-
土壤是生态系统的主要媒介,也是人类赖以为生的重要基础,土壤污染问题一直受到高度关注[1]. 随着经济的不断发展,土壤污染问题日益加剧[2],其中有色金属开采及加工是主要的污染来源之一[3-5]. 土壤重金属污染具有显著的潜伏性、不可逆性、持久性等典型特征[6-7],通过各种途径进入土壤中并随之积累,最终随着食物链进入人体和生物体内,对人体健康和生态安全形成威胁. 因此,精确、全面、高效地评价土壤重金属的污染情况、查明污染源,对于矿区及其周围土壤污染防治具有重要意义[8-10].
目前,相关研究主要针对重金属污染评价、空间分布规律、污染源分析和修复治理等方面[10-17]. 重金属污染来源分析包括源识别及源解析两类,主要包括因子分析法(FA)、主成分分析法(PCA)、化学质量平衡模型法(CMB)、主成分多元线性回归法(APCS-MLR)、正定矩形因子分解法(PMF)、主成分/绝对主成分分数法(PCA/APCS)和UNMIX模型法等[18-19]. 其中PMF模型[20-21]由于无需构建污染源成分谱,且能对因子分解矩阵进行非负约束,近年来已被广泛用于土壤污染源解析. 张扣扣等[22]采用IDW插值、空间统计分析及PMF模型对某矿区周边土壤重金属污染分析表明:重金属污染区域主要集中在采矿区、选矿区和种植区,主要污染来源为矿业活动和农业活动. 陈航等[23]对铜山矿区周边农田土壤污染分析表明土壤重金属主要来自于矿业开发排放、农业活动、自然母质和化石燃烧释放. 有色金属开采及其相关工业活动对周围土壤重金属含量影响较大,通常存在多种重金属复合污染情况,对区域生态环境造成不良影响. 因此,针对重点区域开展土壤重金属污染调查、来源解析及土壤修复治理相关研究是十分有必要的.
本文以云南某铜选冶厂周边农田土壤为研究对象,将污染评价、空间分析及PMF模型相结合,综合分析研究区土壤重金属分布特征及来源,评估土壤重金属的污染程度及所存在的环境风险,以对类似农田土壤重金属污染研究及后续治理修复提供参考.
铜选冶厂周边农田土壤重金属污染特征及来源解析
Analysis of heavy metal contamination characteristics and sources in farmland soil around copper dressing and smelting plant
-
摘要: 为分析云南某铜选冶厂周边农田土壤重金属污染特征及来源,通过测定农田土壤中重金属(Cu、Zn、Cr、Ni、Pb、Cd、As、Hg)的含量,采用污染负荷指数、地累积指数及潜在生态危害指数法评价农田土壤重金属污染特征,并结合相关性分析和PMF模型对土壤重金属来源进行分析. 结果表明:研究区土壤中Cr、As、Pb、Hg 4种重金属元素的平均含量均高于云南省土壤背景值;污染负荷指数处于轻微污染;地累积指数中As(0.92)>Hg(−0.05)>Cr(−0.41)>Pb(−0.52)>Cu(−1.05)>Zn(−1.20)>Ni(−1.21)>Cd(−3.23),As元素属于轻度累积,其余重金属均为无累积;潜在生态风险单项指数中除Hg元素达到中等生态风险,其余7种重金属元素均为轻微生态风险,研究区整体处于轻微生态风险. 土壤重金属来源分析中PMF模型解析5个因子,贡献率分别为14.8%、16.1%、15.3%、26.6%和27.2%. 其中As元素主要为工业活动源,Cu、Zn、Cr、Ni元素主要为土壤成土母质源、Cd元素主要为农业活动源、Pb元素主要为交通源、Hg元素主要为化石燃料源.Abstract: To analyze the characteristics and sources of heavy metal pollution in farmland soils around a copper dressing and smelting plant in Yunnan, the content of heavy metals (Cu, Zn, Cr, Ni, Pb, Cd, As, Hg) in farmland soils was measured, and the pollution load index, ground accumulation index and potential ecological hazard index methods were used to evaluate the characteristics of heavy metal pollution in farmland soils, and the sources of soil heavy metals were analyzed by combining correlation analysis and PMF model.The results show that the average contents of Cr, As, Pb and Hg in the soils of the study area are higher than the background values of soils in Yunnan Province; the pollution load index is slightly polluted; the geoaccumulation index is As (0.92) > Hg (−0.05) > Cr (−0.41) > Pb (−0.52) > Cu (−1.05) > Zn (−1.20) > Ni (−1.21)>Cd (−3.23), the element As belongs to light accumulation, and the rest of heavy metals are non-accumulative; among the potential ecological risk single index, except for the element Hg, which reaches medium ecological risk, the other seven heavy metals are all at slight ecological risk, and the study area as a whole is at slight ecological risk. The PMF model analyzed five factors in the analysis of soil heavy metal sources, with contributions of 14.8%, 16.1%, 15.3%, 26.6% and 27.2%, respectively. Among them, element As is mainly the source of industrial activities, Cu, Zn, Cr and Ni are mainly the sources of soil-forming parent material, Cd is mainly the source of agricultural activities, Pb is mainly the source of traffic, and Hg is mainly the source of fossil fuels.
