-
随着全球经济和科技的快速发展,电子产品快速更迭引发的电子垃圾严重影响生态环境,已成为当今亟需解决的重大环境问题之一. 电子垃圾是增长最快的危险废物之一,统计数据表明全球产生的电子垃圾以每年3%—5%的速度急剧增长[1],从2014年的4180万吨增长到2019年5360万吨[2-3]. 我国是世界上电子垃圾增长最快的国家,据预测2030年我国将产生2840万吨电子废弃物[3]. 全球80%的电子垃圾出口亚洲,其中90%被运送到中国进行拆解回收处理[4].
电子垃圾中存在大量有毒有害物质(如阻燃剂、重金属等),不当的拆解和处置方式会导致污染物释放到环境中,通过饮用地表水以及经手-口摄入、呼吸吸入和皮肤接触土壤颗粒物等曝露途径进入人体,对当地生态环境和人体健康造成危害[3,5-6]. 重金属作为一种持久性有毒污染物,具有多源性、隐蔽性、积累性和长期性等特点[7]. 重金属在土壤中的迁移转化危害农业的生产安全,通过食物链在动物和人体中富集. 相关研究表明,电子产品拆解场地周边的蔬菜、水稻等作物的重金属含量往往超过中国食品允许的最高水平,食用被污染的农产品会使人血铅、血镉超标,罹患呼吸道疾病、癌症等[8-9]. 重金属进入水体后,绝大部分可以通过与有机物、黏土矿物和硫化物等的络合作用吸附于沉积物中,当环境发生变化时会被再次释放造成二次污染,并且还会通过食物链或皮肤接触等途径进入人体对健康造成危害,直接饮用被污染的水或食用被污染的水产品都会对健康造成危害[10-12].
当前,国内外针对电子垃圾拆解区的相关研究集中于周边农田土壤、沉积物和农作物的重金属污染程度、分布特征及其来源,例如林文杰等对贵屿水体沉积物的研究显示底泥中Cd、Cr、Cu、Pb均超过《土壤环境质量标准》(GB15618—1995)二级标准,其中以Cd和Cu污染最为严重[12],方嘉等对浙江某电子垃圾拆解地农田土壤重金属的来源研究显示该地主要有电子垃圾拆解工序、燃煤及交通排放、自然母质及农业投入以及电子垃圾酸洗径流及固废淋溶5种来源[13],尹伊梦等对土壤水稻系统的研究显示贵屿镇通过摄取稻米途径所引起健康风险主要来自As、Cr、Cu、Ni元素[14],吴江平等对电子垃圾拆解地土壤和稻米重金属研究显示Cd、Cu和Pb的含量是对照区的2—15倍[15]. 但同时关于电子垃圾拆解区周边地表水和农田土壤中重金属的生态风险和对周边人群暴露风险评价尚缺乏研究. 广东省汕头市贵屿镇是我国重要的电子垃圾拆解区,该地区过去以家庭作坊形式采用原始粗放的方式拆解,废弃物露天堆放焚烧处理,而回收过程中产生大量的废液和残渣,处置不当严重危害当地生态环境和居民健康[15-17]. 2017年以来,我国对电子垃圾进口实施严格管控,并将电子垃圾回收拆解行业改为工业园区的运作模式. 在该种情况下重金属在土壤和水介质中的富集和对当地生态系统和人群健康的影响研究尚不明晰.
鉴于此,本研究以广东省汕头市贵屿镇电子垃圾拆解区为研究对象,利用内梅罗指数法、潜在生态风险评价法和美国环保署(US EPA)推荐的健康风险评价模型等,系统分析该地区土壤和地表水中重金属的浓度水平、污染特征、生态和健康风险,研究结果将有助于深化对电子垃圾拆解区居民暴露健康风险的认识.
