不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析

罗国芝, 侯志伟, 高锦芳, 谭洪新. 不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析[J]. 环境工程学报, 2018, 12(2): 572-580. doi: 10.12030/j.cjee.201707129
引用本文: 罗国芝, 侯志伟, 高锦芳, 谭洪新. 不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析[J]. 环境工程学报, 2018, 12(2): 572-580. doi: 10.12030/j.cjee.201707129
LUO Guozhi, HOU Zhiwei, GAO Jinfang, TAN Hongxin. Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 572-580. doi: 10.12030/j.cjee.201707129
Citation: LUO Guozhi, HOU Zhiwei, GAO Jinfang, TAN Hongxin. Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 572-580. doi: 10.12030/j.cjee.201707129

不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析

  • 基金项目:

    上海市科学技术委员会资助项目(14320501900)

Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time

  • Fund Project:
  • 摘要: 以可生物降解聚合为碳源的固相反硝化可以避免水产养殖用水硝酸盐处理过程中碳源反复添加、碳源不足或过量等问题。水力停留时间(hydraulic retention time, HRT)是生物反应器运行管理的主要参数之一, 用固定膜反应器固相反硝化的方法研究了HRT对以聚己内酯(polycaprolactone,PCL)为碳源的反应器去除循环水养殖系统硝酸氮(浓度为170~197 mg·L-1)的效率的影响。 研究结果表明不同水力停留时间对硝酸盐去除效率差异显著。在HRT 为6 h和8 h时,硝酸盐速率分别为(0.55±0.32) g·(L·d)-1和(1.05±0.33) g·(L·d)-1,且出水亚硝氮浓度和氨氮浓度均明显低于进水浓度;在HRT为4 h和2 h时,进出水硝酸盐浓度差异不明显。电子扫描显微镜观察显示PCL表面生物膜主要为杆状菌,应用傅里叶红外扫描观察发现使用前后PCL的化学结构没有发生明显改变。应用高通量方法测定的微生物群落结构表明,62%的细菌为Proteobacteria(62%),在鉴定出的细菌中,食酸菌属(Acidovorax), 固氮螺菌属(Azospira),丛毛单胞菌属(Comamonas), 代尔夫特菌属(Diaphorobacter), 懒小杆属(Ignavibacterium), 弗拉特氏菌属(Frateuria)可以同时降解PCL和进行反硝化。
  • 加载中
  • [1] BOUTRIF E.Institutions involved in food safety: Food and agriculture organization of the united nations (FAO)[J].Encyclopedia of Food Safety,2014,8(3077):354-358
    [2] VANRIJN J.Waste treatment in recirculating aquaculture systems[J].Aquacultural Engineering,2003,3:49-56
    [3] CHRIS G J, VANBUSSEL P, SCHROEDER J P, et al.The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima)[J].Aquaculture,2010,6:163-167
    [4] 李秀辰, 李俐俐, 张国琛, 等.养殖固体废弃物作碳源的海水养殖废水反硝化净化效果[J].农业工程学报,2010,6(4):275-279
    [5] PARK J, CRAGGS R, SUKIAS J.Removal of nitrate and phosphorus from hydroponic wastewater using a hybrid denitrification filter (HDF)[J].Bioresource Technology,2009,0(13):3175-3179
    [6] MLLER W, WURMTHALER J, HEINEMANN A.Biologische nitrate limination in kleinen wasserwerken (biological nitrate elimination in small drinking water treatment plants)[D].Stuttgart, Germany:Universitt Stuttgart,2013
    [7] BOLEY A, MULLER W R, HAIDER G.Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J].Aquacultural Engineering,2000,2(1/2):75-85
    [8] ZHU S, DENG Y, RUAN Y, et al.Biological denitrification using poly (butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment[J].Bioresource Technology,2015,2:603-610
    [9] 赖才胜,谭洪新,罗国芝,等.以聚丁二酸丁二醇酯为碳源去除含盐水体硝酸盐及其动力学模型[J].农业工程学报,2010,6(8):285-290
    [10] CHU L, WANG J.Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J].Chemosphere,2013,1(9):1310-1316
    [11] GIBERT O, POMIERNY S, ROWE I, et al.Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)[J].Bioresource Technology,2008,9(16):7587-7596
    [12] LI P, ZUO J, WANG Y, et al.Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J].Water Research,2016,3:74-83
    [13] WU W, YANG L, WANG J.Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier[J].Applied Microbiology Biotechnology,2013,7(6):2725-2733
    [14] SHEN Z, WANG J, Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier[J].Bioresource Technology,2011,2(19):8835-8838
    [15] WU W, YANG F, YANG L.Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier[J].Bioresource Technology,2012,8:136-140
    [16] LUO G, XU G, TAN H, et al, Effect of dissolved oxygen on denitrification using polycaprolactone as both the organic carbon source and the biofilm carrier[J].International Biodeterioration & Biodegradation,2016,0:155-162
    [17] CHU L, WANG J.Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J].Chemosphere,2013,1(9):1310-1316
    [18] BOLEY A, MERGAERT J, MULLER C, et al, Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly (ε-caprolactone) (PCL)[J].Acta Hydrochimica Et Hydrobiology,2003,1(3):195-203
    [19] HORIBA Y, KHAN A S T, HIRASH H.Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly(ε-caprolactone) as the carbon and energy source[J].Microbes Environment,2005,0(1):25-33
    [20] SCHNEIDER O, CHABRILLO-POPELK M,SMIDT H, et al.HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents[J].FEMS Microbiology Ecology,2009,0:207-219
    [21] HEYLEN K, GEVERS D, VANPARYS B, et al.The incidence of nirs and nirk and their genetic heterogeneity in cultivated denitrifiers[J].Environment Microbiology,2006,8(11):2012-2021
    [22] KHAN S, HORIBA Y, TAKAHASHI N, et al.Activity and community composition of denitrifying bacteria in poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using solid-phase denitrification processes[J].Microbes Environment,2007,2(1):20-31
    [23] MERGAERT J, BOLEY A, CNOCKAER T, et al.Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor[J].System Applied Microbiology,2001,4(2):303-310
  • 加载中
计量
  • 文章访问数:  2564
  • HTML全文浏览数:  2104
  • PDF下载数:  419
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析

