污泥发酵液主要成分对鸟粪石结晶法回收磷的影响

李志, 李咏梅. 污泥发酵液主要成分对鸟粪石结晶法回收磷的影响[J]. 环境工程学报, 2018, 12(11): 3053-3061. doi: 10.12030/j.cjee.201805117
引用本文: 李志, 李咏梅. 污泥发酵液主要成分对鸟粪石结晶法回收磷的影响[J]. 环境工程学报, 2018, 12(11): 3053-3061. doi: 10.12030/j.cjee.201805117
LI Zhi, LI Yongmei. Influence of major components in sludge fermentation liquid on phosphorus recovery using struvite crystallization[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3053-3061. doi: 10.12030/j.cjee.201805117
Citation: LI Zhi, LI Yongmei. Influence of major components in sludge fermentation liquid on phosphorus recovery using struvite crystallization[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3053-3061. doi: 10.12030/j.cjee.201805117

污泥发酵液主要成分对鸟粪石结晶法回收磷的影响

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2015ZX07306001)

Influence of major components in sludge fermentation liquid on phosphorus recovery using struvite crystallization

  • Fund Project:
  • 摘要: 为了研究污泥发酵液中的主要无机离子和有机成分对鸟粪石结晶法回收磷的影响,选取钙和钾为典型无机离子,以与胞外聚合物(EPS)性质相似的海藻酸钠(SA)和腐殖酸的主要成分富里酸(FA)模拟污泥发酵液主要有机成分,利用小试流化床反应器进行连续流实验。结果表明,随着Ca2+浓度升高,除磷率先下降后上升,生成了无定形磷酸钙沉淀,当Ca2+浓度为100 mg·L-1时,鸟粪石纯度降至14.9%。实验浓度范围内,K+、SA与FA均使鸟粪石纯度降至90%以下,生成少量共沉淀物,但产物晶型仍以规则斜方晶为主,除磷率在80%以上。其中SA主要附着在鸟粪石表面,阻碍鸟粪石晶体的正常生长,随着SA浓度由0 mg·L-1升高到120 mg·L-1,产物纯度由96.0%降至77.3%,粉末状晶体增多,使产物平均粒径由0.80 mm降至0.56 mm。
  • 加载中
  • [1] LI X Z, ZHAO Q L.Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer[J].Ecological Engineering,2003,20(2):171-181 10.1016/S0925-8574(03)00012-0
    [2] 李咏梅, 平倩, 马璐艳. 鸟粪石成粒法回收污泥液中的磷及颗粒品质表征[J]. 同济大学学报(自然科学版),2014,42(6):912-917
    [3] MOUSSA S B, TLILI M M, BATIS N, et al.Influence of temperature on struvite precipitation by CO2-deagassing method[J].Crystal Research & Technology,2015,46(3):255-260 10.1002/crat.201000571
    [4] ZHANG D M, CHEN Y X, JILANI G, et al.Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants[J].Bioresource Technology,2012,116(7):386-395 10.1016/j.biortech.2012.03.107
    [5] PING Q, LI Y, WU X, et al.Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations[J].Journal of Hazardous Materials,2016,310:261-269 10.1016/j.jhazmat.2016.02.047
    [6] 梅翔, 王欣, 杨旭,等. 利用白云石提供钙镁源从污泥厌氧消化液中回收磷[J]. 水处理技术,2012,38(12):48-53
    [7] 朱建平. 碱性发酵污泥有机物的分离及氮与磷的回收[D]. 哈尔滨: 哈尔滨工业大学, 2013
    [8] 张自杰. 排水工程: 下册[M]. 北京: 中国建筑工业出版社,2000
    [9] 姚炜婷, 孙水裕, 郑莉,等. 超声波-缺氧/好氧消化过程污泥胞外聚合物和溶出物的变化研究[J]. 环境科学,2011,32(6):1665-1672
    [10] ZHOU J, LONG T, MIAO L.Effect of extracellular polymeric substances(EPS) on sedimentation of activated sludge[J].Acta Scientiae Circumstantiae,2004,24(4):613-618
    [11] YAN H, SHI H K.Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis[J].Water Research,2016,95:310-318 10.1016/j.watres.2016.03.032
    [12] 李德鹏. 有机物对鸟粪石法回收废水中磷的影响[D]. 合肥: 安徽工业大学,2013
    [13] 韦林, 洪天求, 李如忠,等. 海藻酸钠对鸟粪石结晶的影响及机理研究[J]. 中国环境科学,2017,37(8):2941-2946
    [14] 卢霄. 污水厂化学除磷污泥中磷的强化释放技术研究[D]. 上海: 同济大学, 2018
    [15] LIN Y M, SHARMA P K, LOOSDRECHT M C M V.The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge[J].Water Research,2013,47(1):57-65 10.1016/j.watres.2012.09.017
    [16] WENG L, VAN RIEMSDIJK W H, HIEMSTRA T.Humic nanoparticles at the oxide-water interface: Interactions with phosphate ion adsorption[J].Environmental Science & Technology, 2008, 42(23):8747-8752 10.1021/es801631d
    [17] 杨露, 平倩, 李咏梅. 低磷浓度下鸟粪石结晶成粒及反应器流态模拟[J]. 中国环境科学,2016,36(4):1017-1026
    [18] 国家环境保护总局. 水和废水监测分析方法[M].4版.北京: 中国环境科学出版社,2002
    [19] 沈颖, 叶志隆, 叶欣,等. 鸟粪石法回收养猪废水中氮磷时产物的组分与性质研究[J]. 环境科学学报,2013,33(1):92-97
    [20] HAO X D, WANG C C, LAN L, et al.Struvite formation, analytical methods and effects of pH and Ca2+[J].Water Science & Technology,2008,58(8):1687-1692 10.2166/wst.2008.557
    [21] ALVAREZ R, EVANS L A, MILHAM P J, et al.Effects of humic material on the precipitation of calcium phosphate[J].Geoderma,2004,118(3/4):245-260 10.1016/S0016-7061(03)00207-6
    [22] SONG Y H, QIU G L, YUAN P, et al.Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions[J].Journal of Hazardous Materials,2011,190(1/2/3):140-149 10.1016/j.jhazmat.2011.03.015
    [23] WANG L, NANCOLLAS G H.Calcium orthophosphates: Crystallization and dissolution[J].Chemical Reviews,2008,108(11):4628-4669 10.1021/cr0782574
    [24] 李延报, 李东旭, 翁文剑. 无定形磷酸钙及其在生物医学中的应用[J]. 无机材料学报,2007,22(5):775-782
    [25] LI B, BOIARKINA I, YOUNG B, et al.Quantification and mitigation of the negative impact of calcium on struvite purity[J].Advanced Powder Technology,2016,27(6):2354-2362 10.1016/j.apt.2016.10.003
    [26] ZHU L, DONG D, HUA X, et al.Ammonia nitrogen removal from acetylene purification wastewater from a PVC plant by struvite precipitation[J].Water Science & Technology,2016,74(2):508-515 10.2166/wst.2016.239
    [27] LUFF B B, REED R B.Thermodynamic properties of magnesium potassium orthophosphate hexahydrate[J].Journal of Chemical & Engineering Data,2002,25(4):310-312 10.1021/je60087a028
    [28] XU K, WANG C, LIU H, et al.Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate[J].Chemosphere,2011,84(2):207-212 10.1016/j.chemosphere.2011.04.057
    [29] AKINB, ?NER M, BAYRAM Y, et al.Effects of carboxylate-modified, “Green”inulin biopolymers on the crystal growth of calcium oxalate[J].Crystal Growth & Design,2008,8(6):1997-2005 10.1021/cg800092q
    [30] LIM S F, ZHENG Y M, CHEN J P.Organic arsenic adsorption onto a magnetic sorbent[J].Langmuir,2009,25(9):4973-4978 10.1021/la802974x
    [31] 孙亚东, 韩小蒙, 王志伟,等. 金属离子对海藻酸钠在固体表面的吸附性能影响研究[J]. 水处理技术,2015,41(4):45-49
    [32] GREENLAND D J.Interactions between humic and fulvic acids and clays[J].Soil Science,1971,111(1):34-41
    [33] NAMJESNIKDEJANOVIC K, MAURICE P A, AIKEN G R, et al.Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6 and 8[J].Soil Science,2000,165(7):545-559
    [34] 蔡鹏. 磷酸盐和富里酸、腐殖酸在针铁矿/水界面的竞争吸附研究[D]. 北京: 中国地质大学(北京),2013
  • 加载中
计量
  • 文章访问数:  3559
  • HTML全文浏览数:  3450
  • PDF下载数:  126
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

