Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理

宋亚丽, 田家宇, 齐晶瑶, 高珊珊, 崔福义. Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理[J]. 环境工程学报, 2018, 12(11): 3079-3089. doi: 10.12030/j.cjee.201803220
引用本文: 宋亚丽, 田家宇, 齐晶瑶, 高珊珊, 崔福义. Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理[J]. 环境工程学报, 2018, 12(11): 3079-3089. doi: 10.12030/j.cjee.201803220
SONG Yali, TIAN Jiayu, QI Jingyao, GAO Shanshan, CUI Fuyi. Performance and mechanism of visible-light photodegradation of sulfamethoxazole by Ag/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3079-3089. doi: 10.12030/j.cjee.201803220
Citation: SONG Yali, TIAN Jiayu, QI Jingyao, GAO Shanshan, CUI Fuyi. Performance and mechanism of visible-light photodegradation of sulfamethoxazole by Ag/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3079-3089. doi: 10.12030/j.cjee.201803220

Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理

  • 基金项目:

    国家自然科学基金资助项目(51779065)

Performance and mechanism of visible-light photodegradation of sulfamethoxazole by Ag/g-C3N4

  • Fund Project:
  • 摘要: 采用光还原方法成功地制备出了Ag/g-C3N4复合光催化剂,并考察了Ag/g-C3N4光催化剂在可见光下降解磺胺甲恶唑的效能、机理及各反应体系中间产物的生成情况,系统性地探究Ag/g-C3N4可见光降解磺胺甲恶唑的过程。实验结果表明,在g-C3N4中引入Ag纳米颗粒可以提高磺胺甲恶唑的降解效率。经可见光照射60 min后,Ag/g-C3N4-1、Ag/g-C3N4-3、Ag/g-C3N4-5、Ag/g-C3N4-8、Ag/g-C3N4-10降解磺胺甲恶唑的一级动力学常数比g-C3N4分别提高了1.29、1.76、3.41、4.82和7.12倍。这说明在可见光下,Ag/g-C3N4更适合于磺胺甲恶唑的高效降解。在Ag/g-C3N4可见光下降解磺胺甲恶唑的过程中,光生空穴和O2-·是主要活性物种,TP98、TP269和TP283是降解过程中的主要中间产物。其中,TP98主要由O2-·作用生成,TP269由·OH作用产生,而TP283受光生空穴的影响比较大。
  • 加载中
  • [1] YIN R L, GUO W Q, DU J S, et al.Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms [J].Chemical Engineering Journal,2017,317:632–639 10.1016/j.cej.2017.01.038
    [2] 高珊珊, 赵竟博, 田家宇,等. 化学改性对活性炭吸附磺胺甲恶唑和布洛芬的影响[J]. 环境工程学报,2015,9(10):4650-4654
    [3] MICHAEL I, RIZZO L, MCARDELL C S, et al.Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J].Water Research,2013,47:957–995 10.1016/j.watres.2012.11.027
    [4] RATOLA N, CINCINELLI A, ALVES A, et al.Occurrence of organic microcontaminants in the wastewater treatment process: A mini review [J].Journal of Hazardous Materials,2012,239–240:1–18 10.1016/j.jhazmat.2012.05.040
    [5] ROSAL R, RODRíGUEZ A, PERDIGóN-MELóN J A, et al.Occurrence of emerging pollutants in urbanwastewater and their removal through biological treatment followed by ozonation [J].Water Research,2010,44:578–588 10.1016/j.watres.2009.07.004
    [6] PADHYE L P, YAO H, KUNG U F T, et al.Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant [J].Water Research,2014,51:266-276 10.1016/j.watres.2013.10.070
    [7] YANG Y, LU X L, JIANG J, et al.Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J].Water Research,2017,118:196-207 10.1016/j.watres.2017.03.054
    [8] GAO S S, ZHAO Z W, XU Y P, et al.Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate: A comparative study [J].Journal of Hazardous Materials,2014,274:258-269 10.1016/j.jhazmat.2014.04.024
    [9] MOHAPATRA D P, BRAR S K, TYAGI R D, et al.Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine [J].Science of the Total Environment,2014,470-471:58-75 10.1016/j.scitotenv.2013.09.034
    [10] GóMEZ-RAMOS M D, MEZCUA M, AGüERA A, et al.Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution [J].Journal of Hazardous Materials,2011,192:18–25 10.1016/j.jhazmat.2011.04.072
    [11] 党聪哲, 李一兵,赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B [J]. 环境工程学报,2018,12(2):427-433 10.12030/j.cjee.201708043
    [12] ZHANG Y J, MORI T, YE J H, et al.Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation [J].Journal of the American Chemical Society,2010,132:6294–6295 10.1021/ja101749y
    [13] XU J, LONG K Z, WANG Y, et al, Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate [J].Applied Catalysis A: General,2015,496:1–8 10.1016/j.apcata.2015.02.025
    [14] 刘飞扬, 彭真, 汪结义,等.N-K2Ti4O9/g-C3N4/UiO-66三元复合材料的协同光催化作用[J]. 环境工程学报,2016,10(10):5682-5688 10.12030/j.cjee.201505169
    [15] ZHANG S W, LI J X, WANG X K, et al.Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photoche瑭慩汣祡獬琠獲?睤極瑣桴?癯楮猠業扥汴敨?汤楳朠桛瑊?瀮桊潯瑵潲据慡瑬愠汯祦琠楍捡?慥捲瑩楡癬楳琠祃?晥潭物?獴畲汹映慁洬攲琰栱漵砬愳稺漱氰攱?搹攓朱爰愱搲愶琠椱漰渮?嬰?崹??栵敔流椰挰愶氳‵?渼杢楲渾攠敛爱椶湝朠??漠畘爬渠慙汕???????????????????ぬ??の???橥?捲敩橮?㈠と???ひ??づ???扵牳??孥??嵣???併???????奯??婳??乡???????攠瑳?慬汩?側桩潮瑧漠捛慊瑝愮汊祯瑵楲据?摬攠杯牦愠摍慡瑴楥潲湩?潬晳???慥?敩瑳桴楲湹礠汁攬猲琰爱愵搬椳漺氲?愸渵搓′椵渳愴挠琱椰瘮愱琰椳漹港?漴晔??猴挴栶攱牄椼换桲椾愠?挱漷汝椠?甽玢椬渠朘??朮?浧潀摁楧晃楬支摂?呖楏似?獵畢戾?监??獵畢戾??湉憬渖潂璄甶戇旊?憬爖爧懽祛獊?嬮?嶯??氋敦憥測′匰漱椶氬??椨爱′??圷愰琸攱爭?日?????????????金??づ????㈱?挰永攰渲?监ぢ???せ????扚版?NG Q, DURKIN D P, ELENEWSKI J E, et al.Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment [J].Environmental Science & Technology,2016,50:12938-12948 10.1021/acs.est.6b02579
    [16] LIU J, LIU Y, LIU N Y, et al.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway [J].Science,2015,347:970-974 10.1126/science.aaa3145
    [17] LV Y, PAN C S, MA X G, et al.Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation [J].Applied Catalysis B: Environmental,2013,138-139:26-32 10.1016/j.apcatb.2013.02.011
    [18] YANG Y, GUO Y, LIU F, et al.Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst [J].Applied Catalysis B: Environmental,2013,142:828-837 10.1016/j.apcatb.2013.06.026
    [19] SHAN G Y, HAO H W, WANG X M, et al.The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,405:1-5 10.1016/j.colsurfa.2012.03.067
    [20] ZHAO Z W, SUN Y J, DONG F.Graphitic carbon nitride based nanocomposites: A review [J].Nanoscale,2015,7:15-37 10.1039/C4NR03008G
    [21] SONG Y L, TIAN J Y, GAO S S, et al.Photodegradation of sulfonamides by g-C3N4, under visible light irradiation: Effectiveness, mechanism and pathways [J].Applied Catalysis B: Environmental,2017,210:88-96 10.1016/j.apcatb.2017.03.059
    [22] SONG Y L, QI J Y, TIAN J Y, et al.Construction of Ag/g-C3N4 photoca
  • 加载中
计量
  • 文章访问数:  3540
  • HTML全文浏览数:  3376
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理

