施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响

万辉, 易筱筠, 刘小平, 薛宇宙, 冯春华. 施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响[J]. 环境工程学报, 2018, 12(2): 581-589. doi: 10.12030/j.cjee.201707180
引用本文: 万辉, 易筱筠, 刘小平, 薛宇宙, 冯春华. 施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响[J]. 环境工程学报, 2018, 12(2): 581-589. doi: 10.12030/j.cjee.201707180
WAN Hui, YI Xiaoyun, LIU Xiaoping, XUE Yuzhou, FENG Chunhua. Effects of applied different potential on reductive dechlorination of PCBs in anaerobic sediment[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 581-589. doi: 10.12030/j.cjee.201707180
Citation: WAN Hui, YI Xiaoyun, LIU Xiaoping, XUE Yuzhou, FENG Chunhua. Effects of applied different potential on reductive dechlorination of PCBs in anaerobic sediment[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 581-589. doi: 10.12030/j.cjee.201707180

施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响

  • 基金项目:

    国家自然科学基金资助项目(41673090,0,51378216)

Effects of applied different potential on reductive dechlorination of PCBs in anaerobic sediment

  • Fund Project:
  • 摘要: 以广东省清远市龙塘镇电子垃圾拆解场附近受多氯联苯污染的河涌底泥为研究对象,构建基于-0.1、-0.3、-0.5 和-0.7 V (相对于饱和甘汞电极) 恒定电压的生物电化学系统,考察了闭路和开路条件下河涌底泥中PCB 61的降解率及其产物,并分析了微生物群落结构的变化。结果表明,在-0.7 V电位刺激下微生物还原降解PCB 61的效率最高,24周后,PCB 61的降解率达到了59.05%,高于开路条件的32.22%,在考察的电极电位范围内,电极电位值越小,PCB 61的还原脱氯速率越高。高通量测序结果表明:底泥微生物的结构组成随实验条件的变化表现出显著差异;施加电压刺激可提升电化学活性菌(Geobacter和Ignavibacterium)菌群丰度,进而强化脱氯效能;而Methanosarcina和Methanosaeta这2种菌在闭路条件下是显著优势菌,这2类菌的相互作用有可能对PCB 61还原脱氯有重要影响。
  • 加载中
  • [1] MEIJER S N, OCKENDEN W A, SWEETMAN A, et al.Global distribution and budget of PCBs and HCB in background surface soils:Implications for sources and environmental processes[J].Environmental Science and Technology,2003,7(4):667-672
    [2] 林娜娜, 单振华, 朱崇岭,等.清远某电子垃圾拆解区河流底泥中重金属和多氯联苯的复合污染[J].环境化学, 2015,34(9):1685-1693
    [3] 路风辉, 陈满英, 陈燕舞,等.电子垃圾拆解区氯化石蜡和多氯联苯的分布特征:以广东清远龙塘镇为例[J].环境化学,2015,4(7):1297-1303
    [4] SOWERS K R, MAY H D.In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: Are we there yet?[J].Current Opinion in Biotechnology,2013,4(3):482-488
    [5] WU B Z, CHEN H Y, WANG S J, et al.Reductive dechlorination for remediation of polychlorinated biphenyls[J].Chemosphere,2012,8(7):757-768
    [6] GOMES H I, DIAS-FERREIRA C, RIBEIRO A B.Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application[J].Science of the Total Environment,2013,5:237-260
    [7] MORRIS J M, JIN S, CRIMI B, et al.Microbial fuel cell in enhancing anaerobic biodegradation of diesel[J].Chemical Engineering Journal,2009,6(2):161-167
    [8] YAN Z, SONG N, CAI H, et al.Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide[J].Journal of Hazardous Materials,2012,9:217-225
    [9] PHAM H, BOON N, MARZORTI M, et al.Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia[J].Water Research,2009,3(11):2936-2946
    [10] SUN M, YAN F, ZHANG R, et al.Redox control and hydrogen production in sediment caps using carbon cloth electrodes[J].Environmental Science and Technology,2010,4(21):8209-8215
    [11] CHUN C L, PAYNE R B, SOWERS K R, et al.Electrical stimulation of microbial PCB degradation in sediment[J].Water Research,2013,7(1):141-152
    [12] YU H, FENG C, LIU X, et al.Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation[J].Environmental Pollution,2016,1:81-89
    [13] LIU X, WAN H, XUE Y, et al.Addition of iron oxides in sediments enhances 2,3, 4,5-tetrachlorobiphenyl (PCB 61) dechlorination by low-voltage electric fields[J].RSC Advances,2017,7(42):26019-26027
    [14] LOVLEY D R.Powering microbes with electricity:direct electron transfer from electrodes to microbes[J].Environmental Microbiology Reports,2011,3(1):27-35
    [15] LOVLEY D R, NEVIN K P.A shift in the current:New applications and concepts for microbe-electrode electron exchange[J].Current Opinion in Biotechnology,2011,2(3):441-448
    [16] YU H, WAN H, FENG C, et al.Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation:The effect of adding acetate and nonionic surfactant[J].Science of the Total Environment,2017,0:1371-1380
    [17] TANG R, WU D, CHEN W, et al.Biocathode denitrification of coke wastewater effluent from an industrial aeration tank:Effect of long-term adaptation[J].Biochemical Engineering Journal,2017,5:151-160
    [18] FAIREY J L, WAHMAN D G, LOWRY G V.Effects of natural organic matter on PCB-activated carbon sorption kinetics:Implications for sediment capping applications[J].Journal of Environmental Quality,2010,9(4):1359-1368
    [19] QUENSEN J F, BOYD S A, TIEDJE J M.Dechlorination of four commercial polychlorinated biphenyl mixtures (aroclors) by anaerobic microorganisms from sediments[J].Applied and Environmental Microbiology,1990,6(8):2360-2369
    [20] BEDARD D L, VAN DORT H M, MAY R J, et al.Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of aroclor 1260 in Housatonic river sediment[J].Environmental Science and Technology,1997,1(11):3308-3313
    [21] GOMES H I, DIAS-FERREIRA C, OTTOSEN L M, et al.Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants[J].Journal of Colloid and Interface Science,2014,3:189-195
    [22] MAY H D, MILLER G S, KJELLERUP B V, et al.Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicro bacterium[J].Applied and Environmental Microbiology,2008,4(7):2089-2094
    [23] PRAVECKOVA M, BRENNEROVA M V, HOLLIGER C, et al.Indirect evidence link PCB dehalogenation with Geobacteraceae in anaerobic sediment-free microcosms[J].Frontiers in Microbiology,2016,7:933
    [24] KITTELMANN S, FRIEDRICH M W.Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments[J].Environmental Microbiology,2008,0(6):1557-1570
    [25] HUG L A, MAPHOSA F, LEYS D, et al.Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases[J].Philosophical Transactions of the Toyal Society B:Biological Sciences,2013,8(1616):20120322
    [26] LEE J, LEE T K.Development and characterization of PCE-to-ethene dechlorinating microcosms with contaminated river sediment[J].Journal of Microbiology and Biotechnology,2016,6(1):120-129
    [27] LIANG Y, MARTINEZ A, HORNBUCKLE K C, et al.Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal[J].International Biodeterioration and Biodegradation,2014,9:50-57
    [28] GU Y, KORUS R A.Kinetics of pentachlorophenol degradation by a Flavobacterium species[J].Applied Microbiology and Biotechnology,1995,3(2):374-378
    [29] GOMES B C, ADORNO M A T, OKADA D Y, et al.Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors[J].Biodegradation,2014,5(6):797-810
    [30] MATHTHIES C, EVERS S, LUDWIG W, et al.Anaerovorax odorimutans gen.nov., sp.nov., a putrescine-fermenting, strictly anaerobic bacterium[J].International Journal of Systematic and Evolutionary Microbiology,2000,0(4):1591-1594
    [31] FREEBORN R A, WESTK A, BHUPATHIRAJU V K, et al.Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors[J].Environmental Science and Technology,2005,9(21):8358-8368
    [32] YE D, QUENSEN J I, TIEDJEJ M, et al.Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria[J].Applied and Environmental Microbiology,1995,1(6):2166-2171
    [33] OH K H, OSTROFSKYE B, CHO Y C.Molecular characterization of polychlorinated biphenyl-dechlorinating populations in contaminated sediments[J].Journal of Microbiology,2008,6(2):165-173
    [34] HEAVNER G L W, ROWE A R, MANSFELDT C B, et al.Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture[J].Environmental Science and Technology,2013,7(8):3724-3733
    [35] HAN J I, LONTOH S, SEMRAU J D.Degradation of chlorinated and brominated hydrocarbons by Methylomicrobium album BG8[J].Archives of Microbiology,1999,2(6):393-400
    [36] ROTARU A E, SHRESTHA P M, LIU F, et al.A new model for electron flow during anaerobic digestion:Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J].Energy and Environmental Science,2014,7(1):408-415
    [37] SU X L, TIAN Q, ZHANG J, et al.Acetobacteroides hydrogenigenes gen.nov., sp.nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp[J].International Journal of Systematic and Evolutionary Microbiology,2014,4(9):2986-2991
    [38] JIANG X, SEHN J, HAN Y, et al.Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket:A comprehensive study[J].Water Research,2016,8:257-265
    [39] UHLIK O, JECNA K, MACKOVA M, et al.Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing[J].Applied and Environmental Microbiology,2009,5(20):6471-6477
    [40] BUNGE M, KLEIKEMPERl J, MINIACI C, et al.Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer[J].Applied Microbiology and Biotechnology,2007,6(6):1447-1456
    [41] MAO X, STENUIT B, POLASKO A, et al.Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei [J].Applied and Environmental Microbiology,2015,1(6):2015-2024
  • 加载中
计量
  • 文章访问数:  2512
  • HTML全文浏览数:  2119
  • PDF下载数:  563
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响

