基于结构和工艺流程革新的AO工艺提标改造
Upgrading and renovation of AO process based on structure reconstruction and process-flow innovation
-
摘要: 通过实验进行了基于结构造和工艺流程革新的AO工艺提标改造研究。改造前后的对比实验结果表明,提标改造后的D-A2O反应器在(24±2)℃温度下COD、TN、NH3-N、TP去除率分别可达92.24%、84.77%、98.65%和92.11%,比AO反应器相应污染物去除率分别提高了5%、14%、14%和20%,出水水质优于GB 18918-2002中一级A标准;同时,本升级改造后形成的D-A2O反应器于不同温度下具有较强的稳定性,且污泥龄(SRT)可延长至30~35 d。根据小试结果粗略估算,将AO改造成D-A2O技术所需增加的基建投资费用小于AO工艺原有基建费用4%,可节约污水处理运行费用约6%。结果表明,提标改造在技术上和经济上均具有可行性。Abstract: A laboratory-scale experiment was conducted to examine the upgrading and renovation of an AO process,based on reconstruction of the plant and process-flow innovation.The results show COD,TN,NH3-N,and TP removal rates of 92.24%,84.77%,98.65%,and 92.11%,respectively,in the D-A2O reactor at a temperature of (24±2)℃.These results represent increases of 5%,14%,14%,and 20%,respectively,compared to those of the AO reactor.Consequently,effluent from the D-A2O reactor was of better quality than the A(first-level) effluent standard.Furthermore,the upgrading and renovation of the D-A2O reactor was stable operation at different temperatures,and the sludge retention time (SRT) of the D-A2O reactor was extended to 30 to 35 d.Based on the results of the laboratory-scale trial,the capital cost of this upgrade and renovation represent less than 4% of the original construction (AO process) cost,and operational costs could be reduced by approximately 6%.The results of the trial indicate that this upgrade and renovation is technically and economically feasible.
-
Key words:
- AO process /
- upgrading and renovation /
- D-A2O reactor /
- nitrogen and phosphorus removal
-
突发环境污染事件具有发生的时间突然性、污染范围不确定性、负面影响的多重性,涉及社会安定、经济发展、生态环境及人群健康等方面。特别是流域性的突发环境污染事件极易造成跨市、跨省,甚至跨国污染,可能导致影响饮用水源地,造成水厂进水超标,严重时甚至造成停止供水。地方政府及有关部门在应对突发环境事件时,往往缺乏相关理论与实践经验,应急监测能力不足,装备、设备也很难满足应急需求。即使是有经验的专家,也同样会遇到突发环境事件中的特征污染物没有现成的处理工艺,需在短时间内开发研究新的处理工艺,同时还需克服现场各种不利条件。在众多突发环境事件中,污染物的来源是未知的,因此,还需要快速锁定并切断污染源,这是发生突发环境事件应急处置中的另一难点。在时间紧迫的情况下,若应急处理失败,则将可能导致数百上千人的健康受到威胁。
1. 某尾矿库泄漏次生突发环境事件发生原因及过程
1.1 事件发生原因
