大孔树脂吸附去除水中的2,4,6-三硝基甲苯

张青梅, 刘湛, 马超, 向仁军. 大孔树脂吸附去除水中的2,4,6-三硝基甲苯[J]. 环境工程学报, 2012, 6(11): 3889-3893.
引用本文: 张青梅, 刘湛, 马超, 向仁军. 大孔树脂吸附去除水中的2,4,6-三硝基甲苯[J]. 环境工程学报, 2012, 6(11): 3889-3893.
Zhang Qingmei, Liu Zhan, Ma Chao, Xiang Renjun. Removing 2,4,6-trinitrotoluene from water by macroporous resins[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3889-3893.
Citation: Zhang Qingmei, Liu Zhan, Ma Chao, Xiang Renjun. Removing 2,4,6-trinitrotoluene from water by macroporous resins[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3889-3893.

大孔树脂吸附去除水中的2,4,6-三硝基甲苯

  • 基金项目:
  • 中图分类号: X703.1

Removing 2,4,6-trinitrotoluene from water by macroporous resins

  • Fund Project:
  • 摘要: 研究了2种大孔树脂XAD-4和NDA-804对水中的TNT的吸附行为。2种树脂对TNT的吸附等温线表明,温度的升高有利于吸附,在35℃条件下XAD-4树脂与NDA-804树脂对TNT的最高平衡吸附量分别达82.86 mg/g和94.26 mg/g。采用Langmuir方程和Freundlich方程用于吸附等温线的解释,结果表明,吸附等温线更加符合Langmuir模型,相关系数均大于0.99。TNT在2种树脂上的吸附符合准二级动力学方程,TNT初始浓度越低,达到吸附平衡所需时间越短,在1 h内可达到吸附平衡。采用NDA-804处理对TNT废水,废水中TNT浓度由103.58 mg/L降至0. 4 mg/L,去除率达99.6%,吸附后的树脂采用pH=2的乙醇和盐酸的混合液脱附可再生,高浓度再生溶液经蒸馏可回收TNT,实现了废水治理与资源化。
  • [1] An F. Q., Gao B. J., Feng X Q. Adsorption of 2,4,6-trinitrotoluene on a novel adsorption material PEI/SiO2. Journal of Hazardous Materials, 2009, 166(2): 757-761
    [2] Chen W. S., Chiang W. C., Lai C. C. Recovery of nitrotoluenes in waste water by solven textraction. Journal of Hazardous Materials, 2007, 145(1): 23-29
    [3] 薛向东, 金奇庭, 黄永勤. 紫外光助氧化法处理TNT废水研究. 给水排水, 2001, 27(10): 53-56 Xue Xiangdong, Jin Qiting, Huang Yongqin. On UV-assisted oxidation to treat TNT wastewater. Water and Wastewater Engineering, 2001, 27(10): 53-56(in Chinese)
    [4] Wu Y. G., Zhao C. H., Wang Q. H., et al. Integrated effects of selected ions on 2,4,6-trinitrotoluene removal by O3/H2O2. Journal of Hazardous Materials, 2006, B132(2): 232-236
    [5] 许金花, 汪晓军. 利用Fenton氧化处理TNT炸药废水. 火炸药学报, 2007, 30(6): 44-47 Xu Jinhua, Wang Xiaojun. Treatment of wastewater containing TNT by fenton oxidation. Chinese Journal of Explosives and Propellants, 2007, 30(6): 44-47(in Chinese)
    [6] 张东翔, 张凌云, 黎汉生, 等. TNT和有机染料废水的光催化氧化动力学特性. 火炸药学报, 2005, 28(4): 5-9 Zhang Dongxiang,Zhang Lingyun,Li Hansheng, et al. Photocatalytic oxidation kinetics of wastewater with TNT and organic dyes. Chinese Journal of Explosives and Propellants,2005, 28(4): 5-9(in Chinese)
    [7] 敖漉, 周从直, 陈伟青, 等. 电液压脉冲放电等离子体降解TNT废水的研究. 环境化学, 2008, 27(5): 583-586 Ao Lu, Zhou Congzhi, Chen Weiqing, et al. Research on TNT degradation by electro-hydraulic pulse plasma. Environmental Chemistry, 2008, 27(5): 583-586(in Chinese)
    [8] 常双君, 刘玉存. 超临界水氧化处理TNT炸药废水的研究. 含能材料, 2007, 15(3): 285-288 Chang Shuangjun,Liu Yucun. Treatment of TNT wastewater by supercritical water oxidation. Chinese Journal of Energetic Materals, 2007, 15(3): 285-288(in Chinese)
    [9] 鲁志远, 李玉平, 牟敬海, 等. 湿式氧化法处理TNT红水. 火炸药学报, 2007, 30(3): 48-51 Lu Zhiyuan,Li Yuping. Treatment of TNT red water by wet oxidation. Chinese Journal of Explosives and Propellants, 2007, 30(3): 48-51(in Chinese)
    [10] Kim J. S., Shea P. J., Yang J. E., et al. Halide salts accelerate degradation of high explosives by zero valent iron. Environmental Pollution, 2007,147(3): 634-641
    [11] Lee K. B., Gu M. B., Moon S. H. Degradat ion of 2, 4, 6-trinitrotoluene by immobilized horseradish peroxidase and electrogenerated peroxide. Water Research, 2003, 37(5): 983-992
    [12] Pavlostathis S. G., Jackson G. H. Biotransformation of 2,4,6-trinitrotoluene in a continuous -flow Anabaena sp. system. Water Research, 2002, 36(7): 1699-1706
