湿法脱硫系统中液相二价汞的还原抑制

王青峰. 湿法脱硫系统中液相二价汞的还原抑制[J]. 环境工程学报, 2018, 12(2): 590-596. doi: 10.12030/j.cjee.201707143
引用本文: 王青峰. 湿法脱硫系统中液相二价汞的还原抑制[J]. 环境工程学报, 2018, 12(2): 590-596. doi: 10.12030/j.cjee.201707143
WANG Qinfgeng. Oxidized mercury reduction inhibition by additives in wet desulfurization system[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 590-596. doi: 10.12030/j.cjee.201707143
Citation: WANG Qinfgeng. Oxidized mercury reduction inhibition by additives in wet desulfurization system[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 590-596. doi: 10.12030/j.cjee.201707143

湿法脱硫系统中液相二价汞的还原抑制

  • 基金项目:

    中国博士后科学基金面上资助项目(2016M602720)

    贵州省科技基金基础研究项目([2017]1200)

    贵州省教育厅青年科技人才成长项目(KY [2016]252)

    遵义师范学院博士科研启动基金资助项目(BS[2015]06)

Oxidized mercury reduction inhibition by additives in wet desulfurization system

  • Fund Project:
  • 摘要: 湿法脱硫系统协同脱汞是当前燃煤烟气脱汞的重要方法,而进入脱硫系统的二价汞还原问题会降低汞的脱除效率,从而限制该方法的使用。在脱硫浆液中添加添加剂捕集和稳定二价汞能有效抑制二价汞的还原。在模拟浆液条件下考察多硫化钙、TMT、乙基黄原酸钠、EDTA和腐殖酸对液相二价汞的还原抑制效果。结果表明,多硫化钙和TMT能极大的抑制二价汞的还原,当其添加量分别为0.004%(体积分数)和0.002%(体积分数)时,汞还原量仅为未添加条件下的3.3%和0.8%,而乙基黄原酸钠、EDTA和腐殖酸在一定条件下不仅不会抑制二价汞的还原,反而会一定程度促进二价汞的还原。这表明乙基黄原酸钠、EDTA和腐殖酸并不适合于作为液相二价汞的还原抑制剂。
  • 加载中
  • [1] CHANG L W.Neurotoxic effects of mercury: A review[J].Environmental Research,1977,4(3):329-373
    [2] PAVLISH J H, SONDREAL E A, MANN M D, et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,2(2):89-165
    [3] HSU-KIM H, KUCHARZYK K H, ZHANG T, et al.Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review[J].Environmental Science & Technology,2013,7(6):2441-2456
    [4] ZHANG L, WANG S, WANG L, et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science & Technology,2015,9(5):3185-3194
    [5] United Nations Environment Programme (UNEP).Global mercury assessment 2013: Sources, emissions, releases and environmental transport[R].UNEP Chemicals Branch: Geneva, Switzerland, 2013
    [6] GALBREATH K C, ZYGARLICKE C J.Mercury transformations in coal combustion flue gas[J].Fuel Processing Technology,2000,5(99):289-310
    [7] CHEN W, PEI Y, HUANG W, et al.Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation[J].Environmental Science & Technology,2016,0(5):2564-2572
    [8] LI H, ZHU L, WANG J, et al.Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J].Environmental Science & Technology,2016,0(17):9551-9557
    [9] WANG Z, ZHOU J, ZHU Y, et al.Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J].Fuel Processing Technology,2007,8(8):817-823
    [10] ZHAO Y, HAO R, YUAN B, et al.Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant[J].Journal of Hazardous Materials,2016,1:74-83
    [11] LIU Y, WANG Q, MEI R, et al.Mercury re-emission in flue gas multipollutants simultaneous absorption system[J].Environmental Science & Technology,2014,8(23):14025-14530
    [12] WANG Q, LIU Y, WANG H, et al.Mercury re-emission behaviors in magnesium-based wet flue gas desulfurization process: The effects of oxidation inhibitors[J].Energy & Fuels,2015,9(4):2610-2615
    [13] CHANG J C, GHORISHI S B.Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber[J].Environmental Science & Technology,2003,7(24):5763-5766
    [14] WU C L, CAO Y, DONG Z B, et al.Impacting factors of elemental mercury re-emission across a lab-scale simulated scrubber[J].Chinese Journal of Chemical Engineering,2010,8(3):523-528
    [15] CHENG C M, CAO Y, KAI Z, et al.Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J].Fuel,2013,6(4):505-511
    [16] WO J, ZHANG M, CHENG X, et al.Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors[J].Journal of Hazardous Materials,2009,2(2/3):1106-1110
    [17] OCHOA-GONZALEZ R, DIAZ-SOMOANO M, MARTNEZ-TARAZONA M R.Control of Hg0 re-emission from gypsum slurries by means of additives in typical wet scrubber conditions[J].Fuel,2013,5(1):112-118
    [18] OMINE N, ROMERO C E, KIKKAWA H, et al.Study of elemental mercury re-emission in a simulated wet scrubber[J].Fuel,2012,1(1):93-101
    [19] LU R, HOU J, JIANG X, et al.Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions[J].Journal of Hazardous Materials,2011,6(1):160-165
    [20] BLYTHE G M.Field testing of a wet FGD additive for enhanced mercury control pilot scale test results[R].URS Corporation: Austin, Texas, 2006
    [21] HOU J, LU R, SUN M, et al.Effect of heavy metals on the stabilization of mercury(Ⅱ) by DTCR in desulfurization solutions[J].Journal of Hazardous Materials,2012,7-218(6):224-230
    [22] LIU Y, XIE S, LI Y, et al.Novel mercury control technology for solid waste incineration: sodium tetrasulfide (STS) as mercury capturing agent[J].Environmental Science & Technology,2007,1(5):1735-1739
    [23] AMRHEIN G T.Mercury removal in utility wet scrubber using a chelating agent:US6328939[P].2001-12-11
    [24] JEON C, PARK K H.Adsorption and desorption characteristics of mercury(Ⅱ) ions using aminated chitosan bead[J].Water Research,2005,9(16):3938-3944
    [25] RAVICHANDRAN M.Interactions between mercury and dissolved organic matter:A review[J].Chemosphere,2004,5(3):319-331
    [26] HAITZER M, AIKEN G R, RYAN J N.Binding of mercury(Ⅱ) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio[J].Environmental Science & Technology,2002,6(16):3564-3570
    [27] SWANSON C L, WING R E, DOANE W M, et al.Mercury removal from waste water with starch xanthate-cationic polymer complex[J].Journal Water Pollution Control Federation,1973,7(8):2043-2047
    [28] HOLAH D G, MURPHY C N.Reactions of sodium N,N-diethyldithiocarbamate and potassium ethyl xanthate with some 3D transition metal halides in the presence of 2,2′-bipyridyl and 1,0-phenanthroline[J].Canadian Journal of Chemistry,1971,9(16):2726-2732
    [29] YAHIKOZAWA K, ARATANI T, ITO R, et al.Kinetic studies on the lime sulfurated solution (calcium polysulfide) process for removal of heavy metals from wastewater[J].Bulletin of the Chemical Society of Japan,2006,1(2):613-617
    [30] KIM B R, ASCE M, GAINES W A, et al.Removal of heavy metals from automotive wastewater by sulfide precipitation[J].Journal of Environmental Engineering,2002,8(7):612-623
    [31] HENKE K R.Structure and powder diffraction pattern of 2,4,6-trimercapto-s-triazine, trisodium salt (Na3S3C3N3·9H2O)[J].Powder Diffraction,1997,2(1):7-12
    [32] LIAO D, LUO Y, YU P, et al.Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT[J].Applied Organometallic Chemistry,2006,0(4):246-253
    [33] MATLOCK M M, HENKE K R, ATWOOD D A, et al.Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds[J].Water Research,2001,5(15):3649-3655
    [34] 廉会良.重金属黄原酸盐的热分解机理研究[D].济南:济南大学, 2013
    [35] HARRIS P J, FINKELSTEIN N P.Interactions between sulphide minerals and xanthates.I.The formation of monothiocarbonate at galena and pyrite surfaces[J].International Journal of Mineral Processing,1975,2(1):77-100
    [36] JONES M H, WOODCOCK J T.Formation and recognition of alkyl xanthyl thiosulphates in sulphide ore flotation liquors[J].International Journal of Mineral Processing,1981,8(2):125-145
    [37] 曾清如, 廖柏寒, 杨仁斌,等.EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学,2003,3(6):597-601
    [38] BLYTHE G, CURRIE J, DEBERRY D.Bench-scale kinetics study of mercury reactions in FGD liquors[R/OL].[2017-07-01].https://www.osti.gov/scitech/servlets/purl/950472/
    [39] 王兰, 巴音.腐植酸重金属废水净化剂对汞、镉、铅等金属离子的吸附能力[J].环境化学,1982,1(2):152-159
    [40] ZHENG W, LIANG L, GU B.Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J].Environmental Science & Technology,2012,6(1):292-299
  • 加载中
计量
  • 文章访问数:  2082
  • HTML全文浏览数:  1728
  • PDF下载数:  592
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

