微波作用下氧化碱浸铜冶炼烟灰脱砷的动力学

王倩, 郭莉, 吴晨捷, 杜冬云. 微波作用下氧化碱浸铜冶炼烟灰脱砷的动力学[J]. 环境工程学报, 2017, 11(11): 6072-6077. doi: 10.12030/j.cjee.201701101
引用本文: 王倩, 郭莉, 吴晨捷, 杜冬云. 微波作用下氧化碱浸铜冶炼烟灰脱砷的动力学[J]. 环境工程学报, 2017, 11(11): 6072-6077. doi: 10.12030/j.cjee.201701101
WANG Qian, GUO Li, WU Chenjie, DU Dongyun. Arsenic removal from copper smelting ash assisted by microwave induced oxidation process[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6072-6077. doi: 10.12030/j.cjee.201701101
Citation: WANG Qian, GUO Li, WU Chenjie, DU Dongyun. Arsenic removal from copper smelting ash assisted by microwave induced oxidation process[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6072-6077. doi: 10.12030/j.cjee.201701101

微波作用下氧化碱浸铜冶炼烟灰脱砷的动力学

  • 基金项目:

    湖北省科技支撑项目(2014BEC029)

  • 中图分类号: X756

Arsenic removal from copper smelting ash assisted by microwave induced oxidation process

  • Fund Project:
  • 摘要: 采用微波氧化辅助Na2S-NaOH浸出体系对铜冶炼烟灰(简称"烟灰")进行研究。结果表明:当温度60℃,NaOH和烟灰的投加量比例为5 g:10 g,Na2S和烟灰的投加量比例为8 g:10 g,固液比为1:20时,砷的浸出率为98.45%。动力学研究表明:砷的浸出过程在313~343 K内符合"未反应收缩核"模型,浸出过程受未反应核周围残留固体膜层扩散控制,经拟合得出浸出动力学方程,浸出表观活化能Ea=13.46 kJ·mol-1。
  • 加载中
  • [1] 郭莉, 崔洁, 陈东,等. 低浓度含砷污酸处理工艺的比较研究[J]. 环境工程学报, 2013, 7(3):1005-1009
    [2] MORALES A, CRUELLS M, ROCA A, et al. Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization[J]. Hydrometallurgy, 2010, 105(1):148-154
    [3] LANE D J, COOK N J, GRANO S R, et al. Selective leaching of penalty elements from copper concentrates:A review[J]. Minerals Engineering, 2016, 98:110-121
    [4] ROSHANI M, MIRJALILI K. Studies on the leaching of an arsenic-uranium ore[J]. Hydrometallurgy, 2009, 98(3):304-307
    [5] GUO X Y, YU Y I, SHI J, et al. Leaching behavior of metals from high-arsenic dust by NaOH-Na2S alkaline leaching[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2):575-580
    [6] ERASMUS E, JOHNSON O T, AMUTHENU V. Parameters affecting Arsenic Recovery from Copper Smelting[C]//Proceedings of the World Congress on Engineering. 2014
    [7] REYNOLDS J E, COLTRINARI E L. Process for recovering arsenic compounds by sodium hydroxide leaching:U.S. Patent 4,244,927[P]. 1981-1-13
    [8] LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104(2):222-234
    [9] 肖红霞, 李任, 杜冬云. 氧化氨浸工艺回收硫化砷渣中的铜[J]. 环境工程学报, 2016, 10(2):893-898
    [10] JIANG T, ZHANG Q, LIU Y, et al. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties[J]. Applied Surface Science, 2016, 385:88-98
    [11] XIA D K, PICKLESI C A. Microwave caustic leaching of electric arc furnace dust[J]. Minerals Engineering, 2000, 13(1):79-94
    [12] DUTRA A J B, PAIVA P R P, TAVARES L M. Alkaline leaching of zinc from electric arc furnace steel dust[J]. Minerals Engineering, 2006, 19(5):478-485
    [13] LIU Z, LEI H, BAI T, et al. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyrite-bearing mine tailings[J]. Chemical Engineering Journal, 2015, 272:1-11
    [14] JIN S, ZHANG G, ZHANG P, et al. Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust[J]. Bioresource Technology, 2016, 221:26-30
    [15] 薛娟琴, 毛维博, 卢曦, 等. 超声波辅助硫化镍矿氧化浸出动力学[J]. 中国有色金属学报, 2010, 20(5):1013-1020
    [16] PARADA F, JEFFREY M I, ASSELIN E. Leaching kinetics of enargite in alkaline sodium sulphide solutions[J]. Hydrometallurgy, 2014, 146:48-58
    [17] PADILLA R, JEREZ O, RUIZ M C. Kinetics of the pressure leaching of enargite in FeSO4-H2SO4-O2 media[J]. Hydrometallurgy, 2015, 158:49-55
    [18] 倪冲, 赵燕鹏, 阮福辉, 等. 氨浸法从含砷石灰铁盐渣中回收铜的动力学[J]. 中国有色金属学报, 2013, 23(6):1769-1774
    [19] OCINSKI D, JACUKOWICZ-SOBALA I, MAZUR P, et al. Water treatment residuals containing iron and manganese oxides for arsenic removal from water-Characterization of physicochemical properties and adsorption studies[J]. Chemical Engineering Journal, 2016, 294:210-221
    [20] MIN L L, YUAN Z H, ZHONG L B, et al. Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution[J]. Chemical Engineering Journal, 2015, 267:132-141
    [21] 国家环境保护总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社, 1997
    [22] 环境保护部.水质65种元素的测定电感耦合等离子体质谱法:HJ700-2014[M].北京:中国环境科学出版社, 2014
    [23] 刘志雄. 氨性溶液中含铜矿物浸出动力学及氧化铜/锌矿浸出工艺研究[D].长沙:中南大学, 2012
  • 加载中
计量
  • 文章访问数:  1535
  • HTML全文浏览数:  1256
  • PDF下载数:  221
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-17
  • 刊出日期:  2017-11-15

微波作用下氧化碱浸铜冶炼烟灰脱砷的动力学

  • 1. 催化材料科学国家民委-教育部共建重点实验室, 中南民族大学资源与环境学院, 武汉 430074
  • 2. 生物地质与环境地质-国家重点实验室, 中国地质大学(武汉)环境学院, 武汉 430074
基金项目:

湖北省科技支撑项目(2014BEC029)

摘要: 采用微波氧化辅助Na2S-NaOH浸出体系对铜冶炼烟灰(简称"烟灰")进行研究。结果表明:当温度60℃,NaOH和烟灰的投加量比例为5 g:10 g,Na2S和烟灰的投加量比例为8 g:10 g,固液比为1:20时,砷的浸出率为98.45%。动力学研究表明:砷的浸出过程在313~343 K内符合"未反应收缩核"模型,浸出过程受未反应核周围残留固体膜层扩散控制,经拟合得出浸出动力学方程,浸出表观活化能Ea=13.46 kJ·mol-1。

English Abstract

参考文献 (23)

目录

/

返回文章
返回