  • 1. 华南理工大学环境与能源学院,广州 510006
  • 2. 工业聚集区污染控制与生态修复教育部重点实验室,广州 510006
  • 3. 广州市环境保护工程设计院有限公司,广州 510115
基金项目:

国家自然科学基金资助项目(41673090,0,51378216)

摘要: 以广东省清远市龙塘镇电子垃圾拆解场附近受多氯联苯污染的河涌底泥为研究对象,构建基于-0.1、-0.3、-0.5 和-0.7 V (相对于饱和甘汞电极) 恒定电压的生物电化学系统,考察了闭路和开路条件下河涌底泥中PCB 61的降解率及其产物,并分析了微生物群落结构的变化。结果表明,在-0.7 V电位刺激下微生物还原降解PCB 61的效率最高,24周后,PCB 61的降解率达到了59.05%,高于开路条件的32.22%,在考察的电极电位范围内,电极电位值越小,PCB 61的还原脱氯速率越高。高通量测序结果表明:底泥微生物的结构组成随实验条件的变化表现出显著差异;施加电压刺激可提升电化学活性菌(Geobacter和Ignavibacterium)菌群丰度,进而强化脱氯效能;而Methanosarcina和Methanosaeta这2种菌在闭路条件下是显著优势菌,这2类菌的相互作用有可能对PCB 61还原脱氯有重要影响。

English Abstract

参考文献 (41)

目录

/

返回文章
返回