-
Key words:
- copper dressing and smelting plant /
- farmland /
- heavy metals /
- pollution assessment /
- PMF model
-
表 1 污染负荷指数分级
Table 1. Pollution load index classification
Pi 等级
GradePLI 等级
GradePi<0.7 无污染 PLI<0.7 无污染 0.7≤Pi <1 轻微污染 0.7≤PLI<1 轻微污染 1≤Pi <2 轻度污染 1≤PLI<2 轻度污染 2≤Pi <3 中度污染 2≤PLI<3 中度污染 Pi≥3 重度污染 PLI≥3 重度污染 表 2 地累积指数分级
Table 2. Classification of the geoaccumulation index
Igeo Igeo<0 0≤Igeo<1 1≤Igeo<2 2≤Igeo<3 3≤Igeo<4 4≤Igeo<5 Igeo≥5 等级 无累积 轻度累积 偏中度累积 中度累积 偏重度累积 重度累积 严重累积 表 3 单项潜在生态风险指数(Ei)和综合潜在生态风险指数(RI)分级
Table 3. Classification of individual potential ecological risk index (Ei) and comprehensive potential ecological risk index (RI)
Ei 风险等级
Risk levelRI 风险等级
Risk levelEi<40 轻微 RI<150 轻微 40≤Ei<80 中等 150≤RI<300 中等 80≤Ei<160 强 300≤RI<600 强 160≤Ei<320 很强 RI≥600 很强 Ei≥320 极强 表 4 重金属含量统计表
Table 4. Statistical table of heavy metal content (mg·kg−1)
采样深度
Sampling
depth元素
Element均值
Mean
value最小值
Minimum
value最大值
Maximum
value标准差
Standard
deviation变异系数
Coefficient of
variation偏度
Skewness峰度
Kurtosis背景值
Background
value筛选值
Filter
value0—0.2 m Cu 37.03 18.00 190.00 21.10 0.57 5.28 37.09 46.30 50.00 Zn 59.02 23.00 145.00 17.87 0.30 1.82 6.94 89.70 200.00 Cr 78.91 8.00 163.00 33.71 0.43 0.13 −0.57 65.20 150.00 Ni 29.63 5.00 55.00 13.01 0.44 −0.02 −1.15 42.50 60.00 Pb 43.80 11.30 94.30 13.83 0.32 1.18 2.82 40.60 70.00 Cd 0.09 0.01 2.60 0.30 3.18 8.08 68.33 0.22 0.30 As 55.86 6.99 163.00 24.34 0.44 1.18 3.95 18.40 40.00 Hg 0.09 0.02 0.32 0.04 0.46 2.13 9.96 0.06 1.30 0.3—0.5 m Cu 34.88 18.00 63.00 10.93 0.31 0.56 −0.07 46.30 50.00 Zn 63.41 30.00 159.00 23.48 0.37 2.56 7.61 89.70 200.00 Cr 84.03 21.00 165.00 33.73 0.40 0.30 −0.44 65.20 150.00 Ni 32.08 9.00 57.00 13.47 0.42 −0.04 −1.21 42.50 60.00 Pb 45.38 17.30 128.00 14.94 0.33 2.44 11.70 40.60 70.00 Cd 0.04 0.01 0.18 0.04 0.93 1.47 1.51 0.22 0.30 As 62.74 3.86 178.00 32.15 0.51 1.32 3.01 18.40 40.00 Hg 0.09 0.02 0.23 0.04 0.45 0.93 1.84 0.06 1.30 表 5 重金属元素相关性系数矩阵
Table 5. Correlation coefficient matrix of heavy metal elements
Cu Zn Cr Ni Pb Cd As Hg Cu 1.00 Zn 0.72** 1.00 Cr 0.72** 0.75** 1.00 Ni 0.66** 0.72** 0.85** 1.00 Pb 0.30* 0.22 0.15 -0.10 1.00 Cd 0.19 0.12 -0.03 -0.13 0.26 1.00 As 0.43** 0.51** 0.47** 0.48** 0.29 -0.15 1.00 Hg 0.32* 0.30* 0.15 0.30* -0.22 -0.02 0.09 1.00 **在0.01(双侧),相关性极显著;*在0.05(双侧),相关性显著.
