-
水体中的微量元素具有难降解性和较强的生物毒性[1],对人体健康造成不可估量的损伤[2]. 随着采煤活动的不断进行,我国采煤沉陷区域面积逐年递增[3],开采所产生的副产物释放微量元素进入沉陷水体中,对采煤沉陷区的水体及土壤造成严重的生态威胁[4]. 近年来,不少研究发现,采煤沉陷塘出现了微量元素富集现象,如刘旭[5]发现淮南沉陷水体的重金属受煤矸石堆积、公路干道等人为因素影响,导致沉陷塘水体部分点位出现重金属富集现象. 此外,任永乐等[6]发现淮南沉陷塘水体微量元素Cd、Pb、Cu、Ni富集,陈同等[7]对研究发现,淮南潘集采煤沉陷水体底泥中微量元素Cu、Zn、Cd 富集,其中Cd富集程度最高. 以上研究表明,采煤沉陷塘出现了Cd、Pb、Cu、Ni、Zn元素富集,同时,Cd元素在稳沉、非稳沉沉陷塘富集,且富集程度较高.
然而,近年来,不少沉陷塘上铺设了太阳能光伏面板,包括漂浮型和立柱型两大类,如2017年淮南市潘集6000亩采煤沉陷水域上建设的漂浮型光伏电站和李郢孜采煤沉陷水域的立柱型光伏电站. 国际上少数研究表明,光伏电站的建设对水生态环境的影响并不大[8 − 9],甚至从长远看可以实现良性向好发展,但也有研究表明光伏电站的建设降低了沉水植物对浮游植物的竞争力,导致浮游植物生物量的增加和沉水植物量的减少,进而使整个水生态环境恶化[10]. 因此,探究不同类型光伏面板是否对采煤沉陷水域微量元存在不利影响势在必行.
对采煤沉陷塘微量元素的含量特征、形态分布和风险评估等方面进研究的主要方法包括单因子污染指数法[11]、综合污染指数法[12]、内梅罗指数法[13]、相关性分析[14]、主成分分析[15 − 16]和健康风险评价法[17],这些方法对水体微量元素的研究发展具有重要意义. 目前学界对采煤沉陷塘的研究主要集中在微量元素时空变化特征及健康风险评价、来源分析以及水体理化性质和微量元素的相关性分析[15, 17 − 18],对采煤沉陷塘和非沉陷塘微量元素分布特征的研究很少. 因此本研究选取淮南矿区光伏沉陷塘、和无光伏沉陷塘作为研究对象,以淮南市中央公园湖泊(非沉陷塘)作为对照区,分析沉陷塘水体中Cr、Ni、Cd、Pb、Cu、Mn、Zn的浓度分布特征,并运用内梅罗指数法、健康风险评价模型、相关性和聚类分析对水体微量元素进行评价,以期为沉陷塘光伏项目的发展、采煤沉陷塘的综合治理和居民饮水和用水安全提供科学依据.
