高固液比下废旧锌锰电池生物淋沥的特性及机理

牛志睿, 喻伟东, 冯美宁, 张立, 祁乙浩, 史宁, 刘强. 高固液比下废旧锌锰电池生物淋沥的特性及机理[J]. 环境工程学报, 2017, 11(11): 6063-6071. doi: 10.12030/j.cjee.201701150
引用本文: 牛志睿, 喻伟东, 冯美宁, 张立, 祁乙浩, 史宁, 刘强. 高固液比下废旧锌锰电池生物淋沥的特性及机理[J]. 环境工程学报, 2017, 11(11): 6063-6071. doi: 10.12030/j.cjee.201701150
NIU Zhirui, YU Weidong, FENG Meining, ZHANG Li, QI Yihao, SHI Ning, LIU Qiang. Features and mechanism of bioleaching spent Zn-Mn batteries at high pulp density[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6063-6071. doi: 10.12030/j.cjee.201701150
Citation: NIU Zhirui, YU Weidong, FENG Meining, ZHANG Li, QI Yihao, SHI Ning, LIU Qiang. Features and mechanism of bioleaching spent Zn-Mn batteries at high pulp density[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6063-6071. doi: 10.12030/j.cjee.201701150

高固液比下废旧锌锰电池生物淋沥的特性及机理

  • 基金项目:

    陕西省高水平大学专项资金项目(2013SXTS03)

    延安市科技创新团队(2015CHTD-04)

    延安大学博士科研启动项目(YDBK2017-03)

    国家级大学生创新训练计划项目(201610719015)

    延安大学引导项目(YDY2017-10)