2015年11月23日,E省某尾矿库2#排水井井座上第1层井圈、水面下约6 m处、东北偏北方向的井架两立柱间8块拱板破损脱落(见图1),形成了面积约5.28 m2的缺口,造成排水井周边、缺口以上约25 362 m3尾矿经破损洞口—排水井—排水管—排水涵洞等排水系统(见图2)后,从涵洞口喷涌而出,进入紧邻的A河,污染物顺A河水流扩散迁移,进而污染B河、C江。A河至C江F省段没有饮用水取水点,C江G省设有饮用水取水点。因此,此事件对沿线部分群众生产生活用水造成了一定影响。尾矿砂进入水体后迅速扩散,11月26日20时,B河入F省境内2 km处的锑浓度为0.556 5 mg·L−1,超标110倍。当时预计污染物前锋于12月6日凌晨到达G省H市饮用水水源地。12月7日18时C江F省和G省交界处超标3.2倍,H市I水厂取水口上游2 km的断面超标2.3倍。整个流域污染物逐步向下游扩散,浓度整体上进一步下降。
1.2 锑的特性与执行标准
锑(Sb)是一种有毒的、生物体非必需的化学元素,对人体及生物具有慢性毒性及致癌性,在水环境中主要以五价锑形式存在。国内外尚未出现锑急性或者慢性损伤的案例。
我国《地表水环境质量标准》(GB 3838-2002)[1]表3“集中式生活饮用水地表水源地特定项目标准限值”中规定锑浓度限制值为0.005 mg·L−1,对其他功能水体锑浓度未作规定。《生活饮用水卫生标准》(GB 5749-2006)[2]将锑列为非常规指标,其限值为0.005 mg·L−1。在行业标准方面,《锡、锑、汞工业污染物排放标准》(GB 30770-2014)[3]规定现有企业水污染物排放限值为1.0 mg·L−1,新建企业水污染物排放限值为0.3 mg·L−1,特定区域排放限值为0.3 mg·L−1。世界卫生组织规定饮用水标准[4]中锑的浓度限值为0.02 mg·L−1。
表 3 E、F、G三省锑的迁移过程Table 3. Migration process of antimony in E, F and G provinces省份 流域 断面 里程/km 污染前锋 污染峰团 开始持续达标时刻 到达时刻 距事发时间/h 到达时刻 距事发时间/h 峰值质量浓度/(mg·L−1) 超标倍数 E省 A河 事发点 0 23日21时20分 0 23日21时50分 0.5 2.8 559 处理后达标 A河与B河交汇口 23 24日5时 7.5 24日12时 15.5 2 399 2016年1月25日20时 B河 大桥1 43 24日15时 18 25日0时 27.5 1.18 235 2016年1月1日0时 大桥2 68 24日23时 26 25日7时30分 35 1.16 231 无监测数据 大桥3 80 25日10时 37 26日10时 62 0.9 179 无监测数据 出E省断面 107 25日19时 46 26日20时 72 0.61 121 2016年1月25日20时 F省 B河 E省、F省交界处 117 26日2时 53 27日12时 88 0.62 123 2016年1月28日20时 F1水库坝首 132 27日4时 79 29日12时 136 0.244 3 47.86 2016年1月28日20时 C江 B河汇入C江下游1 km处 148 11月28日12时 112 11月30日10时 158 0.238 46.6 2016年1月4日10时 F2水库库首 212 12月1日22时 194 12月3日8时 228 0.041 7.2 12月24日18时 出F省断面 252 12月4日6时 250 12月5日23时 291 0.028 5 4.7 12月26日12时 C江 F省、E省交界处 262 12月4日18时 267 12月12日18时 454 0.020 9 3.18 12月26日0时 I水厂上游2公里断面 318 12月7日2时 317 12月8日3时 343 0.0210 3.2 12月24日8时 注:污染前锋是指第一次出现超标的情况;污染峰团是指污染物浓度最高的情况;E省数据为监测与模拟结果,F省、G省数据为应急监测结果。 G省H市区最主要的集中式饮用水取水口位于C江F省和G省交界下游约60 km处。应急处置专家根据污染形势和水文条件判断,该取水口锑浓度可能超标,如不采取有效措施,将会影响H市区正常供水。鉴于受事件影响的B河汇入C江,故将应急处置工作目标确定为:地表水体中锑浓度达到集中式生活饮用水地表水源地特定项目标准限值的0.005 mg·L−1;其他重金属项目评价标准执行《地表水环境质量标准》(GB 3838-2002)[1]Ⅲ类标准(按照《甘肃省地表水功能区划2012—2030年》,西汉水属于Ⅲ类功能区)。
2. 次生突发环境事件应急处置措施
事故发生后,11月27日晚,E、F、G三省政府及环保、水利等有关部门联合召开了现场工作会。会上确定本次突发环境事件整体处置思路为:E省要坚决切断污染源,并沿途设置拦截设施;F省要全力以赴做好污染物拦截和处置工作;G省H市水厂在专家指导下储备好应急物资,做好应急准备,全力保障H市饮用水安全。三省建立了联动与信息通报机制,及时向社会发布事件动态信息。
2.1 切断污染源