  • 1. 郑州轻工业学院材料与化学工程学院,环境污染治理与生态修复河南省协同创新中心,郑州 450001
  • 2. 哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨150090
  • 3. 河北工业大学土木与交通学院,天津300401
  • 4. 重庆大学城市建设与环境工程学院,重庆400044
基金项目:

国家自然科学基金资助项目(51779065)

摘要: 采用光还原方法成功地制备出了Ag/g-C3N4复合光催化剂,并考察了Ag/g-C3N4光催化剂在可见光下降解磺胺甲恶唑的效能、机理及各反应体系中间产物的生成情况,系统性地探究Ag/g-C3N4可见光降解磺胺甲恶唑的过程。实验结果表明,在g-C3N4中引入Ag纳米颗粒可以提高磺胺甲恶唑的降解效率。经可见光照射60 min后,Ag/g-C3N4-1、Ag/g-C3N4-3、Ag/g-C3N4-5、Ag/g-C3N4-8、Ag/g-C3N4-10降解磺胺甲恶唑的一级动力学常数比g-C3N4分别提高了1.29、1.76、3.41、4.82和7.12倍。这说明在可见光下,Ag/g-C3N4更适合于磺胺甲恶唑的高效降解。在Ag/g-C3N4可见光下降解磺胺甲恶唑的过程中,光生空穴和O2-·是主要活性物种,TP98、TP269和TP283是降解过程中的主要中间产物。其中,TP98主要由O2-·作用生成,TP269由·OH作用产生,而TP283受光生空穴的影响比较大。

English Abstract

参考文献 (22)

目录

/

返回文章
返回