-
微塑料是由塑料制品在紫外线、风力及物理破碎作用衍生而来的新型污染物,已受到国内外研究人员的广泛关注[1 − 2]. 近年来,在海洋、河流、湖泊、地下水甚至自来水中均发现了微塑料的存在[3]. 由于其粒径较小,容易被生物误吞,并通过食物链进入到人体[4]. 此外,微塑料由于具有较大的比表面积和疏水性,其还容易吸附环境中的有机污染物和重金属等,所形成的复合污染体会对各种生物产生不同程度的影响[5]. 因此,对环境中的微塑料进行治理尤为重要.
混凝是一种简单、稳定及低成本的处理技术. 然而,由于微塑料密度较低及其粒径变化较大,低剂量混凝剂的水解产物对其吸附架桥和卷扫能力较弱[6]. 为满足较高的微塑料去除效果,通常需投加较大剂量的混凝剂,由此不可避免会存在药剂和色度残留问题等[7]. 因此,为解决上述问题,有必要探索提高混凝过程对微塑料的去除效果的途径. 助凝剂是常用的强化混凝性能的材料之一,其可提高絮体的吸附和沉降能力,从而提高混凝剂对微塑料的去除效果[8]. 如Ma等[9]研究表明,在pH为7时,加入15 mg·L−1聚丙烯酰胺(PAM)后,5 mmol·L−1的AlCl3·6H2O对粒径< 0.5 mm的PE颗粒的去除效率从25.83%提高到45.34%. 但鉴于PAM水解单体的生物毒性,研究者们开始关注具有高生物亲和性和可降解性的天然聚合物,如淀粉、明胶、纤维素衍生物和微生物多糖等[10]. 其中,壳聚糖等多糖具有较高的离子电荷密度和较长的高分子链,还可对水中的微粒起到桥联作用,使其可作为助凝剂,提高传统混凝剂去除水中微粒的效率[11]. 如Huang等[12]研究发现,在常规剂量下,聚合氯化铝(PAC)与壳聚糖(CTS)的复配体系对纯水中PET微塑料的去除率为PAC体系的近3倍,CTS的加入可提升单一PAC混凝体系的电荷中和及吸附作用. Zhao等[13]研究表明,适度添加昆布多糖(LA)可使聚合氯化铝对天然有机物(NOM)的混凝效率提高15%—35%,且与PAM的助凝效果相当.
作为一种重要的藻类资源,LA是一种表面带负电荷的链状聚合物,其具有的线性大分子结构有利于产生架桥效应,与合成混凝剂共同使用过程中起到强化混凝的作用[14]. 此外,LA主要含有C、H和O,元素分布集中,较易预测其在混凝过程中的产物,从而分析其助凝机制[13]. 近年来,研究人员主要关注LA的医用功能[15],其在微塑料混凝中的应用研究较少,为了提高微塑料混凝治理中的生物安全性并保持较高的净化效率,本研究创新性地提出在微塑料混凝处理过程中使用LA作为聚合氯化铝铁(PAFC)的助凝剂.
本文重点研究了LA对PAFC混凝去除PE微塑料的强化性能,评价LA对PAFC混凝去除PE微塑料的强化效果,讨论PAFC及PAFC-LA等不同系统中可能存在的混凝机制,考察PAFC及PAFC-LA等不同系统对不同水质条件的适应性,为微塑料的混凝治理提供技术依据.
昆布多糖-聚合氯化铝铁复配去除水中聚乙烯微塑料
Removal of polyethylene microplastics from water by laminarin-polymeric aluminum iron chloride
-
摘要: 以昆布多糖(LA)作为一种新型助凝剂,考察了其在使用聚合氯化铝铁(PAFC)去除聚乙烯(PE)微塑料时的强化混凝性能,通过Zeta电位、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)对混凝机理进行了研究,结果表明,添加适量的LA可提高PAFC对PE微塑料的混凝效率,当PAFC和LA的投加量分别为150 mg·L−1和20 mg·L−1时,单一PAFC和PAFC-LA对PE微塑料的的去除率分别达到78.4%和95.2%. PAFC和PAFC-LA对PE微塑料的混凝机理是一致的,LA的加入显著改善PAFC的电荷中和、吸附架桥和卷扫絮凝效果. 不同pH、微塑料粒径、共存离子、腐殖酸共存及真实水体效果测试实验表明,PAFC-LA复配混凝系统具有较好的环境适应性.Abstract: Laminarin (LA) was used as a novel coagulant aid to investigate its enhanced coagulation performance in the removal of polyethylene (PE) microplastics using polymeric aluminum ferric chloride (PAFC), and the coagulation mechanism was investigated by zeta potential, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of the appropriate amount of LA could improve the coagulation efficiency of PAFC on PE microplastics. The removal rates of PE microplastics by single PAFC and PAFC-LA reached 78.4% and 95.2% when the dosages of PAFC and LA were 150 mg·L−1 and 20 mg·L−1, respectively. The coagulation mechanisms of PAFC and PAFC-LA on PE microplastics were consistent, and the addition of LA significantly improved the effects of charge neutralization, adsorption bridging and sweeping flocculation of PAFC. Effecting test experiments of pH, microplastic size, coexisting ions, humic acid coexistence and actual water showed that the PAFC-LA compound coagulation system had better environmental adaptability.