在事件发生的第一时间,E省安监局组织专家按照“应急封堵—临时加固—永久加固”的工作思路,开展了排水井封堵工作。永久加固工程于2016年1月14日完工,避免了尾矿砂再次泄露。其次,为了避免喷涌到A河的尾矿砂被河水携带到下游,自12月13日开始启动了A河永久性改道工作,通过在原河道和新河道之间砌筑河堤的方式,将河道向远离涵洞方向改道80 m,于2016年4月18日竣工。最后,对涵洞口出水,建设加固和防渗的沉淀池,并在沉淀池中通过混凝沉淀技术处理涵洞出水。通过上述措施,在河床存在上游污染、锑污染物持续溶解析出的情况下,自12月20日开始,A河入B河河口处的锑污染物浓度被控制在超标4倍以下,达到了切断污染源头的目标。
2.2 截污工程
此次突发污染事件中,E省承担拦截污染物的主要责任,通过控制B河出E省的流量,可为H市水厂应急处置争取时间。从11月30日起实施的拦截措施包括:1)通过在A河、B河的干流、支流上建设拦水坝198座,共拦截污染水体385×104 m3;2)对B河B1水电站落闸以拦截污染物;3)对B河支流的B2水电站、B3水电站落闸蓄水,减小未污染河水下泄造成下游污染水体量增大。
通过上述措施,自12月3日13时开始,B河出省流量控制为3~5 m3·s−1(较之前流量平均减少约80%),并持续29 h。根据流量变化推算,相关措施为下游应急处置工作争取了约134 h。由于构筑坝体数量较多并存在一定的安全隐患,自12月4日0时起,按照“先上游后下游,先干流后支流”和“险坝优先、总量控制、兼顾稀释”的原则,对B河流域拦截坝实施泄流放水。
2.3 污染物浓度削减
因尾矿砂泄漏量大,为确保C江I市水厂供水安全,在切断污染源并实施截污工程的基础上,采用投药沉淀法将污染河流中的锑沉降,削减受污染河道中的锑浓度。专家组对比了0~2 ℃下,直接投加硫化钠、聚合硫酸铁和“硫化钠+聚合硫酸铁”3种方法对锑的去除效果,发现采用“硫化钠+聚合硫酸铁”法去除效果最好(3种试验方法及处理效率见表1),更能适应低温环境。该法利用废水中重金属离子具有胶体的沉降稳定性和聚合不稳定性,聚合硫酸铁既可破坏胶体的稳定性,又可促进重金属离子与硫化钠生成硫化物沉淀,从而去除水中锑离子。该法在实施过程中产泥量少,淤泥不容易复溶,对锑去除率最高可达到97%,但应特别注意硫化钠的投加量。硫化钠在水中会形成溶解性H2S、HS−、S2-以及存在于悬浮物中的可溶性硫化物等物质。若投加过量可能导致水体颜色发黑,产生刺激性臭味。而水中的硫化物容易水解,以H2S形式释放到空气中,被大量吸收后会产生恶心、呕吐,甚至呼吸困难等。因此,在投加前应做好小试试验,摸清最佳投加量,做到精准投加,将硫化钠对河道的影响降至最低。突发环境事件应急处置过程中使用硫化钠时应注意,其水溶液呈碱性,触及皮肤和毛发时会造成灼伤。硫化钠水溶液在空气中会被缓慢氧化成硫代硫酸钠、亚硫酸钠、硫酸钠和多硫化钠。因硫代硫酸钠的生成速度较快,故硫化钠氧化的主要产物是硫代硫酸钠。硫化钠在空气中潮解,并发生碳酸化而变质,不断释放出硫化氢气体,因此,在操作过程中应特别注意个人防护。
表 1 3种试验方法及除锑效率Table 1. Three experimental methods and antimony removal efficiency rates试验方法 试验条件 锑质量浓度/(μg·L−1) 锑去除率/% pH 投加方法 初始值 处理后的值 投加硫化钠 8~9 加30倍锑质量含量的硫化钠,充分搅拌60 min 1 000 876.16 12.38 投加聚合硫酸铁 8~9 加50倍锑质量含量的三价铁盐混凝剂聚合硫酸铁,充分搅拌40 min 1 000 631.08 36.89 投加“硫化钠+聚合硫酸铁” 8~9 加30倍锑质量含量的硫化钠,充分搅拌60 min;加50倍锑质量含量的三价铁盐混凝剂聚合硫酸铁,充分搅拌40 min 1 000 49.00 95.1 E省投药降污工作的具体运行方式有2类:一类是用于处理高锑浓度水,主要包括事发点围堰区投药点;另一类是用于降低A河入B河锑浓度的投药点,主要包括A1、A2和A3投药点。F省投药点在B河上F1水库下游约3.9 km和9.9 km处分别设置了2个应急投药点。各投药点投药工艺、运行时间以及投药效果等详见表2。F省B河投药降污效果见图3。