电子垃圾拆解区农田土壤和地表水重金属污染特征和潜在风险评价
Characteristics and risk assessment of heavy metal in farmland soils and surface water in e-waste dismantling area
-
摘要: 电子垃圾的不当拆解导致大量污染物释放到环境中严重影响到生态环境和人类健康,本研究选取典型电子垃圾拆解区广东省汕头市贵屿镇周边区域农田土壤和地表水为研究对象,分别运用单因子指数法、内梅罗指数法、潜在生态风险评价模型和USEPA的健康风险评价模型分析Pb、Zn、Cu、Cr、Ni、As和Cd的浓度水平、污染特征并进行风险评价. 结果表明:①农田土壤中所有元素均超过广东省背景值,其中Cu、Cd、Zn和Pb大于农用地筛选值,变异系数超过95%;②农田土壤重金属总体上属于较强生态风险(RI),其中Cd具有极强的生态风险,贡献率高达78.50%,Pb和Cu具有中等生态风险,Zn、Cr、As和Ni具有轻微生态风险;③贵屿儿童总致癌风险TCR为1.92×10−4,风险显著,成人总致癌风险TCR为6.31×10−5,存在一定程度的致癌风险;Cd和As是致癌风险的主要贡献元素,成人和儿童非致癌风险可接受;④地表水重金属含量符合一类水标准和饮用水标准;RI均值为801.01,处于强烈生态风险,Cd的贡献率高达99.05%;⑤不同人群不同暴露途径非致癌风险均小于1,处于可接受范围,致癌风险按降序排列:儿童饮水(6.87×10−3)>成人饮水(5.17×10−3)>成人接触(3.61×10−5)>儿童接触(1.50×10−5),饮水途径是致癌风险的主要暴露途径,As元素是致癌风险的主要贡献因子.Abstract: The improper disassembly of electronic waste leads to the release of a large number of pollutants into the environment, which seriously affects the ecological environment and human health. In this study, the concentrations and characteristics of Pb, Zn, Cu, Cr, Ni, As and Cd in the soil and surface water collected around the e-waste dismantling area in Guiyu Town, Shantou City, Guangdong Province were analyzed. The single-factor index, the Nemero index, the potential ecological risk evaluation model and the USEPA health risk evaluation model were respectively used to evaluate the environmental risk. The results indicated that all element contents were higher than the soil background values in Guangdong Province, and the mean contents of Cu, Cd, Pb and Zn were higher than the screening value of agricultural land. Especially, the coefficient of variation of Cu, Cd, Pb and Zn all exceeded 95%. Furthermore, the heavy metals in the soil can cause heavy ecological risk overall, among which Cd can cause extremely strong ecological risk with a contribution of 78.50%, Pb and Cu can cause moderate ecological risk, and Zn, Cr, As and Ni can cause slight ecological risk. In addition, the total carcinogenic risk (TCR) for children and adults in Guiyu was 1.92×10−4 (high risk) and 6.31×10−5 (certain risk), respectively. Cd and As were the major source of carcinogenic risk, and the non-carcinogenic risk of metals for children and adults were generally acceptable. Besides, the concentrations of heavy metals in surface water were under the standard of Class I water and drinking water. The mean value of the ecological risk index was 801.01, which indicated a strong ecological risk, with the dominant contribution of Cd (99.05%). Finally, the non-carcinogenic risk from different exposure routes were acceptable (less than 1). The carcinogenic risk varied as followed: drinking water exposure for children (6.87×10−3) > drinking water exposure for adult (5.17×10−3) > dermal contact exposure for adult (3.61×10−5) > dermal contact exposure for children (1.50×10−5). Exposure through drinking water was the main exposure route, and As was the major contributor to the carcinogenic risk.
-
Key words:
- electronic waste /
- soil /
- surface water /
- heavy metal /
- risk assessment.
