-
近年来,臭氧(O3)污染已成为重要的环境污染问题之一,高浓度臭氧对人体健康和生态环境造成很多不利影响[1-3]. 挥发性有机物(volatile organic compounds,VOCs)作为O3生成的重要前体物之一,是影响环境空气臭氧污染的重要物质. 环境空气中VOCs种类众多,来源复杂[4],不同区域VOCs浓度、特征和来源具有显著差异[5-8],因此对比研究不同区域VOCs的污染特征和对臭氧的影响对于解决当前严峻的臭氧污染问题具有重要的指导意义.
目前大量对VOCs的研究主要有基于最大增量反应活性(Maximum Increment Reactivity,MIR)[9]计算VOCs的臭氧生成潜势(ozone formation potential,OFP)[10-14]识别对臭氧生成有显著贡献的VOCs物种,利用PMF[15-18]模型追溯VOCs的来源及其贡献,运用OBM[19-23]模型模拟臭氧生成机制并识别关键活性物种,以及绘制EKMA[24-27]曲线识别臭氧主控区并找出前体物NOx/VOCs消减的最佳比例. 李凯等[28]发现,泰安市VOCs浓度占比最高的是含氧VOCs(OVOCs),其次为烷烃、芳香烃和烯烃,最大的排放源为液化石油气(LPG)和溶剂源;赵敏等[29]利用本地化MIR值计算了东营市VOCs的OFP,发现芳香烃对OFP贡献明显,利用OBM模型模拟得出臭氧污染受到VOCs和NOx的协同控制;王帅等[30]研究表明淄博市芳香烃和烯烃类VOCs的OFP贡献较大,并利用PMF模型解析出淄博市主要的VOCs来源为移动源、固定燃烧源和溶剂使用源. 但是环境空气中VOCs种类众多,城市不同区域排放的VOCs存在明显差异,例如在对石化区VOCs[31-33]的大量研究发现,OFP较高的是甲苯、1,3-丁二烯、二甲苯,主要与企业生产排放有关,其次还有溶剂源、液化石油气泄露和化石燃料源对VOCs的贡献也较大;汕头市城区[34]和武汉市城区[35] VOCs中烷烃浓度占比最大,主要来自于人为源中的燃烧源、机动车排放源和溶剂使用源;王雨燕等[36]和Mazzuca等[37]对背景点的研究发现,芳香烃类对OFP贡献较大,主要有间/对-二甲苯和异戊二烯,高频率的O3污染事件发生是由于VOCs及臭氧的传输所引起的,也受局地机动车尾气和工业源排放影响. 因此深入开展 VOCs 相关研究,尤其在不同区域的VOCs进行对比分析,对改善区域臭氧污染具有重要意义.
济南作为山东的省会城市,近几年PM2.5虽有明显改善,但夏季臭氧污染仍较严重,2020年济南市臭氧浓度位于全国排名的第8位(倒数). 自2017—2019年济南市臭氧浓度逐年升高,分别为190、202、203 μg·m−3,2020年(184 μg·m−3)虽有下降,但仍然超标. 目前对其VOCs的研究主要针对市区某一个点位VOCs污染特征和来源解析[38-40],且缺乏从VOCs对臭氧生成机制出发系统识别VOCs的关键物种和不同区域之间的VOCs活性差异对比. 因此,为深入探讨不同区域臭氧的污染机制和关键VOCs活性物种,本研究通过分析济南市3个典型区VOCs的污染特征,计算OFP和运用MCM模式进行敏感性分析,以识别不同区域的关键活性物种,结合气象因素并利用PMF模型解析VOCs的来源,期望为不同区域臭氧污染控制对策提供科学依据.