**At 0.01 (bilateral), the correlation is extremely significant; * At 0.05 (bilateral), the correlation is significant.表 6 土壤重金属污染PMF模型源解析结果
Table 6. Source analysis results of PMF model of soil heavy metal pollution
F1 F2 F3 F4 F5 R2 Cu 4.1 16.9 12.7 38.6 27.7 0.92 Zn 12.2 26.2 4.1 30.3 27.2 0.72 Cr — 17.0 2.5 55.1 25.4 0.86 Ni 3.4 — 0.8 62.0 33.8 0.83 Pb 15.1 62.0 4.0 — 19.0 0.99 Cd — — 94.3 — 5.7 0.99 As 62.9 5.9 4.3 26.8 — 1.00 Hg 20.3 0.9 — — 78.8 0.99 -
[1] 成晓梦, 孙彬彬, 吴超, 等. 浙中典型硫铁矿区农田土壤重金属含量特征及健康风险 [J]. 环境科学, 2022, 43(1): 442-453. doi: 10.13227/j.hjkx.202102161 CHENG X M, SUN B B, WU C, et al. Heavy metal concentration characteristics and health risks of farmland soils in typical pyrite mining area of the central Zhejiang Province, China [J]. Environmental Science, 2022, 43(1): 442-453(in Chinese). doi: 10.13227/j.hjkx.202102161
[2] 李志涛, 王夏晖, 何俊, 等. 四川省江安县某硫铁矿区周边农田土壤重金属来源解析及污染评价 [J]. 农业环境科学学报, 2019, 38(6): 1272-1279. doi: 10.11654/jaes.2018-1076 LI Z T, WANG X H, HE J, et al. Source identification and pollution assessment of heavy metals in farmland soils around a pyrite mining area in Jiang’an County, Sichuan Province, China [J]. Journal of Agro-Environment Science, 2019, 38(6): 1272-1279(in Chinese). doi: 10.11654/jaes.2018-1076
[3] 秦旭芝, 罗志祥, 季文兵, 等. 桂西北地质高背景区有色金属冶炼对周边土壤重金属污染与生态风险评价 [J]. 生态学杂志, 2021, 40(8): 2324-2333. doi: 10.13292/j.1000-4890.202108.012 QIN X Z, LUO Z X, JI W B, et al. Pollution and ecological risk assessment of heavy metals in surrounding soil by nonferrous metal smelting with high geological background in Northwest Guangxi [J]. Chinese Journal of Ecology, 2021, 40(8): 2324-2333(in Chinese). doi: 10.13292/j.1000-4890.202108.012
[4] 汪峰, 黄言欢, 李如忠, 等. 有色金属矿业城市典型村镇土壤重金属污染评价及来源解析 [J]. 环境科学, 2022, 43(9): 4800-4809. doi: 10.13227/j.hjkx.202112016 WANG F, HUANG Y H, LI R Z, et al. Contamination assessment and source apportionment of soil heavy metals in typical villages and towns in a nonferrous metal mining city [J]. Environmental Science, 2022, 43(9): 4800-4809(in Chinese). doi: 10.13227/j.hjkx.202112016
[5] 王越, 莫莉, 余新晓, 等. 粤北典型工矿区土壤重金属富集特征、来源解析及风险评价 [J]. 环境科学, 2023, 44(3): 1636-1645. doi: 10.13227/j.hjkx.202204271 WANG Y, MO L, YU X X, et al. Enrichment characteristics, source apportionment, and risk assessment of heavy metals in the industrial and mining area of northern Guangdong Province [J]. Environmental Science, 2023, 44(3): 1636-1645(in Chinese). doi: 10.13227/j.hjkx.202204271
[6] 王锐, 邓海, 贾中民, 等. 汞矿区周边土壤重金属空间分布特征、污染与生态风险评价 [J]. 环境科学, 2021, 42(6): 3018-3027. doi: 10.13227/j.hjkx.202010140 WANG R, DENG H, JIA Z M, et al. Spatial distribution characteristics, pollution, and ecological risk assessment of soil heavy metals around mercury mining areas [J]. Environmental Science, 2021, 42(6): 3018-3027(in Chinese). doi: 10.13227/j.hjkx.202010140
