[1] SOLEIMANI M, HOSSEINI., ROOSTAAZAD R, et al. Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor[J]. Hydrometallurgy, 2009, 99(3/4):131-136
[2] GERAYELI F, GHOJAVAND F, MOUSAVI S M, et al. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium[J]. Separation and Purification Technology, 2013, 118(43):151-161
[3] WILLNER J, KADUKOVA J, FORNALCZYK A, et al. Biohydrometallurgical methods for metals recovery from waste materials[J]. Metalurgija, 2015, 54(1):255-259
[4] SRICHANDAN HARAGOBINDA, PATHAK ASHISH, SINGH SRADHANJALI et al. Sequential leaching of metals from spent refinery catalyst in bioleaching and bioleaching-chemical leaching reactor:Comparative study[J]. Hydrometallurgy, 2014, 150:130-143
[5] CERRUTI C, CURUTCHET G, DONATI E. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans[J]. Journal of Biotechnology, 1998, 62(3):209-219
[6] MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect[J]. Journal of Hazardous Materials, 2008, 152(3):1082-1091
[7] XIN B, JIANG W, ASLAM H, et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration[J]. Bioresource Technology, 2012, 106(2):147-153
[8] DAS A P, SUKLA L B, PRADHAN N, et al. Manganese biomining:A review[J]. Bioresource Technology, 2011, 102(16):7381-7387
[9] XIN B P, JIANG W, LI X, et al.Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance[J]. Bioresource Technology, 2012, 112(3):186-192
[10] NIU Z R, HUANG Q F, XIN B P, et al. Optimization of bioleaching conditions for metal removal from spent zinc-manganese batteries using response surface methodology[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):608-617
[11] GEHRKE T, TELEGDI J, THIERRY D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied & Environmental Microbiology, 1998, 64(7):2743-2747
[12] 牛志睿, 辛宝平, 庞康, 等. 废旧锌锰电池锌锰元素的分析表征[J]. 环境科学学报, 2015, 35(2):564-569
[13] 牛志睿, 辛宝平, 庞康, 等.微波辅助生物淋沥废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, (11):5199-5205
[14] GE L Y, DENG H H, WANG H W et al. Comparison of extraction methods for quantifying extracellular polymers in activated sludges[J]. Fresenius Environmental Bulletin, 2009, 16(3):299-303
[15] ZENG W M, QIU G Z, ZHOU H B, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2010, 100(3/4):177-180
[16] YU H, SONG Y, GAO H, et al. Applying fluorescence spectroscopy and multivariable analysis to characterize structural composition of dissolved organic matter and its correlation with water quality in an urban river[J]. Environmental Earth Sciences, 2015, 73(9):5163-5171
[17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710
[18] KINZLER K, GEHRKE T, TELEGDI J, et al. Bioleaching:a result of interfacial processes caused by extracellular polymeric substances (EPS)[J]. Hydrometallurgy, 2003, 71(1):83-88
[19] YU RUN-LAN, LIU JING, CHEN AN et al. Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1):231-236
[20] ASGHARI I, MOUSAVI S M. Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(2):139-161
[21] ZHU JIANYU, YANG PENG, LI BANGMEI et al. Microcalorimetric studies of interaction between extracellular polymeric substance and sulfide minerals[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1439-1442
[22] BATENI A, SUSNAR S S, AMIRFAZLI A, et al. A high-accuracy polynomial fitting approach to determine contact angles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 219(1):215-231
[23] KAELBLE D H. Dispersion-polar surface tension properties of organic solids[J]. Journal of Adhesion, 1970, 2(2):66-81
[24] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8):1741-1747