺优化及评估[J]. 环境工程学报, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
LUO Guohua, ZHANG Chun, ZHENG Libing, WEI Yuansong, YU Dawei. Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
Citation: LUO Guohua, ZHANG Chun, ZHENG Libing, WEI Yuansong, YU Dawei. Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200

猪粪沼液的磁混凝预处理工艺优化及评估

  • 基金项目:

    国家重点研发计划课题2016YFD0501405

    国家自然科学基金资助项目21607167

    江西省科技计划项目20151BBG70006国家重点研发计划课题(2016YFD0501405)

    国家自然科学基金资助项目(21607167)

    江西省科技计划项目(20151BBG70006)

Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry

  • Fund Project:
  • 摘要: 以高悬浮物、高氮磷与高有机物的猪粪沼液为研究对象,采用磁混凝进行预处理,以浊度去除率为主要考察指标,结合单因素实验和正交实验,优化磁混凝工艺参数,并简要分析磁混凝机制及评估其作为沼液资源化利用的预处理工艺的效能。研究结果表明,优化的磁混凝条件是PAC 、PAM、磁种的投加量分别为5 g·L-1、120 mg·L-1、3 g·L-1,转速为250 r·min-1。经磁混凝处理后,猪粪沼液的浊度、SS、COD、TP与PO43--P浓度降为2 235 NTU、3.84 g·L-1、10 302 mg·L-1、133 mg·L-1和62.58 mg·L-1,去除率分别为92.90%、84.42%、70.63%、91.90%和50.3%。同时,磁混凝对氨氮与K的去除率较低,分别为6.49%和16.12%,浓度分别为4 072.5 mg·L-1和4 176 mg·L-1,利于后续的沼液资源化利用。磁种加载后在混凝过程中被絮体包裹,形成密实的磁絮体,显著提高了沉降性能,沉降时间由传统混凝的25 min降为5 min,同时污泥量显著减少。综上,磁混凝可高效削减沼液的悬浮物,且保留氮与钾等营养物质,促进沼液资源化利用。
  • 加载中
  • [1] SHAW J. Food and Agriculture Organization of the United Nations, Rome, Italy [M]. Milk: Mammary Gland and Its Secretion, 2016: 89.
    [2] 中华人民共和国生态环境保护部. 全国环境统计公报(2015) [R]. 2017-02-23.
    [3] BARROSO J M D. Europe’s climate change opportunity[R]. Speech to the European Parliament, January, 2008: 23.
    [4] HANSEN K H, ANGELIDAKI I, B K ? AHRING. Improving thermophilic anaerobic digestion of swine manure[J]. Water Research, 1999, 33(8): 1805-1810.
    [5] TANI M, SAKAMOTO N, KISHIMOTO T, et al. Utilization of anaerobically digested dairy slurry combined with other wastes following application to agricultural land[J]. International Congress Series, 2006, 1293: 331-334.
    [6] CLARISSE L, CLERBAUX C, DENTENER F, et al. Global ammonia distribution derived from infrared satellite observations[J]. Nature Geoscience, 2009, 2(7): 479-480.
    [7] RENARD J J, CALIDONNA S E, HENLEY M V. Fate of ammonia in the atmosphere: A review for applicability to hazardous releases[J]. Journal of Hazardous Materials, 2004, 108(1/2): 29-60.
    [8] RAASCHOU-NIELSEN O, ANDERSEN Z J, BEELEN R, et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European study of cohorts for air pollution effects (ESCAPE)[J]. Lancet Oncology, 2013, 14(9): 813-822.
    [9] ANEJA V P, BUNTON B, WALKER J T, et al. Measurement and analysis of atmospheric ammonia emissions from anaerobic lagoons[J]. Atmospheric Environment, 2001, 35(11): 1949-1958.
    [10] ABER S, SALARI D, PARSA M R. Employing the Taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment[J]. Chemical Engineering Journal, 2010, 162(1): 127-134.
    [11] LIANG Z, HAN B P, LIU H. Optimum conditions to treat high-concentration microparticle slime water with bioflocculants[J]. Mining Science and Technology (China), 2010, 20(3): 478-484.
    [12] 王东升, 张明, 肖峰. 磁混凝在水与废水处理领域的应用 [J]. 环境工程学报, 2012, 6(3): 705-713.
    [13] 曾慧峰, 孙春宝, 王然,等. 垃圾渗滤液的加载磁絮凝预处理工艺研究 [J]. 环境工程学报, 2011, 5(10): 2303-2306.
    [14] 王晓杰, 董文艺, 王宏杰, 等. 磁絮凝工艺处理受污染河水研究 [J]. 水处理技术, 2018, 44(5): 75-80.
    [15] KARAPINAR N. Magnetic separation: An alternative method to the treatment of wastewater[J]. European Journal of Mineral Processing & Environmental Protection, 2003, 3(2): 215-223.
    [16] 江晖, 曾庆文, 罗正维, 等. 沼液预处理最优混凝搅拌条件的研究 [J]. 水资源与水工程学报, 2014, 25(3): 147-151.
    [17] LIPUS L C, KROPE J, CREPINSEK L. Dispersion destabilization in magnetic water treatment[J]. Journal of Colloid and Interface Science, 2001, 236(1): 60-66.
    [18] 王红斌, 杨敏, 唐光阳, 等. 聚合氯化铝的混凝除磷性能研究 [J]. 化学世界, 2004, 45(1): 7-10.
    [19] JIANG J Q, GRAHAM N J D. Pre-polymerised inorganic coagulants and phosphorus removal by coagulation:A review[J]. Water SA, 1998, 24(3): 237-244.
    [20] HU C, LIU H, QU J, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J]. Environmental Science & Technology, 2006, 40(1): 325-331.
    [21] WANG D, LIU H, LI C, et al. Removal of humic acid by coagulation with nano-Al13[J]. Water Science and Technology, 2006, 6(1): 59-67.
    [22] YAN M, WANG D, NI J, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370.
    [23] MATILAINEN A, VEPS?L?INEN M, SILLANP?? M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197.
    [24] ZHANG M, XIAO F, WANG D, et al. Comparison of novel magnetic polyaluminum chlorides involved coagulation with traditional magnetic seeding coagulation: Coagulant characteristics, treating effects, magnetic sedimentation efficiency and floc properties[J]. Separation and Purification Technology, 2017, 182: 118-127.
    [25] 李继香. 应用加载磁混凝处理微污染河水 [J]. 环境工程学报, 2014, 8(7): 2901-2905.
    [26] 肖淑敏, 赵建海, 魏磊, 等. 搅拌条件对氢氧化镁混凝性能及絮体特性的影响[J]. 化工进展, 2018, 37(2): 761-766.
    [27] 苏俊峰, 邱治国, 朱侃苏. 机械搅拌频率对混凝效果的影响研究 [J]. 中国给水排水, 2017, 33(1): 68-70.
    [28] BAYAR S, Y ? YILDIZ, YILMAZ A E, et al. The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method[J]. Desalination, 2011, 280(1/2/3): 103-107.
    [29] WANG Z, NAN J, YAO M, et al. Effect of additional polyaluminum chloride and polyacrylamide on the evolution of floc characteristics during floc breakage and re-growth process[J]. Separation and Purification Technology, 2017, 173: 144-150.
    [30] 陈瑜, 李军, 陈旭娈, 等. 磁絮凝强化污水处理的试验研究 [J]. 中国给水排水, 2011, 27(17): 78-82.
  • 加载中
计量
  • 文章访问数:  3652
  • HTML全文浏览数:  3616
  • PDF下载数:  141
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02
罗国华, 张春, 郑利兵, 魏源送, 郁达伟. 猪粪沼液的磁混凝预处理工艺优化及评估[J]. 环境工程学报, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
引用本文: 罗国华, 张春, 郑利兵, 魏源送, 郁达伟. 猪粪沼液的磁混凝预处理工艺优化及评估[J]. 环境工程学报, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
LUO Guohua, ZHANG Chun, ZHENG Libing, WEI Yuansong, YU Dawei. Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200
Citation: LUO Guohua, ZHANG Chun, ZHENG Libing, WEI Yuansong, YU Dawei. Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 414-423. doi: 10.12030/j.cjee.201807200