[7] 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价 [J]. 环境工程技术学报, 2020, 10(2): 280-287. doi: 10.12153/j.issn.1674-991X.20190095 CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps [J]. Journal of Environmental Engineering Technology, 2020, 10(2): 280-287(in Chinese). doi: 10.12153/j.issn.1674-991X.20190095
[8] 余嘉衍, 李冰玉, 周一敏, 等. 湖南省某矿遗址周围农业土壤重金属污染及风险评价 [J]. 环境化学, 2020, 39(4): 1024-1030. doi: 10.7524/j.issn.0254-6108.2019040201 YU J Y, LI B Y, ZHOU Y M, et al. Pollution and risk assessment of heavy metal in agricultural soil around an abandon mine site in Hunan Province [J]. Environmental Chemistry, 2020, 39(4): 1024-1030(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040201
[9] 邬光海, 王晨昇, 陈鸿汉. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析 [J]. 中国地质, 2020, 47(6): 1838-1852. doi: 10.12029/gc20200619 WU G H, WANG C S, CHEN H H. Eco-environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia [J]. Geology in China, 2020, 47(6): 1838-1852(in Chinese). doi: 10.12029/gc20200619
[10] 陈盟, 潘泳兴, 黄奕翔, 等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析 [J]. 环境科学, 2022, 43(10): 4545-4555. doi: 10.13227/j.hjkx.202201127 CHEN M, PAN Y X, HUANG Y X, et al. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area, Yangshuo [J]. Environmental Science, 2022, 43(10): 4545-4555(in Chinese). doi: 10.13227/j.hjkx.202201127
[11] 他维媛, 康桢, 孟昭君, 等. 秦岭典型停产关闭锌冶炼企业场地土壤重金属污染特征研究 [J]. 生态环境学报, 2021, 30(7): 1513-1521. doi: 10.16258/j.cnki.1674-5906.2021.07.020 TA W Y, KANG Z, MENG Z J, et al. Research of pollution characteristics of heavy metals in soil of typical closed zinc smelting enterprises in Qinling Mountains [J]. Ecology and Environmental Sciences, 2021, 30(7): 1513-1521(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.07.020
[12] 张恬雨, 胡恭任, 于瑞莲, 等. 基于PMF模型的垃圾焚烧厂周边农田土壤重金属源解析 [J]. 环境科学, 2022, 43(12): 5718-5727. doi: 10.13227/j.hjkx.202202116 ZHANG T Y, HU G R, YU R L, et al. Source analysis of heavy metals in farmland soil around a waste incineration plant based on PMF model [J]. Environmental Science, 2022, 43(12): 5718-5727(in Chinese). doi: 10.13227/j.hjkx.202202116
[13] YANG J Z, SUN Y L, WANG Z L, et al. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment [J]. Chemosphere, 2022, 304: 135340. doi: 10.1016/j.chemosphere.2022.135340 [14] MEN C, LIU R M, WANG Q R, et al. Spatial-temporal characteristics, source-specific variation and uncertainty analysis of health risks associated with heavy metals in road dust in Beijing, China [J]. Environmental Pollution, 2021, 278: 116866. doi: 10.1016/j.envpol.2021.116866 [15] 王海洋, 韩玲, 谢丹妮, 等. 矿区周边农田土壤重金属分布特征及污染评价 [J]. 环境科学, 2022, 43(4): 2104-2114. doi: 10.13227/j.hjkx.202106218 WANG H Y, HAN L, XIE D N, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment [J]. Environmental Science, 2022, 43(4): 2104-2114(in Chinese). doi: 10.13227/j.hjkx.202106218