表 2 本次事件主要应急原位除锑工程与技术方法汇总表Table 2. Summary of engineering and technical methods for emergency site in situ antimony removal行政区 地点 时间 锑超标倍数 流量与水温 处理工艺 主要参数 现场处理效率与效果 备注 E省 A河汇入B河前约1 km 2015年12月4—12日 20~40 1.8 m3·s−1夜间水温<6 ℃ 弱酸性铁盐混凝沉淀法 加盐酸或硫酸调节pH至6.0,投加聚合硫酸铁180 mg·L−1 平均64.6% 加温溶药。水温<2 ℃时效果差 2015年12月12—20日 5~20 1.4 m3·s−1夜间水温<0 ℃ 硫化钠+聚合硫酸铁 硫化钠20 mg·L−1,聚合硫酸铁150 mg·L−1 >85% 加温溶药。适应低温,产泥量少,淤泥不易复溶 A河汇入B河前约15 km 2015年12月6日—2016年1月31日 <5 1.0 m3·s−1,全天水温<0 ℃ 硫化钠+聚合硫酸铁 硫化钠14 mg·L−1,聚合硫酸铁120 mg·L−1 >95%,达标 加温溶药,增加沉淀时间。适应低温环境,产泥量少,淤泥不易复溶 A河汇入B河前约2 km 2015年12月20日—2016年1月31日 <5 1.0 m3·s−1,全天水温<0 ℃ 硫化钠+聚合硫酸铁 硫化钠14 mg·L−1,聚合硫酸铁120 mg·L−1 >95%,达标 加温溶药,增加沉淀时间。适应低温环境,产泥量少,淤泥不易复溶 尾矿库涵洞下方 2016年1月10日之前 200 200 m3·d−1夜间水温<0 ℃ 氢氧化钠+聚合硫酸铁 加氢氧化钠调节pH9.0~9.5,聚合硫酸铁750 mg·L−1 >95%,超标倍数<3 3~4 d需清理1次污泥,仅可白天高温时运行,不适应低温,淤泥易复溶 2016年1月10日之后 200 200 m3·d−1全天水温<0 ℃ 硫化钠+聚合硫酸铁 硫化钠75 mg·L−1,聚合硫酸铁300 mg·L−1 >95%,超标倍数<3 7 d清理1次污泥,可全天运行,适应低温和高浓度处置,淤泥不易复溶 B河B1水电站 2015年12月3—5日 5~15 15~20 m3·s−1 弱酸性铁盐混凝沉淀法 加盐酸调整pH到5.0,投加聚合硫酸铁100 mg·L−1,混凝沉淀后加液体烧碱回调pH到7.7 — 沉淀池拦水坝按照流域整体水利调度于12月4日被拆除,未进行对比监测 F省 B河F1水库下游 2015年11月30日—12月4日 7~51 15~20 m3·s−1 弱酸性铁盐混凝沉淀法 加盐酸调整pH到5.0,投加聚合硫酸铁100 mg·L−1,混凝沉淀后加液体烧碱回调pH到7.7 平均50% G省(H市) I水厂 从12月7日7时开始运行,至12月29日结束 2.34 平均0.42 m3·s−1 弱酸性铁盐混凝沉淀法 (1)配水井处投加盐酸,将原水调整为pH 5.0~5.3;(2)絮凝池前端投加聚合硫酸铁,在絮凝池出水端监测pH 5.3~5.8;(3)经过2级沉淀后,在出水端投加食品级碳酸钠(食用纯碱),确保滤池出水端pH 7.8左右。 平均80%,达标 出厂锑浓度持续<4 µg·L−1 2.4 清除受污染河道底泥
采用硫化钠法产生的沉淀物,有再次复溶的风险,且对底栖生物具有潜在危害。为此,自12月1日起,对A河、B河沉积物进行清淤。一是清理围堰内的污染底泥,并清运到弃渣场集中堆放;二是利用A河断流时机,集中清理处置污染底泥及岸滩沉积物;三是持续清理各投药点的沉积污染物。截至2016年1月31日,应急处置期间总清污量约13 700 t,其中河道及重点区域清运尾砂约2 600 t,清理河道砂石和淤泥混合物等约11 100 t。受污染河道底泥经脱水至含水率80%后,交由有资质的单位处置。根据《国家危险废物名录(2016版)》中新增“危险废物豁免管理清单”规定,由危险化学品、危险废物造成的突发环境事件及其处理过程中产生的废物,在转移和处置或利用过程中可不按危险废物进行管理。
2.5 水利调蓄
在F省,通过对F1水库和F2水库的水利调蓄,在拦截污染物、蓄水稀释降低锑浓度峰值等方面发挥了重要作用,亦为下游布设投药点、筑设拦截坝以及H市布设应急输水管道和I水厂工艺改造等争取了宝贵时间。G省H市城区下游5个县区的30个乡镇、266处集中供水工程均在C江沿线取水,涉及供水人口29.6×104人。为保障下游群众供水安全,自12月7日起,3次调度G1水电站增加下泄流量,以稀释污染水体。自12月24日8时起,C江H市I水厂取水点上游断面开始达标,调水稀释处置措施随即停止。
2.6 供水保障
E省及F省采取了以下供水保障措施:告知E省及F省沿线群众停止从A河、B河取水,停用A河、B河沿河附近的井水、泉水;对A河、B河流域的集中式饮用水源和居民自备井开展监测,对超标的自备井全部进行了封堵或拆除;针对饮用水不达标的区域,通过引入山泉水或者接城市管网的应急供水管线。
G省主要从2个方面开展供水保障:一是启用备用水源;二是对开展水厂除锑工艺改造。除锑工艺采用酸性条件下硫酸聚铁沉降法,除锑工艺效果详见图4。I水厂除锑工艺从12月7日7时开始运行,至12月29日结束,共运行22 d,处理的原水锑浓度最高达0.016 7 mg·L−1(超标2.34倍),出厂浓度稳定在0.004 mg·L−1以下。
3. 锑污染物迁移及超标河道应急处置效果
污染物锑从E省尾矿库喷出后进入A河,然后汇入B河;进入F省并汇入C江后,进入G省H市。在E、F、G三省各断面污染物锑的迁移过程见表3。
3.1 E省境内锑迁移过程及应急处置效果