淮南光伏沉陷塘微量元素变化特征及健康风险评价
Study on the variation characteristics and health risk assessment of trace elements in photovoltaic subsidence ponds in Huainan
-
摘要: 为探究沉陷塘与非沉陷塘、光伏沉陷塘与无光伏沉陷塘、漂浮型光伏沉陷塘与立柱型光伏沉陷塘微量元素污染特征和健康风险的差异,本研究选取对光伏沉陷塘中Cr、Ni、Cd、Pb、Cu、Mn、Zn等7种微量元素进行测试分析,利用相关性和聚类分析,并采用单因子污染指数法、内梅罗指数法和USEPA模型对微量元素进行风险评价. 结果表明,沉陷塘中Cd大于《中国地表水环境质量标准》(GB3838-2002)中Ⅲ类水环境质量标准,最高达11.78 μg·L−1,Cu、Zn浓度最小值分别为13.75 μg·L−1、34.85 μg·L−1,均大于长江河源区背景值3.01 μg·L−1、6.46 μg·L−1,呈现一定富集现象,其中,Zn富集程度较高;与无光伏沉陷塘相比,沉陷塘微量元素浓度较低,没有受到光伏面板材料的影响或光伏面板影响较小,整体表现为:漂浮型光伏电站>立柱型光伏电站>无光伏沉陷塘;单因子指数法和内梅罗指数法发现沉陷塘污染水平整体表现为:立柱光伏沉陷塘>漂浮光伏沉陷塘,光伏沉陷塘>无光伏沉陷塘,沉陷塘>非沉陷塘;相关性和聚类分析显示,漂浮光伏沉陷塘的污染源为冶金化工、汽车排放,立柱光伏沉陷塘的污染源为矿业开采、道路交通、燃煤和农业肥料,无光伏沉陷塘的污染源为工业生产、交通运输和内源污染,非沉陷塘的污染源为工业生产、农业肥料和道路交通;健康风险评价发现沉陷塘中非致癌物质通过饮水摄入途径和皮肤接触途径对成人和儿童造成的非致癌总风险HI均小于1,最大为0.133,处于人体可接受水平,致癌物质Cr、Cd对儿童和成人的致癌风险CR小于1×10−6,认为无致癌风险或致癌风险较低.Abstract: In order to explore the characteristics and health risks of trace elements in subsidence pond, non-subsidence pond, photovoltaic subsidence pond and non-photovoltaic subsidence pond, floating photovoltaic subsidence ponds and pillaring photovoltaic subsidence pond, seven trace elements (Cr, Ni, Cd, Pb, Cu, Mn and Zn) were selected and tested in different subsidence ponds. Correlation and cluster analysis were used to find the sources for the elements. The single factor pollution index, Nemero index and USEPA model were adopted to evaluate the risks of trace elements. Results indicated that Cd concentration in the subsidence pond was higher than level III of China Surface Water Environmental Quality Standard ( GB3838—2002 ), with the highest value of 11.78 μg·L−1. The minimum concentrations of Cu and Zn were 13.75 μg·L−1 and 34.85 μg·L−1, which were higher than 3.01 μg·L−1 and 6.46 μg·L−1 registed in the background values in the source area of the Yangtze River, showing a certain enrichment trend and Zn was highly enriched. Compared with the non-photovoltaic subsidence pond, the trace elements concentrations in the subsidence pond were lower, reflecting non-affection by the photovoltaic panel material or the photovoltaic panel. The overall descending order of the trace elements in subsidence pond is: floating photovoltaic subsidence pond > pillaring photovoltaic subsidence pond > non-photovoltaic subsidence pond. The single factor index and the Nemero index revealed that the overall pollution level followed the order: pillaring photovoltaic subsidence pond > floating photovoltaic subsidence pond, photovoltaic subsidence pond > non-photovoltaic subsidence pond, subsidence pond > non-subsidence pond. Correlation and cluster analysis demonstrated that the pollution sources of floating photovoltaic subsidence ponds were from metallurgical chemical industry and automobile emission, pillaring photovoltaic subsidence ponds from mining, road traffic, coal burning and agricultural fertilizer, non-photovoltaic subsidence ponds from industrial production, transportation and endogenous pollution, non-subsidence ponds from industrial production, agricultural fertilizer and road traffic. The health risk assessment discovered that the total non-carcinogenic risk (HI) of non-carcinogenic substances in the subsidence pond to adults and children via water intake and skin contact was less than 1, with the maximum value was 0.133, which was at acceptable level. The carcinogenic risk (CR) from carcinogens Cr and Cd to children and adults was less than 1×10−6, suggested that there was no carcinogenic risk or low carcinogenic risk.