猪粪沼液的磁混凝预处理工艺优化及评估

  • 1. 北京石油化工学院化学工程学院,北京 102617
  • 2. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 3. 中国科学院生态环境研究中心,水污染控制实验室,北京 100085
  • 4. 北京化工大学化学工程学院,北京 100029
  • 5. 江西省科学院能源所,南昌 330096
基金项目:

国家重点研发计划课题2016YFD0501405

国家自然科学基金资助项目21607167

江西省科技计划项目20151BBG70006国家重点研发计划课题(2016YFD0501405)

国家自然科学基金资助项目(21607167)

江西省科技计划项目(20151BBG70006)

摘要: 以高悬浮物、高氮磷与高有机物的猪粪沼液为研究对象,采用磁混凝进行预处理,以浊度去除率为主要考察指标,结合单因素实验和正交实验,优化磁混凝工艺参数,并简要分析磁混凝机制及评估其作为沼液资源化利用的预处理工艺的效能。研究结果表明,优化的磁混凝条件是PAC 、PAM、磁种的投加量分别为5 g·L-1、120 mg·L-1、3 g·L-1,转速为250 r·min-1。经磁混凝处理后,猪粪沼液的浊度、SS、COD、TP与PO43--P浓度降为2 235 NTU、3.84 g·L-1、10 302 mg·L-1、133 mg·L-1和62.58 mg·L-1,去除率分别为92.90%、84.42%、70.63%、91.90%和50.3%。同时,磁混凝对氨氮与K的去除率较低,分别为6.49%和16.12%,浓度分别为4 072.5 mg·L-1和4 176 mg·L-1,利于后续的沼液资源化利用。磁种加载后在混凝过程中被絮体包裹,形成密实的磁絮体,显著提高了沉降性能,沉降时间由传统混凝的25 min降为5 min,同时污泥量显著减少。综上,磁混凝可高效削减沼液的悬浮物,且保留氮与钾等营养物质,促进沼液资源化利用。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回