-
Key words:
- PAFC /
- laminarin /
- polyethylene /
- microplastics /
- mechanism.
-
-
[1] SUN J, PENG Z T, ZHU Z R, et al. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters[J]. Water Research, 2022, 225: 119116. doi: 10.1016/j.watres.2022.119116 [2] SHOLOKHOVA A, DENAFAS G, MYKHAYLENKO V. Microplastics generation and concentration during mechanical-biological treatment of mixed municipal solid waste[J]. Environmental Research, 2022, 214(Pt 1): 113815. [3] LEUSCH F D, LU H C, PERERA K, et al. Analysis of the literature shows a remarkably consistent relationship between size and abundance of microplastics across different environmental matrices[J]. Environmental Pollution, 2023, 319: 120984. doi: 10.1016/j.envpol.2022.120984 [4] MERRILL G B, HERMABESSIERE L, ROCHMAN C M, et al. Microplastics in marine mammal blubber, melon, & other tissues: Evidence of translocation[J]. Environmental Pollution, 2023, 335: 122252. doi: 10.1016/j.envpol.2023.122252 [5] LV M J, ZHANG T, YA H B, et al. Effects of heavy metals on the adsorption of ciprofloxacin on polyethylene microplastics: Mechanism and toxicity evaluation[J]. Chemosphere, 2023, 315: 137745. doi: 10.1016/j.chemosphere.2023.137745 [6] ZHANG Y J, ZHOU G Y, YUE J P, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids[J]. Science of the Total Environment, 2021, 800: 149589. doi: 10.1016/j.scitotenv.2021.149589 [7] LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation[J]. Environmental Science & Technology, 2020, 54(14): 8719-8727. [8] ZHANG Y T, ZHAO J H, LIU Z Y, et al. Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM[J]. Journal of Water Process Engineering, 2021, 43: 102250. doi: 10.1016/j.jwpe.2021.102250 [9] MA B W, XUE W J, HU C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment[J]. Chemical Engineering Journal, 2019, 359: 159-167. doi: 10.1016/j.cej.2018.11.155 [10] OWODUNNI A A, ISMAIL S. Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—a review[J]. Journal of Water Process Engineering, 2021, 42: 102096. doi: 10.1016/j.jwpe.2021.102096 [11] KARYAB H, GHASEMI M, GHOTBINIA F, et al. Efficiency of chitosan nanoparticle with polyaluminum chloride in dye removal from aqueous solutions: Optimization through response surface methodology (RSM) and central composite design (CCD)[J]. International Journal of Biological Macromolecules, 2023, 249: 125977. doi: 10.1016/j.ijbiomac.2023.125977 [12] HUANG L P, HE W T, ZHANG Y J, et al. Chitosan enhances poly aluminum chloride flocculation system removal of microplastics: Effective, stable, and pollution free[J]. Journal of Water Process Engineering, 2023, 54: 103929. doi: 10.1016/j.jwpe.2023.103929 [13] ZHAO S, ZHANG J G, YANG W H, et al. Application of laminarin as a novel coagulant aid to improve coagulation-ultrafiltration efficiency[J]. Environmental Research, 2023, 228: 115909. doi: 10.1016/j.envres.2023.115909 [14] ZOU Z J, GU Y Q, YANG W H, et al. A modified coagulation-ultrafiltration process for silver nanoparticles removal and membrane fouling mitigation: The role of laminarin[J]. International Journal of Biological Macromolecules, 2021, 172: 241-249. doi: 10.1016/j.ijbiomac.2021.01.034 [15] AN E K, HWANG J, KIM S J, et al. Comparison of the immune activation capacities of fucoidan and laminarin extracted from Laminaria japonica[J]. International Journal of Biological Macromolecules, 2022, 208: 230-242. doi: 10.1016/j.ijbiomac.2022.03.122 [16] ZHOU G Y, WANG Q G, LI J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism[J]. Science of the Total Environment, 2021, 752: 141837. doi: 10.1016/j.scitotenv.2020.141837 [17] YAO J J, PENG Z X, CHEN W F, et al. Surface characteristics of polystyrene microplastics mainly determine their coagulation performances[J]. Marine Pollution Bulletin, 2023, 186: 114347. doi: 10.1016/j.marpolbul.2022.114347 [18] MORIWAKI H, KOMORI N, AKIYAMA Y. Interaction between nanoplastics and