-
表 1 污染水平平均标准
Table 1. Average pollution level standards
单因子评价标准
Single factor evaluation criteria内梅罗评价标准
Nemerow evaluation criteriaPi 污染水平
Level of pollutantNi 污染水平
Level of pollutantPi≤1 清洁
cleaningNi<1 清洁
cleaning1<Pi≤2 轻度污染
Light pollution1≤Ni<2.5 轻度污染
Light pollution2<Pi≤3 中度污染
Moderate pollution2.5≤Ni<7 中度污染
Moderate pollutionPi>3 重度污染
Heavy pollutionNi≥7 重度污染
Heavy pollution参数
Parameter含义
Implication值
Value单位
UnitCW 微量元素浓度 — mg·L−1 IR 日均饮水摄入量 儿童1.14、成人1.70 L·d−1 EF 暴露频率 350 d·a−1 ED 暴露持续时间 儿童9、成人30 a BW 人群体重 儿童24、成人57 kg AT 平均接触时间 非致癌物30×365、致癌物70×365 d CF 体积转换因子 0.001 L·cm−3 SA 皮肤接触面积 儿童9300、成人16000 cm2 PC 皮肤渗透系数 0.002(Cr)、0.0001(Mn)、0.0006(Zn)、0.0005(Cu)、0.001(Cd)、0.000004(Pb) cm·h−1 ET 暴露时间 0.12 h·d−1 表 3 微量元素RfD和SF参考剂量和致癌系数[6, 14, 24]
Table 3. 2 Reference doses and carcinogenic factors of trace elements RfD and SF
微量元素
Microelement途径
PathwayCr Cd Pb Cu Mn Zn RfD 饮水摄入途径 0.003 0.005 0.0014 0.04 0.046 0.3 皮肤接触途径 0.003 0.005 0.0014 0.012 0.0018 0.01 SF 饮水摄入途径 0.5 6.1 — — — — 皮肤接触途径 0.5 0.38 — — — — “—”表示无参照标准. “—” indicates no reference standard. 表 4 淮南矿区沉陷塘和中央公园非沉陷塘微量元素浓度统计(μg·L−1)
Table 4. Statistics of trace element concentrations in submerged ponds and non-submerged ponds in Central Park in Huainan mining area
Cr Ni Cd Pb Cu Mn Zn 淮南漂浮光伏沉陷塘 19.35 22.35 9.83 0.24 20.63 25.42 222.62 淮南立柱光伏沉陷塘 13.94 17.10 11.78 0.28 13.75 17.93 116.87 淮南无光伏沉陷塘 6.42 32.68 9.73 0.33 14.82 66.65 34.85 淮南中央公园非沉陷塘 6.71 12.13 9.33 0.27 17.12 49.62 45.23 长江河源背景值 12.60 / 0.046 3.18 3.01 50.19 6.46 地表水环境质量标准GB3838-2002 ≤50.00 / ≤5.00 ≤10.00 ≤1000.00 ≤100.00 ≤1000.00 USEPA(2009)标准 — ≤70.00 — — — — — 皖北某矿沉陷区地表水[28] 72.80 60.80 2.10 / 8.60 / 50.60 蒙陕某矿沉陷区地表水[29] 1.11 7.40 / / / / / 山东某矿沉陷区地表水[30] 4.90 / / 129.00 190.00 / / Nowa Ruda沉陷区地表水[31] 15.00 56.00 / / / 87.00 / “—”表示未取参照标准;“/”表示无对应标准. “—”indicates that no reference standard has been taken; “/” indicates that there is no corresponding standard. 表 5 沉陷塘与非沉陷塘微量元素内梅罗指数(Ni)
Table 5. Mero index of trace elements in subsidence ponds
Cr Cd Pb Cu Mn Zn 漂浮光伏 0.44 2.17 0.03 0.02 0.28 0.30 立柱光伏 0.32 2.74 0.05 0.02 0.22 0.14 无光伏 0.19 2.16 0.05 0.02 0.79 0.05 非沉陷塘 0.19 2.07 0.04 0.02 0.60 0.06 表 6 不同类型水体中微量元素的相关性分析
Table 6. Correlation analysis of trace elements in different types of water