济南市典型区夏季VOCs分布特征及臭氧生成机制
Pollution characteristics of volatile organic compounds and mechanism of ozone formation in typical areas of Jinan, China
-
摘要: 基于2020年6—8月济南市石化区、市区和南部山区VOCs以及臭氧和气态污染物等在线监测数据,结合气象因素分析了各典型区夏季VOCs污染特征,并通过计算臭氧生成潜势(OFP)和MCM模型模拟分析了不同区域不同污染等级VOCs对臭氧生成的影响,采用PMF模型对市区夏季VOCs进行了来源解析研究. 结果表明,石化区VOCs浓度(158.29 μg·m−3)明显高于市区(47.71 μg·m−3)和南部山区(24.65 μg·m-3),VOCs中均以烷烃占比最大,其次为芳香烃,3个区域VOCs浓度均随污染等级升高而升高;不同污染等级下均为石化区OFP(743.7—1474.9 μg·m−3)大于市区(156.9—378.1 μg·m−3)和南部山区(113.4—168.7 μg·m−3),3个区域均是芳香烃OFP占比最大,其次为烯烃,说明芳香烃和烯烃类VOCs对臭氧生成的贡献最大,其中OFP贡献最大的单体为间/对-二甲苯; MCM模拟结果表明石化区O3净生成速率(33.51×10-9 ·h−1)最高,其次为市区(22.97×10−9 ·h−1)和南部山区(3.91×10−9 ·h−1);石化区的1-戊烯、甲苯、异戊二烯、间-乙基甲苯和邻二甲苯,市区的1-丁烯、间/对-二甲苯和顺式-2-丁烯,南部山区的顺式-2-丁烯、异戊二烯、反式-2-丁烯相对增量反应活性(RIR)较大,对臭氧生成的影响较为明显. PMF模型解析结果表明济南市区夏季燃烧源、移动源和餐饮油烟源对VOCs贡献较大.Abstract: Pollution characteristics of volatile organic compounds (VOCs) in typical areas of Jinan, China, in summer were analyzed and simulated. The analyses were based on online monitoring data of VOCs, ozone (O3) and other related trace gases in a petrochemical area, urban area and southern mountainous area collected from June to August 2020, along with meteorological factors. The influence of different ozone pollution levels of VOC pollutants in different functional areas of Jinan on O3 formation was assessed by calculating the Ozone Formation Potential (OFP) and using a Master Chemical Mechanism (MCM) model. The sources of VOCs in urban areas in summer were analyzed by a Positive Matrix Factorization (PMF) model. The concentration of VOCs in the petrochemical area (158.29 μg·m−3) was significantly higher than that in the urban area (47.71 μg·m−3) and southern mountainous area (24.65 μg·m−3). Alkanes accounted for the largest proportion of VOCs, followed by aromatic hydrocarbons. The concentration of VOCs increased with increasing pollution level in all three areas. The calculated OFP in petrochemical areas (743.7–1474.9 μg·m−3) was higher than that in the urban area (156.9–378.1 μg·m−3) and southern mountainous area (113.4–168 μg·m−3). Alkene and aromatic hydrocarbons accounted for the largest proportion in three areas, indicating that these molecules contributed most to the formation of O3. The monomer with the largest contribution to OFP was m/p-xylene. MCM stimulation revealed the highest net rate of O3 formation in the petrochemical area (33.51×10−9·h−1), followed by urban area (22.97×10−9·h−1) and southern mountainous area (3.91×10−9·h−1). Large increases in the relative incremental reaction activity were evident in the petrochemical area (1-pentene, toluene, isoprene, m-ethyl toluene, and o-xylene), urban area (1-butene, m/p-xylene, and cis-2-butene), and mountainous area (cis-2-butene, isoprene, and trans-2-butene). The increases had an obvious impact on O3 formation. The PMF model analytical results revealed that combustion source, mobile source, and cooking fume source contributed greatly to VOCs in summer.