污泥发酵液主要成分对鸟粪石结晶法回收磷的影响

  • 1. 同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海 200092
  • 2. 上海污染控制与生态安全研究院,上海 200092
基金项目:

国家水体污染控制与治理科技重大专项(2015ZX07306001)

摘要: 为了研究污泥发酵液中的主要无机离子和有机成分对鸟粪石结晶法回收磷的影响,选取钙和钾为典型无机离子,以与胞外聚合物(EPS)性质相似的海藻酸钠(SA)和腐殖酸的主要成分富里酸(FA)模拟污泥发酵液主要有机成分,利用小试流化床反应器进行连续流实验。结果表明,随着Ca2+浓度升高,除磷率先下降后上升,生成了无定形磷酸钙沉淀,当Ca2+浓度为100 mg·L-1时,鸟粪石纯度降至14.9%。实验浓度范围内,K+、SA与FA均使鸟粪石纯度降至90%以下,生成少量共沉淀物,但产物晶型仍以规则斜方晶为主,除磷率在80%以上。其中SA主要附着在鸟粪石表面,阻碍鸟粪石晶体的正常生长,随着SA浓度由0 mg·L-1升高到120 mg·L-1,产物纯度由96.0%降至77.3%,粉末状晶体增多,使产物平均粒径由0.80 mm降至0.56 mm。

English Abstract

参考文献 (34)

目录

/

返回文章
返回