区域 元素 Cr Ni Cd Pb Cu Mn Zn 漂浮光伏沉陷塘 Cr 1 Ni 0.019 1 Cd 0.599 0.255 1 Pb 0.944* −0.257 0.394 1 Cu −0.497 0.189 −0.102 −0.666 1 Mn 0.201 −0.366 0.311 0.568 −0.559 1 Zn −0.141 0.221 −0.123 −0.04 −0.037 0.511 1 立柱光伏沉陷塘 Cr 1 Ni −0.506 1 Cd 0.211 −0.498 1 Pb 0.860* −0.275 0.276 1 Cu 0.741 −0.692 −0.103 0.582 1 立柱光伏沉陷塘 Mn 0.032 −0.494 −0.397 −0.114 0.67 1 Zn 0.733 0.011 −0.09 0.713 0.422 −0.284 1 无光伏沉陷塘 Cr 1 Ni −0.174 1 Cd −0.1 0.363 1 Pb 0.302 0.185 0.68 1 Cu 0.634 −0.433 0.034 0.242 1 Mn 0.062 0.171 −0.829* −0.684 −0.338 1 Zn 0.306 0.196 0.512 0.961** 0.304 −0.554 1 非沉陷塘 Cr 1 Ni −0.174 1 Cd −0.06 −0.211 1 Pb −0.08 −0.266 0.11 1 Cu 0.359 −0.707 0.445 0.355 1 Mn −0.622 0.37 −0.201 0.032 −0.057 1 Zn 0.241 −0.314 0.664 0.336 0.183 −0.769 1 * 在 0.05 级别(双尾),相关性显著. ** 在 0.01 级别(双尾),相关性显著. 表 7 微量元素饮水摄入途径和皮肤接触途径非致癌总风险值×
Table 7. Total non-carcinogenic risk values of trace element drinking water intake route and skin contact route
HI 儿童 漂浮光伏沉陷塘 6.35×10−2 立柱光伏沉陷塘 4.91×10−2 无光伏沉陷塘 3.72×10−2 非沉陷塘 3.53×10−2 成人 漂浮光伏沉陷塘 1.33×10−1 立柱光伏沉陷塘 1.03×10−1 无光伏沉陷塘 7.80×10−2 非沉陷塘 7.40×10−2 -
[1] DAVE D, SARMA S, PARMAR P, et al. Microbes as a boon for the bane of heavy metals[J]. Environmental Sustainability, 2020, 3((3): 233-255. [2] 曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 8(2): 221-230. ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology, 2018, 8(2): 221-230 (in Chinese).
[3] 陈用泷, 李思阳, 吴泽璇, 等. 湘江源头某河段水体重金属污染特征与健康风险评价[J]. 环境工程技术学报, 2022, 12(2): 590-596. CHEN Y S, LI S Y, WU Z X, et al. Pollution characteristics and health risk assessment of heavy metals of a certain river in headwater stream of Xiangjiang River[J]. Journal of Environmental Engineering Technology, 2022, 12(2): 590-596 (in Chinese).
[4] 许可. 临涣采煤沉陷区土壤重金属时空分布及迁移转化特征研究[D]. 合肥: 安徽大学, 2021. XU K. Study on the Temporal and Spatial Distribution, Migration and Transformation Characteristics of Soil Heavy Metals in Linhuan Coal Mining Subsidence Area[D]. Hefei: Anhui University, 2021.
[5] 刘旭. 淮南潘集采煤沉陷区重金属分布赋存及生物累积特征研究[D]. 合肥: 安徽大学, 2019. LIU X. Chemical forms and bioaccumulation characteristics of heavy metals in subsidence area of Panji coal mining in Huainan, Anhui Province, China[D]. Hefei: Anhui University, 2019 (in Chinese).
[6] 任永乐, 董少春, 姚素平. 淮南塌陷塘重金属空间分布特征研究[J]. 煤田地质与勘探, 2018, 46(1): 125-134. REN Y L, DONG S C, YAO S P. Spatial distribution characteristics of heavy metals in Huainan subsidence pond[J]. Coal Geology & Exploration, 2018, 46(1): 125-134 (in Chinese).
[7] 陈同, 高良敏, 苏桂荣. 淮南潘集矿区底泥中重金属空间分布特征研究[J]. 绿色科技, 2014(3): 62-63. CHEN T, GAO L M, SU G R. Study on spatial distribution characteristics of heavy metals in sediment of Panji mining area in Huainan[J]. Journal of Green Science and Technology, 2014(3): 62-63 (in Chinese).
