[1] |
CHANG L W.Neurotoxic effects of mercury: A review[J].Environmental Research,1977,4(3):329-373
|
[2] |
PAVLISH J H, SONDREAL E A, MANN M D, et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,2(2):89-165
|
[3] |
HSU-KIM H, KUCHARZYK K H, ZHANG T, et al.Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review[J].Environmental Science & Technology,2013,7(6):2441-2456
|
[4] |
ZHANG L, WANG S, WANG L, et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science & Technology,2015,9(5):3185-3194
|
[5] |
United Nations Environment Programme (UNEP).Global mercury assessment 2013: Sources, emissions, releases and environmental transport[R].UNEP Chemicals Branch: Geneva, Switzerland, 2013
|
[6] |
GALBREATH K C, ZYGARLICKE C J.Mercury transformations in coal combustion flue gas[J].Fuel Processing Technology,2000,5(99):289-310
|
[7] |
CHEN W, PEI Y, HUANG W, et al.Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation[J].Environmental Science & Technology,2016,0(5):2564-2572
|
[8] |
LI H, ZHU L, WANG J, et al.Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J].Environmental Science & Technology,2016,0(17):9551-9557
|
[9] |
WANG Z, ZHOU J, ZHU Y, et al.Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J].Fuel Processing Technology,2007,8(8):817-823
|
[10] |
ZHAO Y, HAO R, YUAN B, et al.Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant[J].Journal of Hazardous Materials,2016,1:74-83
|
[11] |
LIU Y, WANG Q, MEI R, et al.Mercury re-emission in flue gas multipollutants simultaneous absorption system[J].Environmental Science & Technology,2014,8(23):14025-14530
|
[12] |
WANG Q, LIU Y, WANG H, et al.Mercury re-emission behaviors in magnesium-based wet flue gas desulfurization process: The effects of oxidation inhibitors[J].Energy & Fuels,2015,9(4):2610-2615
|
[13] |
CHANG J C, GHORISHI S B.Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber[J].Environmental Science & Technology,2003,7(24):5763-5766
|
[14] |
WU C L, CAO Y, DONG Z B, et al.Impacting factors of elemental mercury re-emission across a lab-scale simulated scrubber[J].Chinese Journal of Chemical Engineering,2010,8(3):523-528
|
[15] |
CHENG C M, CAO Y, KAI Z, et al.Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J].Fuel,2013,6(4):505-511
|
[16] |
WO J, ZHANG M, CHENG X, et al.Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors[J].Journal of Hazardous Materials,2009,2(2/3):1106-1110
|
[17] |
OCHOA-GONZALEZ R, DIAZ-SOMOANO M, MARTNEZ-TARAZONA M R.Control of Hg0 re-emission from gypsum slurries by means of additives in typical wet scrubber conditions[J].Fuel,2013,5(1):112-118
|
[18] |
OMINE N, ROMERO C E, KIKKAWA H, et al.Study of elemental mercury re-emission in a simulated wet scrubber[J].Fuel,2012,1(1):93-101
|
[19] |
LU R, HOU J, JIANG X, et al.Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions[J].Journal of Hazardous Materials,2011,6(1):160-165
|
[20] |
BLYTHE G M.Field testing of a wet FGD additive for enhanced mercury control pilot scale test results[R].URS Corporation: Austin, Texas, 2006
|
[21] |
HOU J, LU R, SUN M, et al.Effect of heavy metals on the stabilization of mercury(Ⅱ) by DTCR in desulfurization solutions[J].Journal of Hazardous Materials,2012,7-218(6):224-230
|
[22] |
LIU Y, XIE S, LI Y, et al.Novel mercury control technology for solid waste incineration: sodium tetrasulfide (STS) as mercury capturing agent[J].Environmental Science & Technology,2007,1(5):1735-1739
|
[23] |
AMRHEIN G T.Mercury removal in utility wet scrubber using a chelating agent:US6328939[P].2001-12-11
|
[24] |
JEON C, PARK K H.Adsorption and desorption characteristics of mercury(Ⅱ) ions using aminated chitosan bead[J].Water Research,2005,9(16):3938-3944
|
[25] |
RAVICHANDRAN M.Interactions between mercury and dissolved organic matter:A review[J].Chemosphere,2004,5(3):319-331
|
[26] |
HAITZER M, AIKEN G R, RYAN J N.Binding of mercury(Ⅱ) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio[J].Environmental Science & Technology,2002,6(16):3564-3570
|
[27] |
SWANSON C L, WING R E, DOANE W M, et al.Mercury removal from waste water with starch xanthate-cationic polymer complex[J].Journal Water Pollution Control Federation,1973,7(8):2043-2047
|
[28] |
HOLAH D G, MURPHY C N.Reactions of sodium N,N-diethyldithiocarbamate and potassium ethyl xanthate with some 3D transition metal halides in the presence of 2,2′-bipyridyl and 1,0-phenanthroline[J].Canadian Journal of Chemistry,1971,9(16):2726-2732
|
[29] |
YAHIKOZAWA K, ARATANI T, ITO R, et al.Kinetic studies on the lime sulfurated solution (calcium polysulfide) process for removal of heavy metals from wastewater[J].Bulletin of the Chemical Society of Japan,2006,1(2):613-617
|
[30] |
KIM B R, ASCE M, GAINES W A, et al.Removal of heavy metals from automotive wastewater by sulfide precipitation[J].Journal of Environmental Engineering,2002,8(7):612-623
|
[31] |
HENKE K R.Structure and powder diffraction pattern of 2,4,6-trimercapto-s-triazine, trisodium salt (Na3S3C3N3·9H2O)[J].Powder Diffraction,1997,2(1):7-12
|
[32] |
LIAO D, LUO Y, YU P, et al.Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT[J].Applied Organometallic Chemistry,2006,0(4):246-253
|
[33] |
MATLOCK M M, HENKE K R, ATWOOD D A, et al.Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds[J].Water Research,2001,5(15):3649-3655
|
[34] |
廉会良.重金属黄原酸盐的热分解机理研究[D].济南:济南大学, 2013
|
[35] |
HARRIS P J, FINKELSTEIN N P.Interactions between sulphide minerals and xanthates.I.The formation of monothiocarbonate at galena and pyrite surfaces[J].International Journal of Mineral Processing,1975,2(1):77-100
|
[36] |
JONES M H, WOODCOCK J T.Formation and recognition of alkyl xanthyl thiosulphates in sulphide ore flotation liquors[J].International Journal of Mineral Processing,1981,8(2):125-145
|
[37] |
曾清如, 廖柏寒, 杨仁斌,等.EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学,2003,3(6):597-601
|
[38] |
BLYTHE G, CURRIE J, DEBERRY D.Bench-scale kinetics study of mercury reactions in FGD liquors[R/OL].[2017-07-01].https://www.osti.gov/scitech/servlets/purl/950472/
|
[39] |
王兰, 巴音.腐植酸重金属废水净化剂对汞、镉、铅等金属离子的吸附能力[J].环境化学,1982,1(2):152-159
|
[40] |
ZHENG W, LIANG L, GU B.Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J].Environmental Science & Technology,2012,6(1):292-299
|