-
表 1 内梅罗指数和潜在生态风险分级标准
Table 1. Nemerow index and potential ecological risk classification criteria
级别
ClassEi RI Pi PN 污染程度
Grade轻微 <40 <150 <1 <0.7 无污染 中等 40—80 150—300 1—2 0.7—1 轻微污染 重度 80—160 300—600 2—3 1—2 轻度污染 强烈 160—320 >600 3—5 2—3 中度污染 极强 >320 — >5 ≥3 重度污染 “—”表示无相关数据 表 2 健康风险评价模型相关参数取值
Table 2. Value of exposure parameter of health risk assessment model
参数
Parameter含义
Meaning单位
Unit取值
Value儿童
Children成人
AdultIngR 摄入频率 mg·d−1 200.00 100.00 CF 转换频率 kg·mg−1 1×10−6 1×10−6 EF 暴露频率 d·a−1 350.00 350.00 ED 暴露年限 a 6.00 24.00 BW 平均体重 kg 15.90 62.10 AT(非致癌 ) 平均暴露时间(非致癌) d 6×365 2.4 ×365 AT(致癌) 平均暴露时间(致癌) d 70 ×365 70 ×365 InhR 呼吸频率 m3·d−1 7.60 20.00 PEF 灰尘排放因子 m3·kg−1 1.36×109 1.36×109 SA 暴露皮肤表面积 cm2 2800.00 5700.00 AF 皮肤附着因子 mg·cm−2 0.20 0.20 ABS 皮肤呼吸因子 无量纲 0.001 0.001 表 3 重金属参考剂量和斜率因子取值
Table 3. Corresponding reference dose (RfD) and slope factors (SF) values of heavy metals
项目
ProjectCr As Pb Ni Cd Cu Zn 农田土壤
Farmland soilRfD 经口摄入
Ingestion3.00×10−3 3.00×10−4 3.50×10−3 2.00×10−2 1.00×10−3 4.00×10−2 3.00×10−1 呼吸吸入
Inhalation2.86×10−5 1.23×10−4 3.52×10−3 2.06×10−2 1.00×10−3 2.55×10−4 3.00×10−1 皮肤接触
Dermal contact6.00×10−5 1.23×10−4 5.25×10−4 5.40×10−3 1.00×10−5 4.00×10−2 3.00×10−1 SF 经口摄入
Ingestion— 1.50 — — 6.10 — — 呼吸吸入
Inhalation42 4.30×10−3 — — 1.80×10−3 — — 皮肤接触
Dermal contact— 15.10 — — 6.10 — — 地表水
Surface waterRfD 3.00×10−3 3.00×10−4 1.40×10−2 3.00×10−2 5.00×10−4 4.00×10−2 3.00×10−1 SF 41.00 15.00 — — 6.10 — — “—”表示无相关数据 表 4 地表水健康风险评价相关参数取值
Table 4. Values of parameters related to surface water health risk assessment
参数
Parameter单位
Unit成人
Adult儿童
Children人体表面积Asd 1 16000 6660 洗澡频率FE 次·d−1 0.3 0.3 肠道吸附比率f — 1 1 皮肤吸附参数K cm·h−1 0.001 0.001 延滞时间 $ \tau $ h 1 1 洗澡时间TE h 0.56 0.56 日均饮水量 $ \theta $ L·d−1 1.7 1 体重W kg 56.8 15.9 人均寿命 $ L $ a 78.4 78.4 暴露频率EF d·a−1 350 350 暴露延时ED a 35 70 平均暴露时间AT d 35×365 70×365 “—”表示无相关数据 表 5 土壤重金属含量统计分析(mg·kg−1)
Table 5. Statistical characteristics of heavy metals concentration in soil(mg·kg−1)
研究区域
Study area项目
ProjectCr Ni Cu Zn As Cd Pb 揭阳
Jieyang平均值 49.93 33.01 31.83 102.44 10.66 0.20 68.68 最大值 66.12 85.67 61.63 131.99 13.61 0.49 105.97 最小值 25.75 11.67 10.59 79.94 7.40 0.03 39.06 标准差 12.27 28.93 16.55 16.32 1.91 0.16 19.37 变异系数(无量纲) 0.25 0.88 0.52 0.16 0.18 0.83 0.28 贵屿
Guiyu平均值 47.29 30.41 132.88 212.97 10.31 0.79 377.59 最大值 77.89 82.91 948.41 911.76 19.81 3.31 4308.46 最小值 31.91 12.14 23.38 92.72 4.15 0.09 52.95 标准差 11.75 18.96 232.92 209.05 3.98 0.94 1089.80 变异系数(无量纲) 0.25 0.62 1.75 0.98 0.39 1.19 2.89 广东省土壤背景值[[28]] 35.6 9.6 10.5 36.3 6.8 0.041 29.8 农用地筛选值[32] 250 60 50 200 30 0.3 80 表 6 国内相关电子垃圾拆解区重金属含量(mg·kg−1)