-
表 1 不同污染等级下OFP值及占比(μg·m−3)
Table 1. OFP value and proportion under different pollution levels(μg·m−3)
污染等级
Pollution level典型区
Typical areas烷烃
Alkane烯烃
Alkene芳香烃
Aromatic hydrocarbon炔烃
AlkyneVOCs OFP 占比 OFP 占比 OFP 占比 OFP 占比 OFP 良 石化区 173.1 23.3% 176.5 23.7% 377.0 50.7% 17.1 2.3% 743.7 市区 33.5 21.3% 53.0 33.8% 68.5 43.6% 2.0 1.3% 156.9 南部山区 20.7 12.3% 39.3 23.3% 106.3 63.0% 2.5 1.5% 168.7 轻度污染 石化区 180.0 22.5% 225.2 28.2% 373.5 46.7% 20.7 2.6% 799.5 市区 48.7 22.0% 77.9 35.2% 92.1 41.6% 2.5 1.1% 221.2 南部山区 16.4 14.4% 34.0 30.0% 59.9 52.8% 3.2 2.8% 113.4 中度污染 石化区 414.4 28.1% 518.7 35.2% 503.7 34.2% 38.1 2.6% 1474.9 市区 69.2 18.3% 87.0 23.0% 219.4 58.0% 2.7 0.7% 378.1 南部山区 37.0 22.5% 57.5 35.0% 63.2 38.5% 6.7 4.1% 164.3 -
[1] LIU Y F, KONG L W, LIU X G, et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China [J]. Atmospheric Pollution Research, 2021, 12(3): 33-46. doi: 10.1016/j.apr.2021.01.013 [2] XIE Y T, CHENG C L, WANG Z H, et al. Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China [J]. Science of the Total Environment, 2021, 800: 149422. doi: 10.1016/j.scitotenv.2021.149422 [3] PHILLIPS M, GLEESON K, HUGHES J M B, et al. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study [J]. The Lancet, 1999, 353(9168): 1930-1933. doi: 10.1016/S0140-6736(98)07552-7 [4] 朱轲欣, 刘立忠, 刘焕武, 等. 大连市夏季 VOCs化学反应活性及来源 [J]. 环境科学, 2022, 43(8): 3944-3952. ZHU K X, LIU L Z, LIU H W, et al. Chemical reaction activity and source apportionment of atmospheric VOCs in summer in Dalian [J]. Environmental Science, 2022, 43(8): 3944-3952(in Chinese).
[5] 赵延云. 城市典型区域臭氧污染特征、生成机制及管控策略研究[D]. 杭州: 浙江大学, 2021. ZHAO Y Y. Study on the characteristics, chemical mechanism and control strategies of ozone pollution in typical urban areas[D]. Hangzhou: Zhejiang University, 2021(in Chinese).
[6] HU R Y, LIU G J, ZHANG H, et al. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei [J]. Ecotoxicology and Environmental Safety, 2018, 160: 301-307. doi: 10.1016/j.ecoenv.2018.05.056 [7] LI C L, LIU Y F, CHENG B F, et al. A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation [J]. Science of the Total Environment, 2022, 806: 150247. doi: 10.1016/j.scitotenv.2021.150247 [8] ZHANG D, HE B, YUAN M H, et al. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season [J]. Journal of Environmental Sciences, 2021, 108: 44-57. doi: 10.1016/j.jes.2021.01.035 [9] CARTER W P L, PIERCE J A, LUO D M, et al. Environmental chamber study of maximum incremental reactivities of volatile organic compounds [J]. Atmospheric Environment, 1995, 29(18): 2499-2511. doi: 10.1016/1352-2310(95)00149-S [10] LIANG X M, SUN X B, XU J T, et al. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China [J]. Science of the Total Environment, 2020, 745: 140838. doi: 10.1016/j.scitotenv.2020.140838 [11] KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment [J]. Science of the Total Environment, 2018, 613/614: 492-501. doi: 10.1016/j.scitotenv.2017.09.096 [12] LI J H, DENG S X, LI G H, et al. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China [J]. Environmental Research, 2022, 203: 111821. doi: 10.1016/j.envres.2021.111821 [13] ZHOU M M, JIANG W, GAO W D, et al. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis [J]. Process Safety and Environmental Protection, 2020, 139: 147-160. doi: 10.1016/j.psep.2020.03.040 [14] FU S, GUO M X, LUO J M, et al. Improving VOCs control strategies based on source characteristics and chemical reactivity in a typical coastal city of South China through measurement and emission inventory [J]. Science of the Total Environment, 2020, 744: 140825. doi: 10.1016/j.scitotenv.2020.140825 [15] WANG M, QIN W, CHEN W T, et al. Seasonal variability of VOCs in Nanjing, Yangtze River Delta: Implications for emission sources and photochemistry [J]. Atmospheric Environment, 2020, 223: 117254. doi: 10.1016/j.atmosenv.2019.117254 [16] MENG Y, SONG J W, ZENG L W, et al. Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation [J]. Journal of Environmental Sciences, 2022, 111: 104-117. doi: 10.1016/j.jes.2021.02.024 [17] GAO Y Q, LI M, WAN X, et al. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central Eastern China [J]. Atmospheric Environment, 2021, 244: 117927. doi: 10.1016/j.atmosenv.2020.117927 [18] ZHANG X F, YIN Y Y, WEN J H, et al. Characteristics, reactivity and source apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city [J]. Atmospheric Environment, 2019, 215: 116898. doi: 10.1016/j.atmosenv.2019.116898 [19] XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China [J]. Atmospheric Environment, 2017, 168: 112-124. doi: 10.1016/j.atmosenv.2017.08.035 [20] LI Y F, GAO R, XUE L K, et al. Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation [J]. Atmospheric Research, 2021, 250: 105359. doi: 10.1016/j.atmosres.2020.105359 [21] TAN Z F, LU K D, JIANG M Q, et al. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity [J]. Science of the Total Environment, 2018, 636: 775-786. doi: 10.1016/j.scitotenv.2018.04.286 [22] LI K W, CHEN L H, YING F, et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China [J]. Atmospheric Research, 2017, 196: 40-52. doi: 10.1016/j.atmosres.2017.06.003 [23] SHEN H Q, LIU Y H, ZHAO M, et al. Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in Eastern China [J]. Science of the Total Environment, 2021, 764: 144031. doi: 10.1016/j.scitotenv.2020.144031 [24] HUI L R, LIU X G, TAN Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China [J]. Atmospheric Environment, 2018, 192: 55-71. doi: 10.1016/j.atmosenv.2018.08.042 [25] TAN Z F, LU K D, DONG H B, et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities [J]. Science Bulletin, 2018, 63(16): 1067-1076. doi: 10.1016/j.scib.2018.07.001 [26] FAN M Y, ZHANG Y L, LIN Y C, et al. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season [J]. Chemosphere, 2021, 263: 128025. doi: 10.1016/j.chemosphere.2020.128025 [27] ZENG P, LYU X P, GUO H, et al. Causes of ozone pollution in summer in Wuhan, Central China [J]. Environmental Pollution, 2018, 241: 852-861. doi: 10.1016/j.envpol.2018.05.042 [28] 李凯, 潘宁, 梅如波, 等. 泰安市大气挥发性有机物污染特征及来源解析 [J]. 环境化学, 2022, 41(2): 482-490. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021061803 LI K, PAN N, MEI R B, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian [J]. Environmental Chemistry, 2022, 41(2): 482-490(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021061803
[29] 赵敏, 申恒青, 陈天舒, 等. 黄河三角洲典型城市夏季臭氧污染特征与敏感性分析 [J]. 环境科学研究, 2022, 35(6): 1351-1361. ZHAO M, SHEN H Q, CHEN T S, et al. Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer [J]. Research of Environmental Sciences, 2022, 35(6): 1351-1361(in Chinese).