[16] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价 [J]. 环境科学, 2018, 39(6): 2884-2892. doi: 10.13227/j.hjkx.201707125 ZHOU Y, CHEN Q, DENG S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn Mine in southwestern China [J]. Environmental Science, 2018, 39(6): 2884-2892(in Chinese). doi: 10.13227/j.hjkx.201707125
[17] 王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布 [J]. 中国环境科学, 2021, 41(8): 3693-3703. doi: 10.3969/j.issn.1000-6923.2021.08.026 WANG Q L, SONG Y T, WANG C W, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan [J]. China Environmental Science, 2021, 41(8): 3693-3703(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.08.026
[18] 张博伦, 刘玲玲, 黄占斌, 等. 基于UNMIX模型的地质高背景地区土壤重金属源解析 [J]. 环境科学研究, 2023, 36(2): 393-402. doi: 10.13198/j.issn.1001-6929.2022.10.15 ZHANG B L, LIU L L, HUANG Z B, et al. Source apportionment of soil heavy metal(loid)s in high geochemical background area based on the UNMIX model [J]. Research of Environmental Sciences, 2023, 36(2): 393-402(in Chinese). doi: 10.13198/j.issn.1001-6929.2022.10.15
[19] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展 [J]. 农业环境科学学报, 2019, 38(10): 2219-2238. CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils [J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238(in Chinese).
[20] 马杰, 沈智杰, 张萍萍, 等. 基于APCS-MLR和PMF模型的煤矸山周边耕地土壤重金属污染特征及源解析 [J]. 环境科学, 2023, 44(4): 2192-2203. doi: 10.13227/j.hjkx.202206045 MA J, SHEN Z J, ZHANG P P, et al. Pollution characteristics and source apportionment of heavy metals in farmland soils around the gangue heap of coal mine based on APCS-MLR and PMF receptor model [J]. Environmental Science, 2023, 44(4): 2192-2203(in Chinese). doi: 10.13227/j.hjkx.202206045
[21] 魏迎辉, 李国琛, 王颜红, 等. PMF模型的影响因素考察: 以某铅锌矿周边农田土壤重金属源解析为例 [J]. 农业环境科学学报, 2018, 37(11): 2549-2559. doi: 10.11654/jaes.2018-0492 WEI Y H, LI G C, WANG Y H, et al. Investigating factors influencing the PMF model: A case study of source apportionment of heavy metals in farmland soils near a lead-zinc ore [J]. Journal of Agro-Environment Science, 2018, 37(11): 2549-2559(in Chinese). doi: 10.11654/jaes.2018-0492
[22] 张扣扣, 贺婧, 钟艳霞, 等. 基于GIS对宁夏某铜银矿区周边土壤重金属来源解析 [J]. 环境科学, 2022, 43(11): 5192-5204. doi: 10.13227/j.hjkx.202201113 ZHANG K K, HE J, ZHONG Y X, et al. Identification of soil heavy metal sources around a copper-silver mining area in Ningxia based on GIS [J]. Environmental Science, 2022, 43(11): 5192-5204(in Chinese). doi: 10.13227/j.hjkx.202201113
[23] 陈航, 王颖, 王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价 [J]. 环境科学, 2022, 43(5): 2719-2731. doi: 10.13227/j.hjkx.202108281 CHEN H, WANG Y, WANG S. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area [J]. Environmental Science, 2022, 43(5): 2719-2731(in Chinese). doi: 10.13227/j.hjkx.202108281
[24] 俞诗颖. 区域土壤重金属污染源解析和污染风险情景模拟[D]. 杭州: 浙江大学, 2021. YU S Y. Source apportionment and risk scenario simulation of heavy metal pollution in regional soil[D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
