次氯酸钠氧化分解污水中美托洛尔的反应动力学及影响因素

张小寒, 谭庸桢, 李萍, 刘自敏, 巨司源, 刘铭明, 任源. 次氯酸钠氧化分解污水中美托洛尔的反应动力学及影响因素[J]. 环境工程学报, 2018, 12(11): 3069-3078. doi: 10.12030/j.cjee.201804196
引用本文: 张小寒, 谭庸桢, 李萍, 刘自敏, 巨司源, 刘铭明, 任源. 次氯酸钠氧化分解污水中美托洛尔的反应动力学及影响因素[J]. 环境工程学报, 2018, 12(11): 3069-3078. doi: 10.12030/j.cjee.201804196
ZHANG Xiaohan, TAN Yongzhen, LI Ping, LIU Zimin, JU Siyuan, LIU Mingming, REN Yuan. Reaction dynamics and effect factors of metoprolol oxidative decomposition in municipal wastewater by sodium hypochlorite[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3069-3078. doi: 10.12030/j.cjee.201804196
Citation: ZHANG Xiaohan, TAN Yongzhen, LI Ping, LIU Zimin, JU Siyuan, LIU Mingming, REN Yuan. Reaction dynamics and effect factors of metoprolol oxidative decomposition in municipal wastewater by sodium hypochlorite[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3069-3078. doi: 10.12030/j.cjee.201804196

次氯酸钠氧化分解污水中美托洛尔的反应动力学及影响因素

  • 基金项目:

    国家自然科学基金资助项目(41877466)

    广州市科技计划项目(201707010158)

Reaction dynamics and effect factors of metoprolol oxidative decomposition in municipal wastewater by sodium hypochlorite