[8] LEE I, JOO J C, LEE C S, et al. Evaluation of the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems[J]. Journal of Korean Society of Environmental Engineers, 2017, 39(5): 255-264. doi: 10.4491/KSEE.2017.39.5.255 [9] 宋鑫, 贝耀平, 袁丙青, 等. 水上光伏电站对淮南采煤沉陷积水区水生态环境的影响[J]. 水资源保护, 2022, 38(5): 204-211. SONG X, BEI Y P, YUAN B Q, et al. Influence of floating photovoltaic power plants on water ecological environment in coal mining subsidence water area of Huainan City[J]. Water Resources Protection, 2022, 38(5): 204-211 (in Chinese).
[10] YAMAMICHI M, KAZAMA T, TOKITA K, et al. A shady phytoplankton paradox: When phytoplankton increases under low light[J]. Proceedings. Biological Sciences, 2018, 285(1882): 20181067. [11] 季文光, 李志伟, 许皞. 基于时空变化及分布特征的海域重金属污染评价[J]. 山东农业科学, 2022, 54(8): 104-115. JI W G, LI Z W, XU H. Pollution assessment of heavy metals in sea area based on temporal and spatial variation and distribution characteristics[J]. Shandong Agricultural Sciences, 2022, 54(8): 104-115 (in Chinese).
[12] 马迎群, 时瑶, 秦延文, 等. 浑河上游(清原段)水环境中重金属时空分布及污染评价[J]. 环境科学, 2014, 35(1): 108-116. MA Y Q, SHI Y, QIN Y W, et al. Temporal-spatial distribution and pollution assessment of heavy metals in the upper reaches of Hunhe River(qingyuan section), northeast China[J]. Environmental Science, 2014, 35(1): 108-116 (in Chinese).
[13] 余天智, 刘运涛, 曹地, 等. 沙颍河流域污染控制因素及水体重金属迁移规律研究[J]. 环境工程, 2023, 41(2): 30-36,52. YU T Z, LIU Y T, CAO D, et al. Study on pollution control factors and their influencing laws on heavy metal migration in the shaying river basin[J]. Environmental Engineering, 2023, 41(2): 30-36,52 (in Chinese).
[14] WANG X M, ZHAO Y Y, CHU Z X, et al. Influence of solar photovoltaic system on the concentration and environmental risks of heavy metals in subsidence pond water from coal mining area: A case study from Huainan subsidence pond[J]. Water, 2022, 14(14): 2257. doi: 10.3390/w14142257 [15] 程晓静, 王兴明, 储昭霞, 等. 淮南典型矿区不同塌陷年龄沉陷塘水中微量元素浓度特征及健康风险[J]. 水土保持通报, 2022, 42(2): 74-81,88. doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202011 CHENG X J, WANG X M, CHU Z X, et al. Characteristics of trace element concentration and health risk in subsidence ponds of different subsidence ages in Huainan mining area[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 74-81,88 (in Chinese). doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202011
[16] 程晓静. 水面光伏对采煤沉陷塘水环境质量和浮游植物群落结构的影响研究[D]. 淮南: 安徽理工大学, 2022. CHENG X J. Effects of photovoltaic power stations on water environmental quality and phytoplankton community structure in coal mining subsidence ponds[D]. Huainan: Anhui University of Science & Technology, 2022 (in Chinese).
[17] 安士凯, 赵琦, 姜春露, 等. 淮南采煤沉陷区积水重金属健康风险评价[J]. 中国矿业, 2020, 29(增刊2): 88-93. AN S K, ZHAO Q, JIANG C L, et al. Health risk assessment of heavy metals in waterlogging areas in Huainan coal mining area[J]. China Mining Magazine, 2020, 29(Sup 2): 88-93 (in Chinese).
[18] 刘响响, 程桦, 郑刘根, 等. 淮南采煤沉陷水体中氮磷的分布特征及环境意义[J]. 中国科学技术大学学报, 2014, 44(11): 926-932. LIU X X, CHENG H, ZHENG L G, et al. Distribution characteristics and environmental significance of nitrogen and phosphorus in the Huainan coal mining subsidence area[J]. Journal of University of Science and Technology of China, 2014, 44(11): 926-932 (in Chinese).