  • 1. 上海海洋大学,上海水产养殖工程技术中心, 上海 201306
  • 2. 上海海洋大学,农业部淡水水产种质资源重点实验室, 上海 201306
  • 3. 上海海洋大学,水产科学国际级实验教学示范中心, 上海201306
基金项目:

上海市科学技术委员会资助项目(14320501900)

摘要: 以可生物降解聚合为碳源的固相反硝化可以避免水产养殖用水硝酸盐处理过程中碳源反复添加、碳源不足或过量等问题。水力停留时间(hydraulic retention time, HRT)是生物反应器运行管理的主要参数之一, 用固定膜反应器固相反硝化的方法研究了HRT对以聚己内酯(polycaprolactone,PCL)为碳源的反应器去除循环水养殖系统硝酸氮(浓度为170~197 mg·L-1)的效率的影响。 研究结果表明不同水力停留时间对硝酸盐去除效率差异显著。在HRT 为6 h和8 h时,硝酸盐速率分别为(0.55±0.32) g·(L·d)-1和(1.05±0.33) g·(L·d)-1,且出水亚硝氮浓度和氨氮浓度均明显低于进水浓度;在HRT为4 h和2 h时,进出水硝酸盐浓度差异不明显。电子扫描显微镜观察显示PCL表面生物膜主要为杆状菌,应用傅里叶红外扫描观察发现使用前后PCL的化学结构没有发生明显改变。应用高通量方法测定的微生物群落结构表明,62%的细菌为Proteobacteria(62%),在鉴定出的细菌中,食酸菌属(Acidovorax), 固氮螺菌属(Azospira),丛毛单胞菌属(Comamonas), 代尔夫特菌属(Diaphorobacter), 懒小杆属(Ignavibacterium), 弗拉特氏菌属(Frateuria)可以同时降解PCL和进行反硝化。

English Abstract

参考文献 (23)

目录

/

返回文章
返回