    [13] 肖湘竹, 韩敦信, 徐永红, 等. 以壳聚糖为载体的固定化微生物处理TNT废水研究. 含能材料, 2006, 14 (1): 59-61 Xiao Xiangzhu, Han Dunxin, Xu Yonghong, et al. Immobilized anaerobic treatment for wastewater containing TNT by using chitosan. Chinese Journal of Energetic Materals, 2006, 14 (1): 59-61(in Chinese)
    [14] 刘新铭, 赵建国, 侯素霞. NKA-Ⅱ型大孔吸附树脂处理苯胺废水的研究. 生态环境, 2006, 15(5): 909-913 Liu Xinming, Zhao Jianguo, Hou Suxia. Study on treatment of aniline production wastewater with the NKA-Ⅱ macroporous adsorbent resin. Ecology and Environment, 2006, 15(5): 909-913(in Chinese)
    [15] Pan B. C., Xiong Y., Li A. M., et al. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. Reactive and Functional Polymers, 2002, 53(2-3): 63-72
    [16] Zhao R., Yan Y., Li M. X., et al. Selective adsorption of tea polyphenols from aqueous solution of the mixture with caffeine on macroporous crosslinked poly(N-vinyl-2-pyrrolidinone). Reactive and Functional Polymers, 2008, 68(3): 768-774
    [17] Yang W. B., Ren L. Adsorption mechanism of nonylphenol polyethoxylate onto hypercrosslinked resins. Acta Physico-chimica Sinica,2010, 26(8): 2182-2188
    [18] An F. Q., Feng X. Q., Gao B. J. Adsorption mechanism and property of a novel adsorption material PAM/SiO2 towards 2,4,6-trinitrotoluene. Journal of Hazardous Materials, 2009, 168 (1): 352-357
    [19] Mckay G., Ho Y. S. Pseudo-second order model for sorption processes. Process Biochemistry,1999, 34(5): 451-465
  • 加载中
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.5 %DOWNLOAD: 1.5 %FULLTEXT: 84.3 %FULLTEXT: 84.3 %META: 14.1 %META: 14.1 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 78.3 %其他: 78.3 %Ashburn: 3.2 %Ashburn: 3.2 %Beijing: 7.2 %Beijing: 7.2 %Boulder: 0.2 %Boulder: 0.2 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Mountain View: 0.2 %Mountain View: 0.2 %Nanning: 0.2 %Nanning: 0.2 %Newark: 1.5 %Newark: 1.5 %Shanghai: 0.2 %Shanghai: 0.2 %Shijiazhuang: 0.3 %Shijiazhuang: 0.3 %Shizishan: 0.2 %Shizishan: 0.2 %Vũng Tàu: 0.2 %Vũng Tàu: 0.2 %Wuhan: 0.3 %Wuhan: 0.3 %Xingfeng: 1.0 %Xingfeng: 1.0 %XX: 4.9 %XX: 4.9 %内网IP: 0.2 %内网IP: 0.2 %北京: 0.3 %北京: 0.3 %杭州: 0.3 %杭州: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.5 %深圳: 0.5 %衢州: 0.2 %衢州: 0.2 %郑州: 0.3 %郑州: 0.3 %其他AshburnBeijingBoulderJinrongjieMountain ViewNanningNewarkShanghaiShijiazhuangShizishanVũng TàuWuhanXingfengXX内网IP北京杭州济南深圳衢州郑州Highcharts.com
计量
  • 文章访问数:  4060
  • HTML全文浏览数:  1961
  • PDF下载数:  3807
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-04-20
  • 刊出日期:  2012-11-09
张青梅, 刘湛, 马超, 向仁军. 大孔树脂吸附去除水中的2,4,6-三硝基甲苯[J]. 环境工程学报, 2012, 6(11): 3889-3893.
引用本文: 张青梅, 刘湛, 马超, 向仁军. 大孔树脂吸附去除水中的2,4,6-三硝基甲苯[J]. 环境工程学报, 2012, 6(11): 3889-3893.
Zhang Qingmei, Liu Zhan, Ma Chao, Xiang Renjun. Removing 2,4,6-trinitrotoluene from water by macroporous resins[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3889-3893.
Citation: Zhang Qingmei, Liu Zhan, Ma Chao, Xiang Renjun. Removing 2,4,6-trinitrotoluene from water by macroporous resins[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3889-3893.

大孔树脂吸附去除水中的2,4,6-三硝基甲苯

  • 1. 水污染控制技术湖南省重点实验室,湖南省环境保护科学研究院,长沙 410004
基金项目:

摘要: 研究了2种大孔树脂XAD-4和NDA-804对水中的TNT的吸附行为。2种树脂对TNT的吸附等温线表明,温度的升高有利于吸附,在35℃条件下XAD-4树脂与NDA-804树脂对TNT的最高平衡吸附量分别达82.86 mg/g和94.26 mg/g。采用Langmuir方程和Freundlich方程用于吸附等温线的解释,结果表明,吸附等温线更加符合Langmuir模型,相关系数均大于0.99。TNT在2种树脂上的吸附符合准二级动力学方程,TNT初始浓度越低,达到吸附平衡所需时间越短,在1 h内可达到吸附平衡。采用NDA-804处理对TNT废水,废水中TNT浓度由103.58 mg/L降至0. 4 mg/L,去除率达99.6%,吸附后的树脂采用pH=2的乙醇和盐酸的混合液脱附可再生,高浓度再生溶液经蒸馏可回收TNT,实现了废水治理与资源化。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回