[19] 杨林, 李慧, 耿艳, 等. 淮南矿区煤中氟含量分布规律及其赋存形态研究[J]. 煤质技术, 2019, 34(2): 1-4,15. YANG L, LI H, GENG Y, et al. Study on distribution rule of fluorine and its mode of occurrence in the coal samples collected from Huainan coal mining area[J]. Coal Quality Technology, 2019, 34(2): 1-4,15 (in Chinese).
[20] 童格军, 庞建勇, 姜子亮, 等. “两淮”高潜水位采煤沉陷区生态修复治理探究[J]. 建井技术, 2022, 43(5): 43-48. TONG G J, PANG J Y, JIANG Z L, et al. Exploration on ecological restoration and control of coal mining subsidence area with high potential water level in “Huainan and Huaibei”[J]. Mine Construction Technology, 2022, 43(5): 43-48 (in Chinese).
[21] 张维翔, 姜春露, 郑刘根, 等. 淮南采煤沉陷区积水中氮、磷分布特征及变化趋势[J]. 环境工程, 2019, 37(9): 62-67,73. ZHANG W X, JIANG C L, ZHENG L G, et al. Distribution characteristics and trends of nitrogen and phosphorus in subsidence water of Huainan coal mining area[J]. Environmental Engineering, 2019, 37(9): 62-67,73 (in Chinese).
[22] 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价: 基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. NING W J, XIE X M, YAN L P. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results[J]. Earth Science Frontiers, 2023, 30(4): 470-484 (in Chinese).
[23] DUAN X , ZHAO X , WANG B , ET AL. Highlights of the chinese exposure factors handbook[M]. Amsterdam: Elsevier, 2015. [24] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021, 42(9): 4246-4256. SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou peninsula[J]. Environmental Science, 2021, 42(9): 4246-4256 (in Chinese).
[25] 张立成, 董文江, 王李平. 长江水系河水的地球化学特征[J]. 地理学报, 1992, 47(3): 220-232. ZHANG L C, DONG W J, WANG L P. The geochemical characteristics of the water in the Changjiang River system[J]. Acta Geographica Sinica, 1992, 47(3): 220-232 (in Chinese).
[26] 蒋超, 燕文明, 何翔宇, 等. 变化水文条件下高原河流微量元素的分布及溯源[J]. 水电能源科学, 2023, 41(1): 55-58,5. JIANG C, YAN W M, HE X Y, et al. Distribution characteristics and source analysis of trace elements in plateau rivers under variable hydrological conditions[J]. Water Resources and Power, 2023, 41(1): 55-58,5 (in Chinese).
[27] 李玉斌, 冯流, 刘征涛, 等. 中国主要淡水湖泊沉积物中重金属生态风险研究[J]. 环境科学与技术, 2012, 35(2): 200-205. LI Y B, FENG L, LIU Z T, et al. Ecological risk assessment of sediment heavy metals in main lakes of China[J]. Environmental Science & Technology, 2012, 35(2): 200-205 (in Chinese).
[28] 刘朝发, 冯银炉, 方刘兵, 等. 皖北某矿沉陷区地表水与浅层地下水重金属含量特征及影响因素[J]. 环境科技, 2018, 31(4): 44-49. LIU C F, FENG Y L, FANG L B, et al. Heavy metals characteristics and its influencing factors of surface water and shallow groundwater in mining subsidence area in the northern of Anhui Province[J]. Environmental Science and Technology, 2018, 31(4): 44-49 (in Chinese).
[29] 蔡月, 李小平, 赵亚楠, 等. 蒙陕大型煤矿开采区水质化学特征与健康风险[J]. 生态学杂志, 2018, 37(2): 482-491. CAI Y, LI X P, ZHAO Y N, et al. Chemical characteristics and health risk assessment of groundwater from large coalmining area in Shaanxi and Inner Mongolia of China[J]. Chinese Journal of Ecology, 2018, 37(2): 482-491 (in Chinese).
