氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响

喻珊, 黄振山, 唐美如, 张再利, 樊青娟, 魏在山. 氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响[J]. 环境工程学报, 2018, 12(10): 2797-2806. doi: 10.12030/j.cjee.201805112
引用本文: 喻珊, 黄振山, 唐美如, 张再利, 樊青娟, 魏在山. 氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响[J]. 环境工程学报, 2018, 12(10): 2797-2806. doi: 10.12030/j.cjee.201805112
YU Shan, HUANG Zhenshan, TANG Meiru, ZHANG Zaili, FAN Qingjuan, WEI Zaishan. Effect of oxygen concentration on simultaneous removal of NO and Hg0 in a thermophilic membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2797-2806. doi: 10.12030/j.cjee.201805112
Citation: YU Shan, HUANG Zhenshan, TANG Meiru, ZHANG Zaili, FAN Qingjuan, WEI Zaishan. Effect of oxygen concentration on simultaneous removal of NO and Hg0 in a thermophilic membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2797-2806. doi: 10.12030/j.cjee.201805112

氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响

  • 基金项目:

    国家自然科学基金资助项目(21677178)

Effect of oxygen concentration on simultaneous removal of NO and Hg0 in a thermophilic membrane bioreactor

  • Fund Project:
  • 摘要: 基于嗜热生物法构建膜生物反应器实现烟气中NO和Hg0高效处理,研究氧含量对嗜热膜生物反应器烟气脱硝脱汞性能及微生物群落结构的影响。结果表明:氧含量为2%、6%和10%时,NO去除率均稳定在80%,氧含量为17%时氧促进NO降解,NO去除率达91.0%;Hg0去除率随氧含量的增加而升高,氧含量为17%时,Hg0去除率可达92.0%。氧含量的增加促进氨氮的降解,且有利于硝化反应的进行。缺氧和厌氧环境有利于减少膜污染,FT-IR结果表明氧含量影响EPS中官能团含量和成分。16S rDNA结果表明氧含量10%中好氧反硝化菌占比重最高。Zobellella、Paracoccus、Bacillus、Alcaligenes、Arthrobacter、Acinetobacter、Pseudomonas均为好氧反硝化菌。
  • 加载中
  • [1] CHANDRASHEKHAR B.Physicochemical and biochemical approaches for treatment of gaseous emissions containing NOx[J].Critical Reviews in Environmental Science & Technology, 2014, 44(1):34-96 10.1080/10643389.2012.710430
    [2] 段振亚, 苏海涛, 王凤阳,等. 生活垃圾焚烧厂垃圾的汞含量与汞排放特征研究[J]. 环境科学, 2016, 37(10):3766-3773
    [3] WANG S, ZHANG L, WANG L, et al.A review of atmospheric mercury emissions, pollution and control in China[J].Frontiers of Environmental Science & Engineering, 2014, 8(5):631-649 10.1007/s11783-014-0673-x
    [4] EDUARDOVNA K G, SAMUILOVICH R G, SERGEEVNA Y V.The unep global mercury assessment: Sources, emissions and transport[J].Principy èkologii, 2012, 1(4):36001-36002 10.1051/e3sconf/20130136001
    [5] OKUNO K, HIRAI M, SUGIYAMA M, et al.Microbial removal of nitrogen monoxide (NO) under aerobic conditions[J].Biotechnology Letters, 2000, 22(1):77-79 10.1023/A:1005624815889
    [6] TERADA A, YAMAMOTO T, HIBIYA K, et al.Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor[J].Water Science & Technology, 2004, 49(11/12):263-268
    [7] 蒋然, 黄少斌, 范利荣. 在有氧条件下用生物过滤系统去除NOx[J]. 环境科学学报, 2007, 27(9):1469-1475
    [8] 黄倩茹,陈洲洋,黄振山. 基于硝化反硝化的膜生物反应器烟气脱硝研究[J].华南师范大学学报(自然科学版), 2016,48( 2) : 13-18
    [9] WEI Z S, WANG J B, HUANG Z S, et al.Effect of gaseous mercury on nitric oxide removal performance andmicrobial community of a hybrid catalytic membrane biofilm reactor[J].Chemical Engineering Journal, 2017, 316:584-591 10.1016/j.cej.2017.01.085
    [10] VAN D M P, VAN D B P, KLAPWIJK B, et al.NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process[J].Biotechnology and Bioengineering, 2010, 90(4):433-441 10.1002/bit.20420
    [11] 陈月芳,王岩,安丹凤. 组合移动床生物膜( MBBR) 中溶解氧浓度和进水流量变化对除碳脱氮的影响[J].科学技术与工程,2016,16(4):1671-1815
    [12] 喻敏.CaCl2添加对煤热解汞析出规律影响的实验研究[D].济南:山东大学,2013
    [13] CANZIANI R, EMONDI V, GARAVAGLIA M, et al.Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate[J].Journal of Membrane Science, 2006, 286(1/2):202-212 10.1016/j.memsci.2006.09.044
    [14] SUSANNE L, GILBERT E M, VLAEMINCK S E, et al.Full-scale partial nitritation/anammox experiences: An application survey[J].Water Research, 2014, 55(10):292-303 10.1016/j.watres.2014.02.032
    [15] 田建强. 反硝化过程中亚硝酸盐积累的影响因素[J].有色冶金设计与研究,2008,29(3):42-44
    [16] 阳琪琪.A /O 生物接触氧化工艺处理城市污水试验研究[D].重庆:重庆大学,2013
