化学淋洗与生物质炭稳定化联合修复镉污染土壤

李明, 程寒飞, 安忠义, 王浩, 项萌, 汪宜敏. 化学淋洗与生物质炭稳定化联合修复镉污染土壤[J]. 环境工程学报, 2018, 12(3): 904-913. doi: 10.12030/j.cjee.201709098
引用本文: 李明, 程寒飞, 安忠义, 王浩, 项萌, 汪宜敏. 化学淋洗与生物质炭稳定化联合修复镉污染土壤[J]. 环境工程学报, 2018, 12(3): 904-913. doi: 10.12030/j.cjee.201709098
LI Ming, CHENG Hanfei, AN Zhongyi, WANG Hao, XIANG Meng, WANG Yimin. Chemical leaching combined with biochar stabilization remediate cadmium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 904-913. doi: 10.12030/j.cjee.201709098
Citation: LI Ming, CHENG Hanfei, AN Zhongyi, WANG Hao, XIANG Meng, WANG Yimin. Chemical leaching combined with biochar stabilization remediate cadmium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 904-913. doi: 10.12030/j.cjee.201709098

化学淋洗与生物质炭稳定化联合修复镉污染土壤

  • 基金项目:

    江苏省自然科学基金资助项目(BK20160155)

Chemical leaching combined with biochar stabilization remediate cadmium contaminated soil

  • Fund Project:
  • 摘要: 为探讨土壤淋洗与生物质炭稳定化联合修复技术对镉(Cd)污染黄棕壤修复效果的影响,研究通过振荡淋洗实验、BCR 连续化学提取法和CaCl2 一次提取法,筛选确定污染土壤的最佳淋洗方案,并比较了淋洗修复、淋洗 + 稳定化修复技术对污染土壤中Cd生物有效性的影响。结果表明:3种淋洗剂的淋洗效率强弱顺序为EDTA-2Na>HCl> 柠檬酸,最佳淋洗条件为0.12 mol·L-1 EDTA-2Na在固-液比1:4条件下振荡淋洗3h,Cd的洗脱率为81.3%;淋洗后土壤中Cd的有效态(F1+F2)百分比减少了51.0%,显著降低了污染土壤的重金属总量及其环境风险;相比于单一淋洗修复技术,EDTA-2Na在添加体积(V添加)为最佳淋洗体积(V最优)的80%时,淋洗后再加入3%玉米秸秆炭稳定化15 d的联合修复技术能够将土壤中有效态Cd含量(CaCl2-Cd)从8.13 mg·kg-1降低到0.42 mg·kg-1。因此,淋洗修复后施加玉米秸秆炭的联合修复技术,能够有效降低重金属污染土壤的生态环境风险,提高土壤环境质量。
  • 加载中
  • [1] 陈怀满,陈能场,陈英旭. 土壤-植物系统中的重金属污染[M]. 北京:科学出版社,1996:10
    [2] 国土资源部,环境保护部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部国土资源部,2014
    [3] PRASAD M.Cadmium toxicity and tolerance in vascular plants[J].Environmental and Experimental Botany,1995,35(4):525-545 10.1016/0098-8472(95)00024-0
    [4] CARRIER P, BARYLA A, HAVAUX M.Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil[J].Planta,2003,216(6):939-950 10.1007/s00425-002-0947-6
    [5] 丁爱芳,潘根兴. 南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析[J]. 生态环境,2003,12(4):409-411 10.3969/j.issn.1674-5906.2003.04.008
    [6] MARQUES A P G C, RANGEL A O S S, CASTRO P M L.Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology[J].Critical Reviews in Environmental Science and Technology,2009,39(8):622-654 10.1080/10643380701798272
    [7] 陈梦舫. 我国工业污染场地土壤与地下水重金属修复技术综述[J]. 中国科学院院刊,2014,29(3):327-335
    [8] 孙涛,陆扣萍,王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报,2015,32(1):140-149 10.11833/j.issn.2095-0756.2015.01.021
    [9] 马妍, 刘向辉, 徐东耀, 等. 重金属污染土壤化学淋洗技术的文献计量学分析[J]. 环境工程技术学报,2017,7(1):88-95 10.3969/j.issn.1674-991X.2017.01.013
    [10] YANG Z H, ZHANG S J, LIAO Y P, et al.Remediation of heavy metal contamination in calcareous soil by washing with regents: A column washing[J].Procedia Environmental Sciences,2012,16:778-785 10.1016/j.proenv.2012.10.106
    [11] JIN H P, CHOPPALA G K, BOLAN N S, et al.Biochar reduces the bioavailability and phytotoxicity of heavy metals[J].Plant & Soil,2011,348(1/2):439-451 10.1007/s11104-011-0948-y
    [12] UCHIMIYA M, CHANG S, KLASSON K T.Screening biochars for heavy metal retention in soil: Role of oxygen functional groups[J].Journal of Hazardous Materials,2011,190(1):432-441 10.1016/j.jhazmat.2011.03.063
    [13] KHAN F I, HUSAIN T, HEJAZI R.An overview and analysis of site remediation technologies[J].Journal of Environmental Management,2004,71(2):95-122 10.1016/j.jenvman.2004.02.003
    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,2000:146-213
    [15] 李明,李忠佩,刘明,等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学,2015,48(7):1361-1369 10.3864/j.issn.0578-1752.2015.07.11
    [16] 刘晶晶,杨兴,陆扣萍,等. 生物质炭对土壤重金属形态转化及其有效性的影响[J].环境科学学报,2015,35(11):3679-3687 10.13671/j.hjkxxb.2014.1044
    [17] JELUSIC M, LESTAN D.Effect of EDTA washing of metal polluted garden soils.Part I: Toxicity hazards and impact on soil properties[J].Science of the Total Environment,2014,475:132-141 10.1016/j.scitotenv.2013.11.049
    [18] HU P J, YANG B F, DONG C X, et al.Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals[J].Chemosphere,2014,117:532-537 10.1016/j.chemosphere.2014.08.081
    [19] 费小通, 张春雷, 曹亚丽, 等.EDTA 在铅污染土壤治理中的优化处理方法[J]. 环境工程学报,2016,10(11):6775-6780 10.12030/j.cjee.201512178
    [20] 陈春乐,王果,王珺玮. 3种中性盐与HCl复合淋洗剂对Cd污染土壤淋洗效果研究[J].安全与环境学报,2014,14(5):205-210 10.13637/j.issn.1009-6094.2014.05.046
    [21] 黄国勇, 付庆灵, 朱俊, 等. 低分子有机酸对土壤中 Cu 化学形态的影响[J]. 环境科学,2014,35(8):3091-3095 10.13227/j.hjkx.2014.08.036
    [22] WANG X J, CHEN J, YAN X B, et al.Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid[J].Journal of Industrial and Engineering Chemistry,2015,27:368-372 10.1016/j.jiec.2015.01.016
    [23] DA COSTA C G, GOVEIA D, ROM?O L P C, et al.Effect of the competition of Cu (II) and Ni (II) on the kinetic and thermodynamic stabilities of Cr (III)-organic ligand complexes using competitive ligand exchange (EDTA)[J].Journal of Environmental Management,2015,154:259-265 10.1016/j.jenvman.2015.02.038
    [24] 刘仕翔, 胡三荣, 罗泽娇.EDTA 和 CA 复配淋洗剂对重金属复合污染土壤的淋洗条件研究[J]. 安全与环境工程,2017,24(3):77-83 10.13578/j.cnki.issn.1671-1556.2017.03.014
    [25] 邱琼瑶, 周航, 邓贵友, 等. 污染土壤中重金属的超声波强化 EDTA 洗脱及形态变化[J]. 环境科学学报,2014,34(9):2392-2397 10.13671/j.hjkxxb.2014.0589
    [26] LIU J, DING Y L, MA L L, et al.Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation[J].International Biodeterioration & Biodegradation,2017,120:15-20 10.1016/j.ibiod.2017.01.039
    [27] XU G, WEI L L, SUN J N, et al.What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?[J].Ecological Engineering,2013,52:119-124 10.1016/j.ecoleng.2012.12.091
    [28] 佟雪娇,李九玉,姜军,等. 添加农作物秸秆炭对红壤吸附Cu(II)的影响[J]. 生态与农村环境学报,2011,27(5):37-41 10.3969/j.issn.1673-4831.2011.05.007
    [29] LU K P, YANG X, GIELEN G, et al.Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J].Journal of Environmental Management,2017,186:285-292 10.1016/j.jenvman.2016.05.068
    [30] 左静,陈德,郭虎,等. 小麦秸秆生物质炭对旱地土壤铅镉有效性及小麦、玉米吸收的影响[J]. 农业环境科学学报,2017,36(6):1133-1140 10.11654/jaes.2016-1655
  • 加载中
计量
  • 文章访问数:  2711
  • HTML全文浏览数:  2201
  • PDF下载数:  640
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

