铜铈复合氧化物催化降解甲基橙

王书, 李攀. 铜铈复合氧化物催化降解甲基橙[J]. 环境工程学报, 2018, 12(11): 3062-3068. doi: 10.12030/j.cjee.201805120
引用本文: 王书, 李攀. 铜铈复合氧化物催化降解甲基橙[J]. 环境工程学报, 2018, 12(11): 3062-3068. doi: 10.12030/j.cjee.201805120
WANG Shu, LI Pan. Catalytic degradation of methyl orange with Cu-Ce composite oxides[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3062-3068. doi: 10.12030/j.cjee.201805120
Citation: WANG Shu, LI Pan. Catalytic degradation of methyl orange with Cu-Ce composite oxides[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3062-3068. doi: 10.12030/j.cjee.201805120

铜铈复合氧化物催化降解甲基橙

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07201002)

Catalytic degradation of methyl orange with Cu-Ce composite oxides

  • Fund Project:
  • 摘要: 采用水热法制备的铜铈复合氧化物能够直接催化降解甲基橙,探究了铜铈摩尔比、pH、投加量对催化降解效果的影响。研究发现,pH=3.5、Cu/Ce=1、投加量1.0 g·L-1时,甲基橙的降解效果最佳。在0.5~1.0 g·L-1之间时,随着投加量的增加,甲基橙的脱色速率加快,脱色率也有所增加。随着溶液中的pH逐渐下降,甲基橙脱色率有所增加,pH=3.5时,甲基橙脱色率最高;而进一步降低pH至3.0时,脱色率反而下降,可能是强酸腐蚀了金属氧化物表层,降低了甲基橙的降解效果。甲基橙主要因其被降解而脱色,促使甲基橙脱色的活性物质为·OH,且与体系中的分子氧有关,反应过程消耗一定的H+。
  • 加载中
  • [1] METIVIER-PIGNON H, FAUR-BRASQUET C, JAOUEN P, et al.Coupling ultrafiltration with an activated carbon cloth for the treatment of highly coloured wastewaters: A techno-economic study[J].Environmental Technology,2003,24(6):735-743 10.1080/09593330309385610
    [2] KHAMPARIA S, JASPAL D K.Adsorption in combination with ozonation for the treatment of textile wastewater: A critical review[J].Frontiers of Environmental Science & Engineering,2017,11(1):17-34
    [3] ALINSAFI A, KHEMIS M, PONS M N, et al.Electro-coagulation of reactive textile dyes and textile wastewater[J].Chemical Engineering & Processing Process Intensification,2005,44(4):461-470 10.1016/j.cep.2004.06.010
    [4] YEH R Y, HUNG Y, LIU R L, et al.Textile wastewater treatment with activated sludge and powdered activated carbon[J].International Journal of Environmental Studies,2002,59(5):607-622 10.1080/00207230212735
    [5] ANTONOPOULOU M, EVGENIDOU E, LAMBROPOULOU D, et al.A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media[J].Water Research,2014,53(8):215-234 10.1016/j.watres.2014.01.028
    [6] 杨晶,黄瑞敏,谢春生,等.负载型纳米CuO/MnO2催化剂的制备及催化氧化深度处理印染废水[J].环境工程学报,2018,12(1):34-40 10.12030/j.cjee.201705093
    [7] 25 占昌朝,曹小华,严平,等.微波-膨胀石墨-Fenton试剂协同催化氧化甲基橙废水[J].水处理技术,2012,38(6):22-25
    [8] LI P, SONG Y, WANG S, et al.Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation[J].Ultrasonics Sonochemistry,2015,22:132-138 10.1016/j.ultsonch.2014.05.025
    [9] LEIW M Y, GUAI G H,WANG X, et al.Dark ambient degradation of bisphenol A and acid orange 8 as organic pollutants by perovskite SrFeO3-δ metal oxide[J].Journal of Hazardous Materials,2013,260:1-8 10.1016/j.jhazmat.2013.04.031