根据E省环境应急监测数据及模拟计算结果,污染物锑在E省重点断面的迁移过程为:11月24日5时即距事发7.5 h后,污染团前峰到达A河与B河交汇口;11月25日19时即事发46 h后,污染团前峰到达出E省断面;11月26日2时即事发53 h后,污染团前峰到达E、F省交界处。E省境内污染团峰值出现在事发点处,峰值浓度为2.8 mg·L−1,超标倍数为559。2016年1月25日20时即事发63 d后,A河与B河交汇口断面、出E省断面持续稳定达标;1月28日20时即事发67 d后,E、F省交界处断面持续稳定达标。
3.2 F省境内锑迁移过程及应急处置效果
根据对F省环境应急监测数据的分析,污染物锑在F省重点断面的迁移过程为:11月27日4时即事发79 h后,污染团前峰到达F1水库坝首;11月28日12时即事发112 h后,污染团前峰到达B河汇入C江下游1 km处;12月1日22时即事发194 h后,污染团前峰到达F2水库库首;12月4日6时即事发250 h后,污染团前峰到达出F省断面。F省境内污染团峰值出现在E省入F省2 km监测断面处,峰值浓度为0.614 3 mg·L−1,超标倍数为121.9。
12月26日12时即事发33 d后,出F省断面持续稳定达标;2016年1月4日10时即事发44 d后,B河汇入C江下游1 km处断面持续稳定达标;1月28日20时即事发67 d后,E省入F省2 km监测断面持续稳定达标。
3 3 G省境内锑迁移过程及应急处置效果
根据对G省环境应急监测数据的分析,污染物锑在G省重点断面的迁移过程为:12月4日18时即事发267 h后,污染团前峰到达F、G省交界处;12月7日2时即事发317h后,污染团前峰到达H市饮用水源地上游2 km。G省境内污染团峰值出现在F、G省交界处监测断面,峰值浓度为0.028 6 mg·L−1,超标倍数为4.72;H市饮用水源地上游2 km断面处,峰值浓度为0.020 9 mg·L−1,超标倍数为3.2。2015年12月24日8时即距事发31 d后,H市饮用水源地上游2 km断面持续稳定达标;12月26日0时即距事发33 d后,F、G省交界断面持续稳定达标。
4. 结语
根据辖区内锑质量浓度达标情况,E、F、G三省分别解除应急状态:2015年12月31日,H市人民政府宣布解除应急状态,2016年1月29日,E省人民政府宣布解除应急状态,2016年2月1日,F省人民政府宣布解除应急状态。截至2016年2月1日,该事件应急处置工作全线解除。
此次E省某尾矿库泄漏次生突发环境事件的污染物排放量大、水体污染物浓度高、污染物扩散跨三省、应急处置难度大。本次突发环境事件的处置过程中,采用了断污染源、筑坝拦截、投药降污、河底清淤、饮用水厂应急除锑等应急处置措施,延缓了污染团到H市I水厂的时间、有效降低了河道锑浓度,保障了受影响地区的供水,减小了突发事件的影响程度与范围。通过现场试验,研究确定了低温(0~2 ℃)条件下应对锑污染的河道应急除锑技术,实施了3省11个断面的投药处置。该环境应急技术的开发可为我国冬季河流或湖库水环境突发重金属污染事件提供参考。
-
[1] WU Donglei,WANG Wei,GUO Qingwen,et al.Combined Fenton-SBR process for bamboo industry wastewater treatment.Chemical Engineering Journal,2013,214:278-284 [2] COLOMER J.,WONG A.,COMA M.,et al.Qualitative estimation of SBR biological nutrient removal performance for wastewater treatment.Journal of Chemical Technology & Biotechnology,2013,88(7):1305-1313 [3] PARK H.O.,OH S.,BADE R.,et al.Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment.Korean Journal of Chemical Engineering,2010,27(3):893-899 [4] LIU Ya'nan,HU Jinglong,XU Bingjie,et al.Isolation and identification of an iopromide-degrading strain and its application in an A2O system.Bioresource Technology,2013,134:36-42 [5] 叶长兵,韩相奎,汤洁,等.异波折板水解酸化-A2O一体化反应器实验研究.