湿法脱硫系统中液相二价汞的还原抑制

  • 1. 遵义师范学院资源与环境学院,遵义 563002
  • 2. 中国科学院地球化学研究所,环境地球化学国家重点实验室,贵阳 550081
基金项目:

中国博士后科学基金面上资助项目(2016M602720)

贵州省科技基金基础研究项目([2017]1200)

贵州省教育厅青年科技人才成长项目(KY [2016]252)

遵义师范学院博士科研启动基金资助项目(BS[2015]06)

摘要: 湿法脱硫系统协同脱汞是当前燃煤烟气脱汞的重要方法,而进入脱硫系统的二价汞还原问题会降低汞的脱除效率,从而限制该方法的使用。在脱硫浆液中添加添加剂捕集和稳定二价汞能有效抑制二价汞的还原。在模拟浆液条件下考察多硫化钙、TMT、乙基黄原酸钠、EDTA和腐殖酸对液相二价汞的还原抑制效果。结果表明,多硫化钙和TMT能极大的抑制二价汞的还原,当其添加量分别为0.004%(体积分数)和0.002%(体积分数)时,汞还原量仅为未添加条件下的3.3%和0.8%,而乙基黄原酸钠、EDTA和腐殖酸在一定条件下不仅不会抑制二价汞的还原,反而会一定程度促进二价汞的还原。这表明乙基黄原酸钠、EDTA和腐殖酸并不适合于作为液相二价汞的还原抑制剂。

English Abstract

参考文献 (40)

目录

/

返回文章
返回