[1] DAVE D, SARMA S, PARMAR P, et al. Microbes as a boon for the bane of heavy metals[J]. Environmental Sustainability, 2020, 3((3): 233-255.
[2] 曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 8(2): 221-230. ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology, 2018, 8(2): 221-230 (in Chinese).
[3] 陈用泷, 李思阳, 吴泽璇, 等. 湘江源头某河段水体重金属污染特征与健康风险评价[J]. 环境工程技术学报, 2022, 12(2): 590-596. CHEN Y S, LI S Y, WU Z X, et al. Pollution characteristics and health risk assessment of heavy metals of a certain river in headwater stream of Xiangjiang River[J]. Journal of Environmental Engineering Technology, 2022, 12(2): 590-596 (in Chinese).
[4] 许可. 临涣采煤沉陷区土壤重金属时空分布及迁移转化特征研究[D]. 合肥: 安徽大学, 2021. XU K. Study on the Temporal and Spatial Distribution, Migration and Transformation Characteristics of Soil Heavy Metals in Linhuan Coal Mining Subsidence Area[D]. Hefei: Anhui University, 2021.
[5] 刘旭. 淮南潘集采煤沉陷区重金属分布赋存及生物累积特征研究[D]. 合肥: 安徽大学, 2019. LIU X. Chemical forms and bioaccumulation characteristics of heavy metals in subsidence area of Panji coal mining in Huainan, Anhui Province, China[D]. Hefei: Anhui University, 2019 (in Chinese).
[6] 任永乐, 董少春, 姚素平. 淮南塌陷塘重金属空间分布特征研究[J]. 煤田地质与勘探, 2018, 46(1): 125-134. REN Y L, DONG S C, YAO S P. Spatial distribution characteristics of heavy metals in Huainan subsidence pond[J]. Coal Geology & Exploration, 2018, 46(1): 125-134 (in Chinese).
[7] 陈同, 高良敏, 苏桂荣. 淮南潘集矿区底泥中重金属空间分布特征研究[J]. 绿色科技, 2014(3): 62-63. CHEN T, GAO L M, SU G R. Study on spatial distribution characteristics of heavy metals in sediment of Panji mining area in Huainan[J]. Journal of Green Science and Technology, 2014(3): 62-63 (in Chinese).
[8] LEE I, JOO J C, LEE C S, et al. Evaluation of the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems[J]. Journal of Korean Society of Environmental Engineers, 2017, 39(5): 255-264. doi: 10.4491/KSEE.2017.39.5.255
[9] 宋鑫, 贝耀平, 袁丙青, 等. 水上光伏电站对淮南采煤沉陷积水区水生态环境的影响[J]. 水资源保护, 2022, 38(5): 204-211. SONG X, BEI Y P, YUAN B Q, et al. Influence of floating photovoltaic power plants on water ecological environment in coal mining subsidence water area of Huainan City[J]. Water Resources Protection, 2022, 38(5): 204-211 (in Chinese).
[10] YAMAMICHI M, KAZAMA T, TOKITA K, et al. A shady phytoplankton paradox: When phytoplankton increases under low light[J]. Proceedings. Biological Sciences, 2018, 285(1882): 20181067.
[11] 季文光, 李志伟, 许皞. 基于时空变化及分布特征的海域重金属污染评价[J]. 山东农业科学, 2022, 54(8): 104-115. JI W G, LI Z W, XU H. Pollution assessment of heavy metals in sea area based on temporal and spatial variation and distribution characteristics[J]. Shandong Agricultural Sciences, 2022, 54(8): 104-115 (in Chinese).
[12] 马迎群, 时瑶, 秦延文, 等. 浑河上游(清原段)水环境中重金属时空分布及污染评价[J]. 环境科学, 2014, 35(1): 108-116. MA Y Q, SHI Y, QIN Y W, et al. Temporal-spatial distribution and pollution assessment of heavy metals in the upper reaches of Hunhe River(qingyuan section), northeast China[J]. Environmental Science, 2014, 35(1): 108-116 (in Chinese).
[13] 余天智, 刘运涛, 曹地, 等. 沙颍河流域污染控制因素及水体重金属迁移规律研究[J]. 环境工程, 2023, 41(2): 30-36,52. YU T Z, LIU Y T, CAO D, et al. Study on pollution control factors and their influencing laws on heavy metal migration in the shaying river basin[J]. Environmental Engineering, 2023, 41(2): 30-36,52 (in Chinese).