pectin, a water-soluble polysaccharide, in the presence of Fe(III) ion[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108054. doi: 10.1016/j.jece.2022.108054 [19] ZHANG Y L, LI M, ZHANG G H, et al. Efficient treatment of the starch wastewater by enhanced flocculation-coagulation of environmentally benign materials[J]. Separation and Purification Technology, 2023, 307: 122788. doi: 10.1016/j.seppur.2022.122788 [20] LEE J, WANG J E, OH Y, et al. Highly efficient microplastics removal from water using in-situ ferrate coagulation: Performance evaluation by micro-Fourier-transformed infrared spectroscopy and coagulation mechanism[J]. Chemical Engineering Journal, 2023, 451: 138556. doi: 10.1016/j.cej.2022.138556 [21] HO T B C, NGUYEN T B, CHEN C W, et al. Influence of aging processes on PE microplastics with various oxidants: Morphology, chemical structure, and adsorption behavior toward tetracycline[J]. Environmental Technology & Innovation, 2023, 31: 103173. [22] NGUYEN T B, HO T B C, HUANG C P, et al. Adsorption of lead(II) onto PE microplastics as a function of particle size: influencing factors and adsorption mechanism[J]. Chemosphere, 2022, 304: 135276. doi: 10.1016/j.chemosphere.2022.135276 [23] WANG Q X, TIAN C H, SHI B Y, et al. Efficiency and mechanism of micro-and nano-plastic removal with polymeric Al-Fe bimetallic coagulants: Role of Fe addition[J]. Journal of Hazardous Materials, 2023, 448: 130978. doi: 10.1016/j.jhazmat.2023.130978 [24] CHENG Y, ZHANG S S, HUANG T L, et al. Effects of coagulants on the catalytic properties of iron-manganese co-oxide filter films for ammonium and manganese removal from surface water[J]. Journal of Cleaner Production, 2020, 242: 118494. doi: 10.1016/j.jclepro.2019.118494 [25] MA J Y, ZHANG R, XIA W, et al. Coagulation performance of Al/Fe based covalently bonded composite coagulants for algae removal[J]. Separation and Purification Technology, 2022, 285: 120401. doi: 10.1016/j.seppur.2021.120401 [26] LV M, CHEN F, ZHANG Z H, et al. Insights on enhanced antibiotic sulfamethoxazole removal by magnetic activated carbon-ballasted coagulation: Efficacy and floc properties[J]. Separation and Purification Technology, 2023, 315: 123643. doi: 10.1016/j.seppur.2023.123643 [27] CHENG Y, XU L J, LIU C L. Red mud-based polyaluminium ferric chloride flocculant: Preparation, characterisation, and flocculation performance[J]. Environmental Technology & Innovation, 2022, 27: 102509. [28] ZHOU L, ZHOU H J, YANG X Y. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment[J]. Separation and Purification Technology, 2019, 210: 93-99. doi: 10.1016/j.seppur.2018.07.089 [29] HE J S, ZHANG Y, NI F, et al. Understanding and characteristics of coagulation removal of composite pollution of microplastic and norfloxacin during water treatment[J]. Science of the Total Environment, 2022, 831: 154826. doi: 10.1016/j.scitotenv.2022.154826 [30] SHAHI N K, MAENG M, KIM D, et al. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand[J]. Process Safety and Environmental Protection, 2020, 141: 9-17. doi: 10.1016/j.psep.2020.05.020 [31] WANG W Y, YANG M, MA H F, et al. Removal behaviors and mechanism of polystyrene microplastics by coagulation/ultrafiltration process: Co-effects of humic acid[J]. Science of the Total Environment, 2023, 881: 163408. doi: 10.1016/j.scitotenv.2023.163408 [32] LIU B B, GAO Y, YUE Q Y, et al. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant (PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation[J]. Water Research, 2023, 232: 119690. doi: 10.1016/j.watres.2023.119690 [33] GE F, ZHU L Z. Effects of coexisting anions on removal of bromide in drinking water by coagulation[J]. Journal of Hazardous Materials, 2008, 151(2/3): 676-681. [34] GONG Y Y, BAI Y, ZHAO D Y, et al. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation[J]. Water Research, 2022, 208: 117884. doi: 10.1016/j.watres.2021.117884