复合型人工湿地脱氮效能及其水力负荷影响规律

于海霞, 于江华, 徐礼强, 金永喆. 复合型人工湿地脱氮效能及其水力负荷影响规律[J]. 环境工程学报, 2013, 7(9): 3357-3362.
引用本文: 于海霞, 于江华, 徐礼强, 金永喆. 复合型人工湿地脱氮效能及其水力负荷影响规律[J]. 环境工程学报, 2013, 7(9): 3357-3362.
Yu Haixia, Yu Jianghua, Xu Liqiang, Kim Youngchul. Nitrogen removal and effects analysis of hydraulics in an integrated wetland[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3357-3362.
Citation: Yu Haixia, Yu Jianghua, Xu Liqiang, Kim Youngchul. Nitrogen removal and effects analysis of hydraulics in an integrated wetland[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3357-3362.

复合型人工湿地脱氮效能及其水力负荷影响规律

  • 基金项目:

    中央高校基本科研业务费专项资金资助项目(11lgpy100)

    国家自然科学基金资助项目(51009156,51002196)

  • 中图分类号: X524

Nitrogen removal and effects analysis of hydraulics in an integrated wetland

  • Fund Project:
  • 摘要: 复合型人工湿地越来越多地被应用在面源污染管理中。不同类型的人工湿地对氮素的去除机理和去除性能是不同的。氮素在湿地生态系统中的去除受多种因素的影响和制约,不同的研究中氮素的去除效率变化较大。通过对韩国西部一复合型人工湿地中氮素的去除能力研究,分析了氮素的去除效率以及水力负荷对去除性能的影响,进而分析了人工湿地去除氮素的主要机理。结果表明,氨氮(NH4+-N)、硝酸盐氮(NO3--N)、凯式氮(TKN)和总氮(TN)的平均去除效率分别为13%、29%、35.3和26%。其中有机氮的去除是该复合型人工湿地中氮素去除的主要原因。水力负荷和先行干期天数对氮素的去除能力有一定影响。较长的先行干期天数和较低水力负荷可以提高氮素的去除效率。
  • 加载中
  • [1] Beutel M.W., Newton C. D., Brouillard S., et al. Nitrate removal in a surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington. Ecological Engineering, 2009, 35(10): 1538-1546
    [2] 朱彤,许振成,故康萍.人工湿地污水处理系统应用研究.环境科学研究,1991,4(5):17-22
    [3] Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 2007, 380 (1-3): 48-65
    [4] Koskiaho J., Ekholm P., Raty M. Retaining agricultural nutrients in constructed wetlands-experiences under boreal conditions. Ecological Engineering, 2003, 20(1): 89-103
    [5] Zhou S., Hosomi M. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted rive water treatment using forage rice in Japan. Ecological Engineering, 2008, 32(2): 147-155
    [6] Raisen G. W., Mitchell D. S., Croome R. L., et al. The effectiveness of a small constructed wetland in ameliorating diffuse nutrient loadings from an Australian rural catchment. Ecological Engineering, 1997, 9(1-2): 19-36
    [7] Mitsch W. J., Hornea A. J., Naim R.W. Nitrogen and phosphorus retention in wetlands-ecological approaches to solving excess nutrient problems. Ecological Engineering, 2000, 14(1-2): 1-7
    [8] Fink D. F., Mitsch W. J. Seasonal and storm event nutrient removal by a created wetland in an agricultural watershed. Ecological Engineering, 2004, 23(4-5): 313-325
    [9] Kadlec R. H. Pond and wetland treatment. Water Science and Technology, 2003, 48(5): 1-8
    [10] Carleton J. N., Gizzard T. J., Godrej A. N., et al. Factors affecting the performance of stormwater treatment wetlands. Water Rersearch, 2001, 35(6): 1552-1562
    [11] 黄娟,王世和,钟秋爽,等. 不同构型湿地氧分布及脱氮效果对比.土木建筑与环境工程, 2009, 31(6): 117-121 Huang Juan, Wang Shihe, Zhong Qiushuang, et al. Comparison of dissolved oxygen distribution and nitrogen removal effect in wetlands with different structures. Journal of Civil,Architectural & Environmental Engineering,2009, 31(6):117-121(in Chinese)
    [12] APHA, AWWA and WEF. Standard Methods for the Examination of Water and Wastewater, 19th edition. Washington, USA, 1995
    [13] Yi Q., Yu J., Kim Y. Removal patterns of particulate and dissolved forms of pollutants in a stormwater wetland. Water Science and Technology, 2010, 61(8): 2083-2096
    [14] 张荣社,李广贺,周琪,等.潜流湿地控制暴雨径流中氮磷冲击负荷中试研究.中国给水排水,2007,23(1):64-68 Zhang Rongshe, Li Guanghe, Li Qi et al. Study on nitrogen and phosphorus treatment in storm runoff by subsurface constructed wetland. China Water & Wastewater,2007,23(1):64-68(in Chinese)
    [15] Braskerud B.C. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecological Engineering, 2002, 18(3): 351-370
    [16] Romeroj A., Comin F. A., Garcia C. Restored wetlands as filters to remove nitrogen. Chemosphere, 1999, 39(2): 323-332
    [17] Kadlec R. H., Wallace S.D. Treatment Wetland. New York:CRC Press, 2009
    [18] Maltais-Landry G., Maranger R., Brisson J., et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Research, 2009, 43(2): 535-545
    [19] U.S. Environmental Protection Agency, "Methodology for Analysis of Detention Basins for Control of Urban Runoff Quality", Nonpoint Source Branch, Washington, EPA 440/5-87-001, September 1986
    [20] Shutes R B E., Revitt D. M., lagerberg I. M., et al. The design of vegetative constructed wetlands for the treatment of highway runoff. Sci. Total Environ., 1999, 235(1-3):189-197
    [21] Su T. M., Yang S. C., Shih S. S., et al. Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecological Engineering, 2009, 35(8): 1200-1207
  • 加载中
计量
  • 文章访问数:  1783
  • HTML全文浏览数:  914
  • PDF下载数:  987
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-12
  • 刊出日期:  2013-09-15

复合型人工湿地脱氮效能及其水力负荷影响规律

  • 1. 中山大学地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广州 510275
  • 2. 南京信息工程大学环境科学与工程学院, 南京 210044
  • 3. 珠江水利委员会珠江水利科学研究院, 广州 510611
  • 4. 韩国韩瑞大学环境工程系, 韩国瑞山 356706
基金项目:

中央高校基本科研业务费专项资金资助项目(11lgpy100)

国家自然科学基金资助项目(51009156,51002196)

摘要: 复合型人工湿地越来越多地被应用在面源污染管理中。不同类型的人工湿地对氮素的去除机理和去除性能是不同的。氮素在湿地生态系统中的去除受多种因素的影响和制约,不同的研究中氮素的去除效率变化较大。通过对韩国西部一复合型人工湿地中氮素的去除能力研究,分析了氮素的去除效率以及水力负荷对去除性能的影响,进而分析了人工湿地去除氮素的主要机理。结果表明,氨氮(NH4+-N)、硝酸盐氮(NO3--N)、凯式氮(TKN)和总氮(TN)的平均去除效率分别为13%、29%、35.3和26%。其中有机氮的去除是该复合型人工湿地中氮素去除的主要原因。水力负荷和先行干期天数对氮素的去除能力有一定影响。较长的先行干期天数和较低水力负荷可以提高氮素的去除效率。

English Abstract

参考文献 (21)

目录

/

返回文章
返回