  • 中图分类号: X705

Features and mechanism of bioleaching spent Zn-Mn batteries at high pulp density

  • Fund Project:
  • 摘要: 以Acidithiobacillus thiooxidans和Leptospirillum ferriphilum为淋沥菌株探讨高固液比条件下废旧锌锰电池中锌锰浸出的影响因素、特性及淋沥机理。研究了胞外多聚物(EPS)辅助淋沥浸提的影响、不同固液比淋沥体系代谢产物组成及特征的变化;借助扫描电镜(SEM)、透射电镜(TEM)、三维荧光光谱和接触角、表面能等测试手段分析菌株、电极材料的界面行为。结果表明:生物浸提中EPS的辅助吸附和氧化作用提升了40%左右的锌锰浸提效率;淋沥体系代谢EPS总荧光区域积分标准体积(φT,n)与锌锰的溶出呈显著正相关;EPS提高材料的亲水性,促进了材料和淋沥液的润湿接触,而高固液比下EPS的缺失降低了能源底物的利用和对电池材料的接触浸提。
  • 加载中
  • [1] SOLEIMANI M, HOSSEINI., ROOSTAAZAD R, et al. Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor[J]. Hydrometallurgy, 2009, 99(3/4):131-136
    [2] GERAYELI F, GHOJAVAND F, MOUSAVI S M, et al. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium[J]. Separation and Purification Technology, 2013, 118(43):151-161
    [3] WILLNER J, KADUKOVA J, FORNALCZYK A, et al. Biohydrometallurgical methods for metals recovery from waste materials[J]. Metalurgija, 2015, 54(1):255-259
    [4] SRICHANDAN HARAGOBINDA, PATHAK ASHISH, SINGH SRADHANJALI et al. Sequential leaching of metals from spent refinery catalyst in bioleaching and bioleaching-chemical leaching reactor:Comparative study[J]. Hydrometallurgy, 2014, 150:130-143
    [5] CERRUTI C, CURUTCHET G, DONATI E. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans[J]. Journal of Biotechnology, 1998, 62(3):209-219
    [6] MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect[J]. Journal of Hazardous Materials, 2008, 152(3):1082-1091
    [7] XIN B, JIANG W, ASLAM H, et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration[J]. Bioresource Technology, 2012, 106(2):147-153
    [8] DAS A P, SUKLA L B, PRADHAN N, et al. Manganese biomining:A review[J]. Bioresource Technology, 2011, 102(16):7381-7387
    [9] XIN B P, JIANG W, LI X, et al.Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance[J]. Bioresource Technology, 2012, 112(3):186-192
    [10] NIU Z R, HUANG Q F, XIN B P, et al. Optimization of bioleaching conditions for metal removal from spent zinc-manganese batteries using response surface methodology[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):608-617
    [11] GEHRKE T, TELEGDI J, THIERRY D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied & Environmental Microbiology, 1998, 64(7):2743-2747
    [12] 牛志睿, 辛宝平, 庞康, 等. 废旧锌锰电池锌锰元素的分析表征[J]. 环境科学学报, 2015, 35(2):564-569
    [13] 牛志睿, 辛宝平, 庞康, 等.微波辅助生物淋沥废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, (11):5199-5205
    [14] GE L Y, DENG H H, WANG H W et al. Comparison of extraction methods for quantifying extracellular polymers in activated sludges[J]. Fresenius Environmental Bulletin, 2009, 16(3):299-303
    [15] ZENG W M, QIU G Z, ZHOU H B, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2010, 100(3/4):177-180
    [16] YU H, SONG Y, GAO H, et al. Applying fluorescence spectroscopy and multivariable analysis to characterize structural composition of dissolved organic matter and its correlation with water quality in an urban river[J]. Environmental Earth Sciences, 2015, 73(9):5163-5171
    [17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710
    [18] KINZLER K, GEHRKE T, TELEGDI J, et al. Bioleaching:a result of interfacial processes caused by extracellular polymeric substances (EPS)[J]. Hydrometallurgy, 2003, 71(1):83-88
    [19] YU RUN-LAN, LIU JING, CHEN AN et al. Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1):231-236
    [20] ASGHARI I, MOUSAVI S M. Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(2):139-161
    [21] ZHU JIANYU, YANG PENG, LI BANGMEI et al. Microcalorimetric studies of interaction between extracellular polymeric substance and sulfide minerals[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1439-1442
    [22] BATENI A, SUSNAR S S, AMIRFAZLI A, et al. A high-accuracy polynomial fitting approach to determine contact angles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 219(1):215-231
    [23] KAELBLE D H. Dispersion-polar surface tension properties of organic solids[J]. Journal of Adhesion, 1970, 2(2):66-81
    [24] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8):1741-1747
  • 加载中
计量
  • 文章访问数:  1223
  • HTML全文浏览数:  935
  • PDF下载数:  227
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-17
  • 刊出日期:  2017-11-15

高固液比下废旧锌锰电池生物淋沥的特性及机理

  • 1. 延安大学石油工程与环境工程学院, 延安 716000
基金项目:

陕西省高水平大学专项资金项目(2013SXTS03)

延安市科技创新团队(2015CHTD-04)

延安大学博士科研启动项目(YDBK2017-03)

国家级大学生创新训练计划项目(201610719015)

延安大学引导项目(YDY2017-10)

摘要: 以Acidithiobacillus thiooxidans和Leptospirillum ferriphilum为淋沥菌株探讨高固液比条件下废旧锌锰电池中锌锰浸出的影响因素、特性及淋沥机理。研究了胞外多聚物(EPS)辅助淋沥浸提的影响、不同固液比淋沥体系代谢产物组成及特征的变化;借助扫描电镜(SEM)、透射电镜(TEM)、三维荧光光谱和接触角、表面能等测试手段分析菌株、电极材料的界面行为。结果表明:生物浸提中EPS的辅助吸附和氧化作用提升了40%左右的锌锰浸提效率;淋沥体系代谢EPS总荧光区域积分标准体积(φT,n)与锌锰的溶出呈显著正相关;EPS提高材料的亲水性,促进了材料和淋沥液的润湿接触,而高固液比下EPS的缺失降低了能源底物的利用和对电池材料的接触浸提。

English Abstract

参考文献 (24)

目录

/

返回文章
返回