环境工程学报,2010,4(3):503-507YE Changbing,HAN Xiangkui,TANG Jie,et al.Integrated reactor of opposite folded plate hydrolysis and acidogenosis-A2O for sewage treatment.Chinese Journal of Environmental Engineering,2010,4(3):503-507(in Chinese) [6] 杨小丽,洪凯,张雷,等.活性炭海绵动态膜生物反应器用于污水处理提标改造中试研究.土木建筑与环境工程,2014,36(2):89-93YANG Xiaoli,HONG Kai,ZHANG Lei,et al.Application of activated carbon sponge-dynamic membrane bioreactor in transformation of wastewater treatment.Journal of Chongqing Jianzhu University,2014,36(2):89-93(in Chinese) [7] 王阿华.城镇污水处理厂提标改造的若干问题探讨.中国给水排水,2010,26(2):19-22 WANG A'hua.Discussion on some problems in upgrading and reconstruction of municipal wastewater treatment plant.China Water & Wastewater,2010,26(2):19-22(in Chinese) [8] 章一丹,谢娟,徐灏龙.太湖流域某城镇污水处理厂提标改造工程设计.中国给水排水,2013,29(22):71-74Zhang Yidan,Xie Juan,Xu Haolong.Design of upgrading reconstruction project of municipal wastewater treatment plant in Taihu lake basin.China Water & Wastewater,2013,29(22):71-74(in Chinese) [9] 刘礼祥,陆桂勇,杨旭良,等.城市污水处理厂提标改造与优化调控案例分析.中国给水排水,2010,26(20):24-27LIU Lixiang,LU Guiyong,YANG Xuliang,et al.Case analysis on upgrading reconstruction and optimization control of WWTP.China Water & Wastewater,2010,26(20):24-27(in Chinese) [10] 林英姿,田大伟,祝伟星,等.长春西郊污水厂AO工艺的调试运行.中国给水排水,2005,21(11):101-103 LIN Yingzi,TIAN Dawei,ZHU Weixing,et al.Commissioning and operation of AO in Changchun City Xijiao municipal wastewater treatment plant.China Water & Wastewater,2005,21(11):101-103(in Chinese) [11] 张智,赵青,陈杰云,等.好氧移动床多级AO工艺挂膜启动研究.水处理技术,2013,39(6):53-56 ZHANG Zhi,ZHAO Qing,CHEN Jieyun,et al.study on the start-up in aerobic moving-bed multi-stage AO biofilm reactor.Technology of Water Treatment,2013,39(6):53-56(in Chinese) [12] 周慧,徐得潜,马常仁,等.A/O一膜生物反应器工艺应用于城市污水处理厂出水提标改造的研究.环境污染与防治,2011,33(12):13-17 ZHOU Hui,XU Deqian,MA Changren,et al.Research on the application of A/O-MBR process in transformation of waste water treatment plant.Environmental Pollution and Control,2011,33(12):13-17(in Chinese) [13] 石凤,刘胜军,马炳勇,等.多段多级AO工艺在污水处理厂升级改造中的应用.给水排水,2011,37(6):34-37 [14] 国家环境保护总局.水和废水监测分析方法.4版.北京:中国环境科学出版社,2002 [15] 马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社,2002:103-106 -

计量
- 文章访问数: 2286
- HTML全文浏览数: 1877
- PDF下载数: 468
- 施引文献: 0