[30] 王帅, 王秀艳, 杨文, 等. 淄博市城区臭氧超标期间的VOCs污染特征与来源解析 [J]. 环境科学, 2022, 43(3): 1277-1285. WANG S, WANG X Y, YANG W, et al. Characteristics and source analysis of VOCs pollution during the period of ozone exceeding the standard in Zibo City [J]. Environmental Science, 2022, 43(3): 1277-1285(in Chinese).
[31] 周振, 肖林海, 费蕾蕾, 等. 东莞工业集中区夏季臭氧污染与非污染期间VOCs组分特征及其来源[J]. 环境科学, 2022, 43(9): 4497-4505. ZHOU Z, XIAO L H, FEI L L, et al. Characteristics and source apportionment of volatile organic compounds(VOCs) in a typical industrial area in Dongguan during periods of ozone and non-ozone pollution in summer[J]. Environmental Science, 2022, 43(9): 4497-4505(in Chinese).
[32] MO Z W, SHAO M, LU S H, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015, 533: 422-431. doi: 10.1016/j.scitotenv.2015.06.089 [33] SHEN L J, XIANG P, LIANG S W, et al. Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, central China [J]. Atmosphere, 2018, 9(8): 297. doi: 10.3390/atmos9080297 [34] 李娟, 李成柳, 郭岩, 等. 汕头市城区大气VOCs来源解析及其对臭氧生成的影响 [J]. 环境保护科学, 2021, 47(2): 145-152. LI J, LI C L, GUO Y, et al. Source analysis of volatile organic compounds and its influence on ozone formation in urban area of Shantou [J]. Environmental Protection Science, 2021, 47(2): 145-152(in Chinese).
[35] 彭瑾, 成海容, 王祖武, 等. 武汉市城区大气挥发性有机物的污染特征及来源解析 [J]. 武汉大学学报(理学版), 2020, 66(4): 369-376. PENG J, CHENG H R, WANG Z W, et al. Pollution characteristics and sources apportionment of atmospheric volatile organic compounds in Wuhan urban area [J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(4): 369-376(in Chinese).
[36] 王雨燕, 杨文, 王秀艳, 等. 淄博市城郊臭氧污染特征及影响因素分析 [J]. 环境科学, 2022, 43(1): 170-179. WANG Y Y, YANG W, WANG X Y, et al. Characteristics of ozone pollution and influencing factors in urban and suburban areas in Zibo [J]. Environmental Science, 2022, 43(1): 170-179(in Chinese).
[37] MAZZUCA G M, REN X R, LOUGHNER C P, et al. Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013 [J]. Atmospheric Chemistry and Physics, 2016, 16(22): 14463-14474. doi: 10.5194/acp-16-14463-2016 [38] 孙友敏, 赵继峰, 闫怀忠, 等. 石化企业周边采暖季大气VOCs污染特征及化学反应活性 [J]. 环境化学, 2020, 39(9): 2358-2370. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019062502 SUN Y M, ZHAO J F, YAN H Z, et al. Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise [J]. Environmental Chemistry, 2020, 39(9): 2358-2370(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019062502
[39] 高素莲, 闫学军, 刘光辉, 等. 济南市夏季臭氧重污染时段VOCs污染特征及来源解析 [J]. 生态环境学报, 2020, 29(9): 1839-1846. GAO S L, YAN X J, LIU G H, et al. Characteristics and source apportionment of ambient VOCs in serious ozone pollution period of summer in ji'nan [J]. Ecology and Environmental Sciences, 2020, 29(9): 1839-1846(in Chinese).
[40] ZHANG G Q, WANG N, JIANG X J, et al. Characterization of ambient volatile organic compounds (VOCs) in the area adjacent to a petroleum refinery in Jinan, China [J]. Aerosol and Air Quality Research, 2017, 17(4): 944-950. doi: 10.4209/aaqr.2016.07.0303 [41] WU F K, YU Y, SUN J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China [J]. Science of the Total Environment, 2016, 548/549: 347-359. doi: 10.1016/j.scitotenv.2015.11.069 [42] JENKIN M E, SAUNDERS S M, WAGNER V, et al. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds [J]. Atmospheric Chemistry and Physics, 2003, 3(30): 181-193. [43] 盛涛, 陈筱佳, 高松, 等. 上海某石化园区周边区域VOCs污染特征及健康风险 [J]. 环境科学, 2018, 39(11): 4901-4908. SHENG T, CHEN X J, GAO S, et al. Pollution characteristics and health risk assessment of VOCs in areas surrounding a petrochemical park in Shanghai [J]. Environmental Science, 2018, 39(11): 4901-4908(in Chinese).