[25] 沈宸宇, 闫钰, 于瑞莲, 等. APCS-MLR结合PMF模型解析厦门杏林湾近郊流域沉积物金属来源 [J]. 环境科学, 2022, 43(5): 2476-2488. doi: 10.13227/j.hjkx.202108337 SHEN C Y, YAN Y, YU R L, et al. APCS-MLR combined with PMF model to analyze the source of metals in sediment of xinglin bay suburban watershed, Xiamen [J]. Environmental Science, 2022, 43(5): 2476-2488(in Chinese). doi: 10.13227/j.hjkx.202108337
[26] 夏子书, 白一茹, 王幼奇, 等. 基于PMF模型的宁南山区小流域土壤重金属空间分布及来源解析 [J]. 环境科学, 2022, 43(1): 432-441. doi: 10.13227/j.hjkx.202105128 XIA Z S, BAI Y R, WANG Y Q, et al. Spatial distribution and source analysis of soil heavy metals in a small watershed in the mountainous area of southern Ningxia based on PMF model [J]. Environmental Science, 2022, 43(1): 432-441(in Chinese). doi: 10.13227/j.hjkx.202105128
[27] 方红夏. 宿东矿区废弃地土壤质量评价[D]. 淮南: 安徽理工大学, 2021. FANG H X. Soil quality evaluation of wasteland in sudong mining area[D]. Huainan: Anhui University of Science & Technology, 2021 (in Chinese).
[28] 陈丹丹, 谭璐, 聂紫萌, 等. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析 [J]. 环境化学, 2021, 40(9): 2667-2679. doi: 10.7524/j.issn.0254-6108.2021010901 CHEN D D, TAN L, NIE Z M, et al. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province [J]. Environmental Chemistry, 2021, 40(9): 2667-2679(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010901
[29] 彭驰, 刘旭, 周子若, 等. 铜冶炼场地周边土壤重金属污染特征与风险评价 [J]. 环境科学, 2023, 44(1): 367-375. doi: 10.13227/j.hjkx.202201040 PENG C, LIU X, ZHOU Z R, et al. Characteristics and risk assessment of heavy metals in the soil around copper smelting sites [J]. Environmental Science, 2023, 44(1): 367-375(in Chinese). doi: 10.13227/j.hjkx.202201040
[30] 骆逸飞. 白云鄂博矿区土壤重金属污染特征与风险评价[D]. 包头: 内蒙古科技大学, 2020. LUO Y F. Pollution characteristics and risk assessment of heavy metals in the soil of Bayan obo mining area[D]. Baotou: Inner Mongolia University of Science & Technology, 2020 (in Chinese).
[31] 张素荣, 王昌宇, 刘继红, 等. 雄安新区西南部土壤重金属污染特征及生态风险评价 [J]. 地学前缘, 2021, 28(4): 238-249. ZHANG S R, WANG C Y, LIU J H, et al. Assessments of heavy metal pollution in soils of the southwestern Xiongan District and its ecological risk [J]. Earth Science Frontiers, 2021, 28(4): 238-249(in Chinese).
[32] 台凌宇. 垃圾焚烧厂周围土壤重金属污染源解析及人体健康风险评价[D]. 天津: 天津大学, 2018. TAI L Y. Contamination source apportionment and health risk assessment of heavy metals in soil around waste to energy plant[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[33] 余洪慧. 北京市顺义区表层土壤重金属地球化学特征研究[D]. 北京: 中国地质大学(北京), 2019. YU H H. Geochemical characteristics of heavy metals in topsoil of Shunyi district in Beijing[D]. Beijing: China University of Geosciences, 2019 (in Chinese).
[34] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价 [J]. 环境科学, 2020, 41(9): 4197-4209. doi: 10.13227/j.hjkx.201912241 ZHANG F G, PENG M, WANG H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China [J]. Environmental Science, 2020, 41(9): 4197-4209(in Chinese). doi: 10.13227/j.hjkx.201912241