响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化

李国君, 邱珊, 朱英实, 邓凤霞, 马放. 响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化[J]. 环境工程学报, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051
引用本文: 李国君, 邱珊, 朱英实, 邓凤霞, 马放. 响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化[J]. 环境工程学报, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051
LI Guojun, QIU Shan, ZHU Yingshi, DENG Fengxia, MA Fang. Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051
Citation: LI Guojun, QIU Shan, ZHU Yingshi, DENG Fengxia, MA Fang. Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051

响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化

  • 基金项目:

    城市水资源与水环境国家重点实验室自主课题(HCK201708)

    国家重点研发计划项目(2016YFC0401102)

Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode

  • Fund Project:
  • 摘要: 泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起学者关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H2O2和·OH的机理。用响应面设计3因素(pH、电流、Fe2+初始浓度)3水平实验,得到体系产H2O2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe2+初始浓度为15 μmol·L-1时H2O2产量最大,为457.27 μmol·L-1;当pH=2、电流0.25 A、Fe2+初始浓度为20 μmol·L-1时·OH产量最多,可达18.56 μmol·L-1。根据方差分析,二次模型显著性很高(R2H2O2=0.977 8,R2·OH=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L-1之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。
  • 加载中
  • [1] ESHAGHZADE Z, PAJOOTAN E, BAHRAMI H, et al.Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes[J].Journal of the Taiwan Institute of Chemical Engineers,2017,71:91-105
    [2] LE T X H, NGUYEN T V, AMADOU YACOUBA Z, et al.Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media[J].Chemosphere,2017,172:1-9
    [3] 石岩,王启山,岳琳,等.三维电极-电Fenton法处理垃圾渗滤液[J].天津大学学报,2009,42(3):248-252
    [4] 张士卫.泡沫金属的研究与应用进展[J].粉末冶金技术,2016,34(3):222-227
    [5] 汤茜,孙娟,任小蕾,等.泡沫镍和泡沫铜阴极电类Fenton氧化降解对硝基酚的比较[J].化工进展,2017,36(7):2653-2659
    [6] 张剑桥,迟惠中,宋阳,等.Ce3+与Cu2+协同强化芬顿体系氧化苯酚的效能与机制研究[J].环境科学,2016,37(8):3067-3072
    [7] AGUIAR A, FERRAZ A.Fe3+-and Cu2+-reduction by phenol derivatives associated with azure B degradation in Fenton-like reactions[J].Chemosphere,2007,66(5):947-954
    [8] NICHELA D A, BERKOVIC A M, COSTANTE M R, et al.Nitrobenzene degradation in Fenton-like systems using Cu(Ⅱ) as catalyst.Comparison between Cu(Ⅱ)-and Fe(Ⅲ)-based systems[J].Chemical Engineering Journal,2013,228:1148-1157
    [9] PHAM A N, XING G, MILLER C J, et al.Fenton-like copper redox chemistry revisited:Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production[J].Journal of Catalysis,2013,301:54-64
    [10] 王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240
    [11] OZCAN A, SAHIN Y, KOPARAL S A, et al.Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium[J].Journal of Electroanalytical Chemistry,2008,616(1/2):71-78
    [12] 谷学新,邰超,邹洪,等.一个新的测定Fenton反应产生的·OH及清除的荧光方法[J].分析科学学报,2002,18(6):460-462
    [13] AI Z, XIAO H, MEI T, et al.Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes[J].Journal of Physical Chemistry C,2008,112(31):11929-11935
    [14] SALAZAR R, BRILLAS E, SIRES I.Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye disperse blue 3[J].Applied Catalysis B:Environmental,2012,115-116:107-116
    [15] 周午阳,张朝升,孙志民,等.Cu2+助芬顿法处理高浓度邻苯二甲酸二甲酯废水[J].环境工程学报,2014,8(7):2789-2794
    [16] PEREZ-BENITO J F.Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)[J].Journal of Inorganic Biochemistry,2004,98(3):430-438
    [17] 周蕾,周明华.电芬顿技术的研究进展[J].水处理技术,2013,39(10):6-11
    [18] FERRAG-SIAGH F, FOURCADE F, SOUTREL I, et al.Electro-Fenton pretreatment for the improvement of tylosin biodegradability[J].Environmental Science and Pollution Research,2014,21(14):8534-8542
    [19] 班福忱,戴美月.电芬顿技术的研究现状和进展[J].建筑与预算,2016(11):38-41
    [20] WANG C T, HU J L, CHOU W L, et al.Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode[J].Journal of Hazardous Materials,2008,152(2):601-606
    [21] BRILLAS E, SIRE'S I, OTURAN M A.Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J].Chemical Reviews,2009,109(12):6570-6631
    [22] DE LUNA M D G, VECIANA M L, COLADES J I, et al.Factors that influence degradation of acetaminophen by Fenton processes[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(2):565-570
    [23] 邱珊,陈聪,邓凤霞,等.石墨电极E-Fenton法处理罗丹明B废水[J].浙江大学学报(工学版),2016,50(4):704-713
    [24] TAMIMI M, QOURZAL S, BARKA N, et al.Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system[J].Separation and Purification Technology,2008,61(1):103-108
    [25] RATHI A, RAJOR H K, SHARMA R K.Photodegradation of direct yellow-12 using UV/H2O2/Fe2+[J].Journal of Hazardous Materials,2003,102(2/3):231-241
    [26] 汪昆平,杨林,汪春艳,等.Fenton氧化体系·OH、ORP、H2O2和Fe2+变化特征[J].水处理技术,2011,7(12):36-41
  • 加载中
计量
  • 文章访问数:  2858
  • HTML全文浏览数:  2449
  • PDF下载数:  349
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化

  • 1. 哈尔滨工业大学环境学院,哈尔滨 150090
  • 2. 城市水资源与水环境国家重点实验室,哈尔滨 150090
  • 3. 哈尔滨工业大学宜兴环保研究院,宜兴 214205
基金项目:

城市水资源与水环境国家重点实验室自主课题(HCK201708)

国家重点研发计划项目(2016YFC0401102)

摘要: 泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起学者关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H2O2和·OH的机理。用响应面设计3因素(pH、电流、Fe2+初始浓度)3水平实验,得到体系产H2O2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe2+初始浓度为15 μmol·L-1时H2O2产量最大,为457.27 μmol·L-1;当pH=2、电流0.25 A、Fe2+初始浓度为20 μmol·L-1时·OH产量最多,可达18.56 μmol·L-1。根据方差分析,二次模型显著性很高(R2H2O2=0.977 8,R2·OH=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L-1之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。

English Abstract

参考文献 (26)

目录

/

返回文章
返回