    [10] GONG X, LIU B C, KANG B, et al.Boosting Cu-Ce interaction in CuxO/CeO2 nanocube catalysts for enhanced catalytic performance of preferential oxidation of CO in H2-rich gases[J].Molecular Catalysis,2017,436:90-99 10.1016/j.mcat.2017.04.013
    [11] CHEN L, LI J, GE M, et al.Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia[J].Catalysis Today, 2010,153(3):77-83 10.1016/j.cattod.2010.01.062
    [12] GUO L , ZHONG Q,DING J, et al.Catalytic ozonation for low-temperature NOx (x = 1, 2) removal with OH radicals over Cu doped Ce0.90Co0.10O2-δ catalysts and mechanism analysis[J].Fuel Processing Technology,2017,167:545-554 10.1016/j.fuproc.2017.07.033
    [13] LEE D S, CHEN Y W.Au/CuO--CeO2 catalyst for preferential oxidation of CO in hydrogen-rich stream: Effect of CuO content[J].International Journal of Hydrogen Energy,2016,41(5):3605-3612 10.1016/j.ijhydene.2015.12.137
    [14] HUIE R E, PADMAJA S.The reaction of NO with superoxide[J].Free Radical Research Communications,1993,18(4):195-199 10.3109/10715769309145868
    [15] VON GUNTEN U, HOIGNE J.Bromate formation during ozonization of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions[J].Environmental Science & Technology,1994,28(7):1234-1242 10.1021/es00056a009
    [16] FENG Y, LEE P H, WU D, et al.Degradation of contaminants by Cu+-activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu3+) [J].Journal of Hazardous Materials,2017,331:81-87 10.1016/j.jhazmat.2017.02.029
    [17] YUAN X, PHAM A N, XING G, et al.Effects of pH, chloride, and bicarbonate on Cu(I) oxidation kinetics at circumneutral pH[J].Environmental Science & Technology,2012,46(3):1527-1535 10.1021/es203394k
    [18] PéREZ-ALMEIDA N, GONZáLEZ-DáVILA M, SANTANA-CASIANO J M, et al.Correction to oxidation of Cu(I) in seawater at low oxygen concentrations[J].Environmental Science & Technology,2013,47(3):1239-1247
    [19] ZAFIRIOU O C, VOELKER B M, SEDLAK D L.Chemistry of the superoxide radical (O2-) in seawater: Reactions with inorganic copper complexes[J].Journal of Physical Chemistry A,1998,102(28):5693-5700 10.1021/jp980709g
    [20] CHEN H, MOTUZAS J, MARTENS W, et al.Degradation of azo dye orange II under dark ambient conditions by calcium strontium copper perovskite[J].Applied Catalysis B:Environmental,2018,221:691-700 10.1016/j.apcatb.2017.09.056
  • 加载中
计量
  • 文章访问数:  3208
  • HTML全文浏览数:  3088
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

铜铈复合氧化物催化降解甲基橙

  • 1. 同济大学环境科学与工程学院,上海 200092
  • 2. 同济大学污染控制与资源化研究国家重点实验室,上海200092
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07201002)

摘要: 采用水热法制备的铜铈复合氧化物能够直接催化降解甲基橙,探究了铜铈摩尔比、pH、投加量对催化降解效果的影响。研究发现,pH=3.5、Cu/Ce=1、投加量1.0 g·L-1时,甲基橙的降解效果最佳。在0.5~1.0 g·L-1之间时,随着投加量的增加,甲基橙的脱色速率加快,脱色率也有所增加。随着溶液中的pH逐渐下降,甲基橙脱色率有所增加,pH=3.5时,甲基橙脱色率最高;而进一步降低pH至3.0时,脱色率反而下降,可能是强酸腐蚀了金属氧化物表层,降低了甲基橙的降解效果。甲基橙主要因其被降解而脱色,促使甲基橙脱色的活性物质为·OH,且与体系中的分子氧有关,反应过程消耗一定的H+。

English Abstract

参考文献 (20)

目录

/

返回文章
返回