[14] WANG X M, ZHAO Y Y, CHU Z X, et al. Influence of solar photovoltaic system on the concentration and environmental risks of heavy metals in subsidence pond water from coal mining area: A case study from Huainan subsidence pond[J]. Water, 2022, 14(14): 2257. doi: 10.3390/w14142257
[15] 程晓静, 王兴明, 储昭霞, 等. 淮南典型矿区不同塌陷年龄沉陷塘水中微量元素浓度特征及健康风险[J]. 水土保持通报, 2022, 42(2): 74-81,88. doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202011 CHENG X J, WANG X M, CHU Z X, et al. Characteristics of trace element concentration and health risk in subsidence ponds of different subsidence ages in Huainan mining area[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 74-81,88 (in Chinese). doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202011
[16] 程晓静. 水面光伏对采煤沉陷塘水环境质量和浮游植物群落结构的影响研究[D]. 淮南: 安徽理工大学, 2022. CHENG X J. Effects of photovoltaic power stations on water environmental quality and phytoplankton community structure in coal mining subsidence ponds[D]. Huainan: Anhui University of Science & Technology, 2022 (in Chinese).
[17] 安士凯, 赵琦, 姜春露, 等. 淮南采煤沉陷区积水重金属健康风险评价[J]. 中国矿业, 2020, 29(增刊2): 88-93. AN S K, ZHAO Q, JIANG C L, et al. Health risk assessment of heavy metals in waterlogging areas in Huainan coal mining area[J]. China Mining Magazine, 2020, 29(Sup 2): 88-93 (in Chinese).
[18] 刘响响, 程桦, 郑刘根, 等. 淮南采煤沉陷水体中氮磷的分布特征及环境意义[J]. 中国科学技术大学学报, 2014, 44(11): 926-932. LIU X X, CHENG H, ZHENG L G, et al. Distribution characteristics and environmental significance of nitrogen and phosphorus in the Huainan coal mining subsidence area[J]. Journal of University of Science and Technology of China, 2014, 44(11): 926-932 (in Chinese).
[19] 杨林, 李慧, 耿艳, 等. 淮南矿区煤中氟含量分布规律及其赋存形态研究[J]. 煤质技术, 2019, 34(2): 1-4,15. YANG L, LI H, GENG Y, et al. Study on distribution rule of fluorine and its mode of occurrence in the coal samples collected from Huainan coal mining area[J]. Coal Quality Technology, 2019, 34(2): 1-4,15 (in Chinese).
[20] 童格军, 庞建勇, 姜子亮, 等. “两淮”高潜水位采煤沉陷区生态修复治理探究[J]. 建井技术, 2022, 43(5): 43-48. TONG G J, PANG J Y, JIANG Z L, et al. Exploration on ecological restoration and control of coal mining subsidence area with high potential water level in “Huainan and Huaibei”[J]. Mine Construction Technology, 2022, 43(5): 43-48 (in Chinese).
[21] 张维翔, 姜春露, 郑刘根, 等. 淮南采煤沉陷区积水中氮、磷分布特征及变化趋势[J]. 环境工程, 2019, 37(9): 62-67,73. ZHANG W X, JIANG C L, ZHENG L G, et al. Distribution characteristics and trends of nitrogen and phosphorus in subsidence water of Huainan coal mining area[J]. Environmental Engineering, 2019, 37(9): 62-67,73 (in Chinese).
[22] 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价: 基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. NING W J, XIE X M, YAN L P. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results[J]. Earth Science Frontiers, 2023, 30(4): 470-484 (in Chinese).
[23] DUAN X , ZHAO X , WANG B , ET AL. Highlights of the chinese exposure factors handbook[M]. Amsterdam: Elsevier, 2015.
[24] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021, 42(9): 4246-4256. SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou peninsula[J]. Environmental Science, 2021, 42(9): 4246-4256 (in Chinese).
[25] 张立成, 董文江, 王李平. 长江水系河水的地球化学特征[J]. 地理学报, 1992, 47(3): 220-232. ZHANG L C, DONG W J, WANG L P. The geochemical characteristics of the water in the Changjiang River system[J]. Acta Geographica Sinica, 1992, 47(3): 220-232 (in Chinese).
[26] 蒋超, 燕文明, 何翔宇, 等. 变化水文条件下高原河流微量元素的分布及溯源[J]. 水电能源科学, 2023, 41(1): 55-58,5. JIANG C, YAN W M, HE X Y, et al. Distribution characteristics and source analysis of trace elements in plateau rivers under variable hydrological conditions[J]. Water Resources and Power, 2023, 41(1): 55-58,5 (in Chinese).
[27] 李玉斌, 冯流, 刘征涛, 等. 中国主要淡水湖泊沉积物中重金属生态风险研究[J]. 环境科学与技术, 2012, 35(2): 200-205. LI Y B, FENG L, LIU Z T, et al. Ecological risk assessment of sediment heavy metals in main lakes of China[J]. Environmental Science & Technology, 2012, 35(2): 200-205 (in Chinese).