  • Fund Project:
  • 摘要: 降压药美托洛尔经病人服用后由尿液排出,并经由市政管网进入城市污水处理厂但去除率不高,排入天然水体后成为一种新型微量污染物,在环境中持久存在,并具有潜在危害。研究讨论了污水处理厂中常用的氯消毒剂—次氯酸钠对美托洛尔的氧化分解情况,分别考察了温度、pH和水中常见有机物等对分解效果的影响。结果表明:次氯酸钠氧化分解美托洛尔的过程符合伪一级动力学反应特征;温度因素对反应速率的影响符合范特霍夫规则,在15~45 ℃范围内,提高反应温度,有利于美托洛尔的氧化分解;当pH为3~8时,反应速率随pH的降低而增大。同时,水体中0.1~1.0 mg·L-1的腐殖酸和5~20 mg·L-1的表面活性剂的存在均会促进美托洛尔的去除效果,且促进作用随着含量的升高逐渐趋于稳定。由此可知,次氯酸钠可以氧化去除美托洛尔,为污水处理厂消除美托洛尔提供科学依据。
  • 加载中
  • [1] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告2015》概要[J].中国循环杂志,2016,31(6):521-528
    [2] 李艳芳.心血管的肾上腺素受体及β-肾上腺受体阻滞剂应用的新观念[J].中华老年心脑血管病杂志,2007,9(9):646-648
    [3] TERNES T A, HIRSCH R.Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment[J].Environmental Science & Technology,2000,34(13):2741-2748 10.1021/es991118m
    [4] VIENO N M, HARKKI H, TUHKANEN T, et al.Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant[J].Environmental Science & Technology,2007,41(14):5077-5084 10.1021/es062720x
    [5] 柳晋杰. 环境水体中β-受体阻断剂手性对映体分析方法的研究及应用[D]. 太原:山西医科大学,2010
    [6] 严清. 典型PhACs在城市水系统中的迁移分布规律及其在人工湿地中的去除研究[D]. 重庆:重庆大学,2014
    [7] SHAO B, CHEN D, ZHANG J, et al.Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater[J].Journal of Chromatography A,2009,1216(47):8312-8318 10.1016/j.chroma.2009.08.038
    [8] HUGGETT D B, KHAN I A, FORAN C M, et al.Determination of beta-adrenergic receptor blocking pharmaceuticals in United States wastewater effluent[J].Environmental Pollution,2003,121(2):199-205 10.1016/S0269-7491(02)00226-9
    [9] 施嘉琛,尚楠,张晶,等.β-受体阻断药物对大型蚤的毒性研究[J].毒理学杂志,2011,25(6):418-421
    [10] CONTARDO-JARA V, PFLUGMACHER S, NUETZMANN G, et al.The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha[J].Environmental Pollution,2010,158(6):2059-2066 10.1016/j.envpol.2010.03.012
    [11] CLEUVERS M.Initial risk assessment for three beta-blockers found in the aquatic environment[J].Chemosphere,2005,59(2):199-205 10.1016/j.chemosphere.2004.11.090
    [12] HUGGETT D B, BROOKS B W, PETERSON B, et al.Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms[J].Archives of Environmental Contamination and Toxicology,2002,43(2):229-235 10.1007/s00244-002-1182-7
    [13] VIDALES M J M D, MILLáN M, SáEZ C, et al.Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater[J].Separation & Purification Technology,2017,175:428-434 10.1016/j.seppur.2016.11.014
    [14] YE Y, FENG Y, BRUNING H, et al.Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED[J].Applied Catalysis B:Environmental,2018,220:171-181 10.1016/j.apcatb.2017.08.040
    [15] NAM S W, YOON Y, CHAE S, et al.Removal of selected micropollutants during conventional and advanced water treatment processes[J]. 2017,34(10):752-761 10.1089/ees.2016.0447
    [16] BEHERA S K, KIM H W, OH J, et al.Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea[J].Science of the Total Environment,2011,409(20):4351-4360 10.1016/j.scitotenv.2011.07.015
    [17] 单振华,严静娜,杨腾飞,等.美托洛尔在沉积物与活性污泥上的吸附行为[J].环境化学,2016,35(12):2559-2567
    [18] RUBIROLA A, LLORCA M, RODRIGUEZ-MOZAZ S, et al.Characterization of metoprolol biodegradation and its transformation products generated in activated sludge batch experiments and in full scale WWTPs[J].Water Research,2014,63:21-32 10.1016/j.watres.2014.05.031
    [19] 金玲. 膜生物反应器去除水中PPCPs的效果及SRT的影响研究[D]. 哈尔滨:哈尔滨工业大学, 2010
    [20] LEBEDEV A T, SHAYDULLINA G M, SINIKOVA N A, et al.GC-MS comparison of the behavior of chlorine and sodium hypochlorite towards organic compounds dissolved in water[J].Water Research,2004,38(17):3713-3718 10.1016/j.watres.2004.06.007
    [21] SCHWARZENBACH R P, ESCHER B I, FENNER K, et al.The challenge of micropollutants in aquatic systems[J].Science,2006,313(5790):1072-1077 10.1126/science.1127291
    [22] DEBORDE M, VON GUNTEN U.Reactions of chlorine with inorganic and organic compounds during water treatment: Kinetics and mechanisms: A critical review[J].Water Research,2008,42(1/2):13-51 10.1016/j.watres.2007.07.025
    [23] 盛梅,马芬,杨文伟.次氯酸钠溶液稳定性研究[J].化工技术与开发,2005,34(3):8-10
    [24] 大连理工大学无机化学教研室. 无机化学[M]. 5版. 北京:高等教育出版社,2006
    [25] KHALIT W N A W, TAY K S.Aqueous chlorination of acebutolol: kinetics, transformation by-products, and mechanism[J].Environmental Science and Pollution Research,2016,23(3):2521-2529 10.1007/s11356-015-5470-y
    [26] CHAMBERLAIN E, ADAMS C.Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine[J].Water Research,2006,40(13):2517-2526 10.1016/j.watres.2006.04.039
    [27] GE F, ZHU L, WANG J.Distribution of chlorination products of phenols under various pHs in water disinfection[J].Desalination,2008,225(1/2/3):156-166 10.1016/j.desal.2007.03.016
    [28] ABIA L, ARMESTO X L, CANLE M, et al.Oxidation of aliphatic amines by aqueous chlorine[J].Tetrahedron,1998,54(3/4):521-530 10.1016/s0040-4020(97)10312-x
    [29] 闫淑霞,刘春花,梁岩.腐殖酸的结构特性与应用研究进展[J].天然产物研究与开发,2017,29(3):511-516
    [30] TEJEDA-AGREDANO M, MAYER P, ORTEGA-CALVO J.The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime[J].Environmental Pollution,2014,184(104):435-442 10.1016/j.envpol.2013.09.031
    [31] WANG Y, LIU H, LIU G, et al.Kinetics for diclofenac degradation by chlorine dioxide in aqueous media: Influences of natural organic matter additives[J].Journal of the Taiwan Institute of Chemical Engineers,2015,56:131-137 10.1016/j.jtice.2015.04.015
    [32] MANDAL H K, MAJUMDAR T, MAHAPATRA A.Kinetics of the basic hydrolysis of tris (1,10-phenenthroline)Fe(II): Influence of polymer–surfactant interactions[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2011,380(1):300-307 10.1016/j.colsurfa.2011.03.001
    [33] GUASTALLI A R, CLARKSON R M, ROSSI-FEDELE G.The effect of surfactants on the stability of sodium hypochlorite preparations[J].Journal of Endodontics,2015,41(8):1344-1348 10.1016/j.joen.2015.03.009
  • 加载中
计量
  • 文章访问数:  3836
  • HTML全文浏览数:  3711
  • PDF下载数:  122
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

次氯酸钠氧化分解污水中美托洛尔的反应动力学及影响因素

  • 1. 华南理工大学环境与能源学院,广州 510006
基金项目:

国家自然科学基金资助项目(41877466)

广州市科技计划项目(201707010158)

摘要: 降压药美托洛尔经病人服用后由尿液排出,并经由市政管网进入城市污水处理厂但去除率不高,排入天然水体后成为一种新型微量污染物,在环境中持久存在,并具有潜在危害。研究讨论了污水处理厂中常用的氯消毒剂—次氯酸钠对美托洛尔的氧化分解情况,分别考察了温度、pH和水中常见有机物等对分解效果的影响。结果表明:次氯酸钠氧化分解美托洛尔的过程符合伪一级动力学反应特征;温度因素对反应速率的影响符合范特霍夫规则,在15~45 ℃范围内,提高反应温度,有利于美托洛尔的氧化分解;当pH为3~8时,反应速率随pH的降低而增大。同时,水体中0.1~1.0 mg·L-1的腐殖酸和5~20 mg·L-1的表面活性剂的存在均会促进美托洛尔的去除效果,且促进作用随着含量的升高逐渐趋于稳定。由此可知,次氯酸钠可以氧化去除美托洛尔,为污水处理厂消除美托洛尔提供科学依据。

English Abstract

参考文献 (33)

目录

/

返回文章
返回