[44] 姚维杰, 王大玮, 谢付莹, 等. 日照市夏季VOCs物种空间分布特征及其对臭氧生成的影响 [J]. 环境科学, 2022, 43(2): 714-722. YAO W J, WANG D W, XIE F Y, et al. Spatial distribution characteristics of VOCs and its impact on ozone formation potential in Rizhao City in summer [J]. Environmental Science, 2022, 43(2): 714-722(in Chinese).
[45] 秦涛, 李丽明, 王信梧, 等. 典型工业城市夏季VOCs污染特征及反应活性 [J]. 环境科学, 2022, 43(8): 3934-3943. QIN T, LI L M, WANG X W, et al. Characteristics and reactivity of VOCs in a typical industrial city in summer [J]. Environmental Science, 2022, 43(8): 3934-3943(in Chinese).
[46] 刘营营, 王丽涛, 齐孟姚, 等. 邯郸大气VOCs污染特征及其在O3生成中的作用 [J]. 环境化学, 2020, 39(11): 3101-3110. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019112301 LIU Y Y, WANG L T, QI M Y, et al. Characteristics of atmospheric VOCS and their role in O3 generation in Handan [J]. Environmental Chemistry, 2020, 39(11): 3101-3110(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019112301
[47] 曹方方, 张凤菊, 由希华. 中国东部典型城市夏季VOCs污染特征及臭氧生成潜势研究[C]//中国环境科学学会2021年科学技术年会论文集(一). 天津, 2021: 196-207. [48] 姚青, 韩素芹, 张裕芬, 等. 天津夏季郊区VOCs对臭氧生成的影响 [J]. 环境科学, 2020, 41(4): 1573-1581. YAO Q, HAN S Q, ZHANG Y F, et al. Effects of VOCs on ozone formation in the Tianjin suburbs in summer [J]. Environmental Science, 2020, 41(4): 1573-1581(in Chinese).
[49] 孙晓艳, 赵敏, 申恒青, 等. 济南市城区夏季臭氧污染过程及来源分析 [J]. 环境科学, 2022, 43(2): 686-695. SUN X Y, ZHAO M, SHEN H Q, et al. Ozone formation and key VOCs of a continuous summertime O3 pollution event in ji'nan [J]. Environmental Science, 2022, 43(2): 686-695(in Chinese).
[50] 甘浩, 徐勃, 张向炎, 等. 淄博市化工园区夏季环境VOCs污染特征及健康风险评价 [J]. 环境科学研究, 2022, 35(1): 20-29. GAN H, XU B, ZHANG X Y, et al. Characteristics and health risk assessment of atmospheric VOCs in a chemical industrial park of Zibo in summer [J]. Research of Environmental Sciences, 2022, 35(1): 20-29(in Chinese).
[51] WANG M, SHAO M, CHEN W, et al. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China [J]. Atmospheric Chemistry and Physics, 2014, 14(12): 5871-5891. doi: 10.5194/acp-14-5871-2014 [52] 任义君, 马双良, 王思维, 等. 郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析 [J]. 环境科学, 2020, 41(6): 2577-2585. REN Y J, MA S L, WANG S W, et al. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou [J]. Environmental Science, 2020, 41(6): 2577-2585(in Chinese).