    [17] KERMANI M, BINA B, MOVAHEDIAN H, et al.Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater[J].American Journal of Environmental Sciences, 2008, 4(6):675-682 10.3844/ajessp.2008.675.682
    [18] CAO Y, ZHANG C, RONG H, et al.The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR)[J].Water Research, 2016, 108:86-94 10.1016/j.watres.2016.10.063
    [19] HOUGHTON J I, STEPHENSON T.Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J].Water Research, 2002, 36(14):3620-3628 10.1016/S0043-1354(02)00055-6
    [20] CHANG I S, BAG S O, LEE C H.Effects of membrane fouling on solute rejection during membrane filtration of activated sludge[J].Process Biochemistry, 2001, 36(8):855-860 10.1016/S0032-9592(00)00284-3
    [21] 高秀红.A/O膜生物反应器中微生物群落的演替和膜污染的影响[D].哈尔滨:东北林业大学,2011
    [22] 王琦.MBR处理船舶生活污水的效能及膜污染机理试验研究[D].哈尔滨:哈尔滨工程大学,2013
    [23] 李莹.MBR中污泥EPS变化及其对反应器运行的影响[D].天津:天津大学,2008
    [24] 赵英,白晓琴,高飞亚,等.膜生物反应器在污水处理中的研究进展[J].中国给水排水,2004, 20 (12): 33-36
    [25] LEE Y, CHO J, SEO Y, et al.Modeling of submerged membrane bioreactor process for wastewater treatment[J].Desalination, 2002, 146(1):451-457 10.1016/S0011-9164(02)00543-X
    [26] NAGAOKA H, UEDA S, MIYA A.Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J].Water Science & Technology, 1996, 34(9):165-172 10.1016/S0273-1223(96)00800-1
    [27] SEOKHWAN H, WOONYOUNG L, HYUNSUK O, et al.The effects of intermittent aeration on the characteristics of bio-cake layers in a membrane bioreactor[J].Environmental Science & Technology, 2007, 41(17):6270-6276 10.1021/es070467a
    [28] COMTE S, GUIBAUD G, BAUDU M.Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS: Part II.Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation[J].Enzyme & Microbial Technology, 2006, 38(2):237-245 10.1016/j.enzmictec.2005.06.023
    [29] WANG Z, GAO M, WANG Z, et al.Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J].Chemosphere, 2013, 93(11):2789-2795 10.1016/j.chemosphere.2013.09.038
    [30] WANG Z, WU Z, TANG S.Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor[J].Water Research, 2009, 43(9):2504-2512 10.1016/j.watres.2009.02.026
    [31] PARIKH S J, CHOROVER J.ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide[J].Langmuir, 2006, 22(20):8492-8500 10.1021/la061359p
    [32] JARUSUTTHIRAK C, AMY G.Role of soluble microbial products (SMP) in membrane fouling and flux decline[J].Environmental Science & Technology, 2006, 40(3):969-974 10.1021/es050987a
    [33] WU C, HUANG Y, CHEN S.The synthesis and thermotropic liquid crystalline behavior of mesogenic moiety-linked ethyl cellulose[J].Polymer Bulletin, 2002, 48(1):33-41 10.1007/s00289-002-0003-5
    [34] PASSAUER L, BENDER H, FISCHER S.Synthesis and characterisation of starch phosphates[J].Carbohydrate Polymers, 2010, 82(3):809-814 10.1016/j.carbpol.2010.05.050
    [35] 甄杰,胡政,李树芳,等. 一个新型耐热普鲁兰酶的结构与功能[J].生物工程学报,2014, 30(1): 119-128
    [36] 李小义,王丽萍,杜雅萍,等. 好氧反硝化微生物多样性及其反硝化功能初步研究[J].氨基酸和生物资源,2016,38(2):37-45
    [37] 宋立岩,雷禹,王洋清,等. 一种具有异养硝化和好氧反硝化功能的菌株及其应用: 105586290A[P].2016-05-18
    [38] 张苗,黄少斌. 高温好氧反硝化菌的分离鉴定及其反硝化性能研究[J].环境科学,2011,32(1):259-265
    [39] 孙玲,葛清莲,曹文平. 一株好氧反硝化菌的筛选鉴定与特性研究[J].河南理工大学学报(自然科学版),2017,36(3):79-85
    [40] 郭丽芸,时飞,杨柳燕,等.好氧反硝化菌处理低浓度含氮污水[J].江苏农业科学,2016,44( 8) : 523 -526
    [41] 武文丽,颜家保,陈佩,等. 炼油废水中好氧反硝化菌的筛选及降解特性[J].化工进展,2016,35(5):1524-1528
  • 加载中
计量
  • 文章访问数:  2411
  • HTML全文浏览数:  2232
  • PDF下载数:  170
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响

  • 1. 中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510275
基金项目:

国家自然科学基金资助项目(21677178)

摘要: 基于嗜热生物法构建膜生物反应器实现烟气中NO和Hg0高效处理,研究氧含量对嗜热膜生物反应器烟气脱硝脱汞性能及微生物群落结构的影响。结果表明:氧含量为2%、6%和10%时,NO去除率均稳定在80%,氧含量为17%时氧促进NO降解,NO去除率达91.0%;Hg0去除率随氧含量的增加而升高,氧含量为17%时,Hg0去除率可达92.0%。氧含量的增加促进氨氮的降解,且有利于硝化反应的进行。缺氧和厌氧环境有利于减少膜污染,FT-IR结果表明氧含量影响EPS中官能团含量和成分。16S rDNA结果表明氧含量10%中好氧反硝化菌占比重最高。Zobellella、Paracoccus、Bacillus、Alcaligenes、Arthrobacter、Acinetobacter、Pseudomonas均为好氧反硝化菌。

English Abstract

参考文献 (41)

目录

/

返回文章
返回