[30] 王文军, 张璟, 张春芝, 等. 济宁市采煤塌陷区水体重金属含量及煤、煤矸石淋溶试验研究[J]. 中国卫生检验杂志, 2013, 23(5): 1142-1144. WANG W J, ZHANG J, ZHANG C Z, et al. Study on heavy metals content in coal-mining subsided area and leaching experiment of coal, coal gangue in Jining[J]. Chinese Journal of Health Laboratory Technology, 2013, 23(5): 1142-1144 (in Chinese).
[31] CHUDY K, MARSZAŁEK H, KIERCZAK J. Impact of hard-coal waste dump on water quality—a case study of Ludwikowice Kłodzkie (Nowa Ruda Coalfield, SW Poland)[J]. Journal of Geochemical Exploration, 2014, 146: 127-135. doi: 10.1016/j.gexplo.2014.08.011 [32] SANTANA C S, MONTALVÁN OLIVARES D M, SILVA V H C, et al. Assessment of water resources pollution associated with mining activity in a semi-arid region[J]. Journal of Environmental Management, 2020, 273: 111148. doi: 10.1016/j.jenvman.2020.111148 [33] 黄冠星, 孙继朝, 张英, 等. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. 吉林大学学报(地球科学版), 2011, 41(1): 228-234. HUANG G X, SUN J C, ZHANG Y, et al. Content and relationship of heavy metals in groundwater of sewage irrigation area in Pearl River Delta[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 228-234 (in Chinese).
[34] 任静华, 范健, 何培良, 等. 典型工矿企业周边农田土壤重金属污染评价及来源解析[J]. 环境污染与防治, 2023, 45(6): 855-861,869. REN J H, FAN J, HE P L, et al. Pollution characteristics and source apportionment of heavy metals in soils around a typical industrial enterprises[J]. Environmental Pollution & Control, 2023, 45(6): 855-861,869 (in Chinese)
[35] HAO Y C, GUO Z G, YANG Z S, et al. Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China[J]. Atmospheric Research, 2007, 85(1): 27-37. doi: 10.1016/j.atmosres.2006.11.001 [36] 张松, 郑刘根, 陈永春, 等. 淮南矿区道路环境大气颗粒物重金属污染特征及来源解析[J]. 环境污染与防治, 2020, 42(7): 912-916,928. ZHANG S, ZHENG L G, CHEN Y C, et al. Characteristics and source apportionment of heavy metals in atmospheric particles at the roadside of Huainan mining area[J]. Environmental Pollution & Control, 2020, 42(7): 912-916,928 (in Chinese)
[37] 黄文丹. 我国饮用水水源地锰超标原因及防控对策研究进展[J]. 能源与环境, 2018(6): 57-58. HUANG W D. Research progress on the causes of manganese exceeding the standard in drinking water sources in China and its prevention and control countermeasures[J]. Energy and Environment, 2018(6): 57-58 (in Chinese).
[38] 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. WANG L X, DU Z W, FENG L, et al. Eco-environmental risk assessment of urban sludge application in forest land[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1092-1102 (in Chinese).
[39] JIANG H H, CAI L M, HU G C, et al. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111489. doi: 10.1016/j.ecoenv.2020.111489 [40] 黄宏伟, 肖河, 王敦球, 等. 漓江流域水体中重金属污染特征及健康风险评价[J]. 环境科学, 2021, 42(4): 1714-1723. HUANG H W, XIAO H, WANG D Q, et al. Pollution characteristics and health risk assessment of heavy metals in the water of Lijiang River Basin[J]. Environmental Science, 2021, 42(4): 1714-1723 (in Chinese).
[41] 郑建成, 王育兵. 我国饮用水健康风险评价的研究进展[J]. 总装备部医学学报, 2015, 17(2): 127-130. ZHENG J C, WANG Y B. Research progress on health risk assessment of drinking water in China[J]. Medical Journal of General Equipment Headquarters, 2015, 17(2): 127-130 (in Chinese).