[28] 刘朝发, 冯银炉, 方刘兵, 等. 皖北某矿沉陷区地表水与浅层地下水重金属含量特征及影响因素[J]. 环境科技, 2018, 31(4): 44-49. LIU C F, FENG Y L, FANG L B, et al. Heavy metals characteristics and its influencing factors of surface water and shallow groundwater in mining subsidence area in the northern of Anhui Province[J]. Environmental Science and Technology, 2018, 31(4): 44-49 (in Chinese).
[29] 蔡月, 李小平, 赵亚楠, 等. 蒙陕大型煤矿开采区水质化学特征与健康风险[J]. 生态学杂志, 2018, 37(2): 482-491. CAI Y, LI X P, ZHAO Y N, et al. Chemical characteristics and health risk assessment of groundwater from large coalmining area in Shaanxi and Inner Mongolia of China[J]. Chinese Journal of Ecology, 2018, 37(2): 482-491 (in Chinese).
[30] 王文军, 张璟, 张春芝, 等. 济宁市采煤塌陷区水体重金属含量及煤、煤矸石淋溶试验研究[J]. 中国卫生检验杂志, 2013, 23(5): 1142-1144. WANG W J, ZHANG J, ZHANG C Z, et al. Study on heavy metals content in coal-mining subsided area and leaching experiment of coal, coal gangue in Jining[J]. Chinese Journal of Health Laboratory Technology, 2013, 23(5): 1142-1144 (in Chinese).
[31] CHUDY K, MARSZAŁEK H, KIERCZAK J. Impact of hard-coal waste dump on water quality—a case study of Ludwikowice Kłodzkie (Nowa Ruda Coalfield, SW Poland)[J]. Journal of Geochemical Exploration, 2014, 146: 127-135. doi: 10.1016/j.gexplo.2014.08.011
[32] SANTANA C S, MONTALVÁN OLIVARES D M, SILVA V H C, et al. Assessment of water resources pollution associated with mining activity in a semi-arid region[J]. Journal of Environmental Management, 2020, 273: 111148. doi: 10.1016/j.jenvman.2020.111148
[33] 黄冠星, 孙继朝, 张英, 等. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. 吉林大学学报(地球科学版), 2011, 41(1): 228-234. HUANG G X, SUN J C, ZHANG Y, et al. Content and relationship of heavy metals in groundwater of sewage irrigation area in Pearl River Delta[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 228-234 (in Chinese).
[34] 任静华, 范健, 何培良, 等. 典型工矿企业周边农田土壤重金属污染评价及来源解析[J]. 环境污染与防治, 2023, 45(6): 855-861,869. REN J H, FAN J, HE P L, et al. Pollution characteristics and source apportionment of heavy metals in soils around a typical industrial enterprises[J]. Environmental Pollution & Control, 2023, 45(6): 855-861,869 (in Chinese)
[35] HAO Y C, GUO Z G, YANG Z S, et al. Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China[J]. Atmospheric Research, 2007, 85(1): 27-37. doi: 10.1016/j.atmosres.2006.11.001
[36] 张松, 郑刘根, 陈永春, 等. 淮南矿区道路环境大气颗粒物重金属污染特征及来源解析[J]. 环境污染与防治, 2020, 42(7): 912-916,928. ZHANG S, ZHENG L G, CHEN Y C, et al. Characteristics and source apportionment of heavy metals in atmospheric particles at the roadside of Huainan mining area[J]. Environmental Pollution & Control, 2020, 42(7): 912-916,928 (in Chinese)
[37] 黄文丹. 我国饮用水水源地锰超标原因及防控对策研究进展[J]. 能源与环境, 2018(6): 57-58. HUANG W D. Research progress on the causes of manganese exceeding the standard in drinking water sources in China and its prevention and control countermeasures[J]. Energy and Environment, 2018(6): 57-58 (in Chinese).
[38] 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. WANG L X, DU Z W, FENG L, et al. Eco-environmental risk assessment of urban sludge application in forest land[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1092-1102 (in Chinese).
[39] JIANG H H, CAI L M, HU G C, et al. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111489. doi: 10.1016/j.ecoenv.2020.111489
[40] 黄宏伟, 肖河, 王敦球, 等. 漓江流域水体中重金属污染特征及健康风险评价[J]. 环境科学, 2021, 42(4): 1714-1723. HUANG H W, XIAO H, WANG D Q, et al. Pollution characteristics and health risk assessment of heavy metals in the water of Lijiang River Basin[J]. Environmental Science, 2021, 42(4): 1714-1723 (in Chinese).
[41] 郑建成, 王育兵. 我国饮用水健康风险评价的研究进展[J]. 总装备部医学学报, 2015, 17(2): 127-130. ZHENG J C, WANG Y B. Research progress on health risk assessment of drinking water in China[J]. Medical Journal of General Equipment Headquarters, 2015, 17(2): 127-130 (in Chinese).