化学淋洗与生物质炭稳定化联合修复镉污染土壤

  • 1. 中冶华天南京工程技术有限公司,南京 210019
  • 2. 河海大学环境学院,南京 210098
基金项目:

江苏省自然科学基金资助项目(BK20160155)

摘要: 为探讨土壤淋洗与生物质炭稳定化联合修复技术对镉(Cd)污染黄棕壤修复效果的影响,研究通过振荡淋洗实验、BCR 连续化学提取法和CaCl2 一次提取法,筛选确定污染土壤的最佳淋洗方案,并比较了淋洗修复、淋洗 + 稳定化修复技术对污染土壤中Cd生物有效性的影响。结果表明:3种淋洗剂的淋洗效率强弱顺序为EDTA-2Na>HCl> 柠檬酸,最佳淋洗条件为0.12 mol·L-1 EDTA-2Na在固-液比1:4条件下振荡淋洗3h,Cd的洗脱率为81.3%;淋洗后土壤中Cd的有效态(F1+F2)百分比减少了51.0%,显著降低了污染土壤的重金属总量及其环境风险;相比于单一淋洗修复技术,EDTA-2Na在添加体积(V添加)为最佳淋洗体积(V最优)的80%时,淋洗后再加入3%玉米秸秆炭稳定化15 d的联合修复技术能够将土壤中有效态Cd含量(CaCl2-Cd)从8.13 mg·kg-1降低到0.42 mg·kg-1。因此,淋洗修复后施加玉米秸秆炭的联合修复技术,能够有效降低重金属污染土壤的生态环境风险,提高土壤环境质量。

English Abstract

参考文献 (30)

目录

/

返回文章
返回