[53] 李颖慧, 李如梅, 胡冬梅, 等. 太原市不同功能区环境空气中挥发性有机物特征与来源解析 [J]. 环境化学, 2020, 39(4): 920-930. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019110804 LI Y H, LI R M, HU D M, et al. Characteristics and source apportionment of ambient volatile organic compounds of different functional areas in Taiyuan City [J]. Environmental Chemistry, 2020, 39(4): 920-930(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019110804
[54] 韩婷婷, 李颖若, 邱雨露, 等. 上甸子区域背景站VOCs污染特征及其对臭氧生成贡献 [J]. 环境科学, 2020, 41(6): 2586-2595. HAN T T, LI Y R, QIU Y L, et al. Characteristics of VOCs and their roles in ozone formation at a regional background site in Beijing, China [J]. Environmental Science, 2020, 41(6): 2586-2595(in Chinese).
[55] 王俏丽. 浙江省沿海地区PM2.5和VOCs源成分谱构建及大气复合污染来源解析[D]. 杭州: 浙江大学, 2019. WANG Q L. Source profile of PM2.5 and VOCs and source apportionment of combined air pollution in typical coastal area in Zhejiang Province[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[56] WEI W, CHENG S Y, LI G H, et al. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China [J]. Atmospheric Environment, 2014, 89: 358-366. doi: 10.1016/j.atmosenv.2014.01.038 [57] 张欣. 天津石化行业挥发性有机物源排放成分谱研究[D]. 天津: 天津工业大学, 2016. ZHANG X. Study on emission component spectrum of volatile organic compounds in Tianjin petrochemical industry[D]. Tianjin: Tianjin Polytechnic University, 2016(in Chinese).
[58] 魏巍. 中国人为源挥发性有机化合物的排放现状及未来趋势[D]. 北京: 清华大学, 2009. WEI W. Study on current and future anthropogenic emissions of volatile organic compounds in China[D]. Beijing: Tsinghua University, 2009(in Chinese).
[59] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [60] BROWN S G, FRANKEL A, HAFNER H R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization [J]. Atmospheric Environment, 2007, 41(2): 227-237. doi: 10.1016/j.atmosenv.2006.08.021 [61] 张明棣, 云龙, 李成柳, 等. 基于观测模型量化VOCs对深圳市城区臭氧生成的影响 [J]. 环境科学研究, 2021, 34(11): 2599-2608. ZHANG M D, YUN L, LI C L, et al. Quantifying impacts of VOCs on ozone formation in urban area of Shenzhen based on observation-based model [J]. Research of Environmental Sciences, 2021, 34(11): 2599-2608(in Chinese).
[62] ZHANG C, LIU X G, ZHANG Y Y, et al. Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing [J]. Atmospheric Pollution Research, 2021, 12(3): 230-241. doi: 10.1016/j.apr.2020.12.010 [63] 杨雪, 安馨悦, 刘玉启, 等. 山东临沂大气夏季典型时段臭氧污染特征及其控制因素分析 [J]. 环境科学, 2022, 43(2): 696-706. YANG X, AN X Y, LIU Y Q, et al. Pollution characteristic and control factor analysis of atmospheric ozone during summer typical periods in Linyi, Shandong [J]. Environmental Science, 2022, 43(2): 696-706(in Chinese).
[64] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese Cities: Precursors, regional transport and heterogeneous processes [J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13175-13188. doi: 10.5194/acp-14-13175-2014 [65] 黄永海. 餐饮油烟中VOCs代表物的排放特征及催化氧化研究[D]. 北京: 北京科技大学, 2020. HUANG Y H. Investigation of the emission characteristics and catalytic oxidation of the representatives of VOCs in the cooking oil fumes[D]. Beijing: University of Science and Technology Beijing, 2020(in Chinese).
[66] 何万清, 聂磊, 田刚, 等. 基于GC-MS的烹调油烟VOCs的组分研究 [J]. 环境科学, 2013, 34(12): 4605-4611. HE W Q, NIE L, TIAN G, et al. Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS [J]. Environmental Science, 2013, 34(12): 4605-4611(in Chinese).