Table 6. Heavy metal content in domestic e-waste dismantling area
研究区域
Study area时间
Time样品类型
Sample typeCr Ni Cu Zn As Cd Pb 参考文献
References贵屿
Guiyu2021.12 农田土壤 47.29 30.41 132.88 212.97 10.31 0.79 377.59 本研究 2010.3 81.81 15.35 23.22 224.14 — 0.57 83.76 [17] 2009.5 表层土壤 26.30 12.60 36.00 75.30 10.10 0.20 57.70 [33] 2010.8 91.52 14.18 17.90 202.52 — 0.525 84.87 [34] 2014 58.10 57.00 50.00 102.00 4.70 0.13 77.50 [35] 2017 43.30 20.10 50.90 108.00 — 0.42 123.00 [34] 龙塘
Longtang2013.3 农田土壤 23.78 11.39 79.75 191.75 — 1.5 68.18 [36] 2017.11 — — 110.74 193.74 27.97 0.68 167.33 [37] 台州
Taizhou2021.3 农田土壤 115.2 43.39 95.48 161.15 8.97 0.68 57.23 [38] “—”表示无相关数据 表 7 地表水重金属含量统计分析(μg·L−1)
Table 7. Statistical characteristics of heavy metals concentration in surface water(μg·L−1)
项目
ProjectCr Ni Cu Zn As Cd Pb 揭阳
Jieyang平均值 0.04 5.85 3.87 110.89 1.50 0.09 0.80 最大值 0.16 43.21 13.81 1063.73 6.79 0.95 4.38 最小值 0.00 0.14 0.36 0.61 0.32 0.00 0.06 标准差 0.05 11.47 3.55 278.87 1.76 0.25 1.47 变异系数(无量纲) 1.22 1.96 0.92 2.51 1.17 2.91 1.83 贵屿
Guiyu平均值 0.01 3.55 1.38 3.97 1.08 0.03 0.05 最大值 0.06 11.75 3.88 18.81 4.44 0.06 0.15 最小值 0.00 0.56 0.23 0.00 0.37 0.00 0.01 标准差 0.02 2.95 1.12 4.89 1.05 0.02 0.04 变异系数(无量纲) 1.39 0.83 0.82 1.23 0.97 0.71 0.82 地表水环境质量标准
Environmental quality standards
for surface water1 10.00 — 10.00 50.00 50.00 1.00 10.00 2 50.00 — 1000.00 1000.00 50.00 5.00 10.00 3 50.00 — 1000.00 1000.00 50.00 5.00 50.00 4 50.00 — 1000.00 2000.00 100.00 5.00 50.00 5 100.00 — 1000.00 2000.00 100.00 10.00 100.00 饮用水标准(CJ3020—1993)[40]
Standards for drinking water quality50.00 — 1000.00 1000.00 10.00 5.00 10.00 贵屿[39]
Guiyu— ND—1.380 0.023—1.270 — ND—0.026 0.000—0.0107 0.006—0.061 练江[39]
Lianjiang— ND—0.380 0.007—0.656 — ND—0.020 0.000—0.0073 0.003—0.019 “—”表示无相关数据 -
[1] FORTI V, BALDÉ C P, KUEHR R, et al. The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential[M]. UNU/UNITAR SCYCLE, ITU, ISWA, 2020 [2] 傅建捷, 王亚韡, 周麟佳, 等. 我国典型电子垃圾拆解地持久性有毒化学污染物污染现状 [J]. 化学进展, 2011, 23(8): 1755-1768. FU J J, WANG Y W, ZHOU L J, et al. Pollution status and perspectives of persistent toxic substances in E-waste dismantling area in China [J]. Progress in Chemistry, 2011, 23(8): 1755-1768(in Chinese).
[3] ZENG X L, GONG R Y, CHEN W Q, et al. Uncovering the recycling potential of “New” WEEE in China [J]. Environmental Science & Technology, 2016, 50(3): 1347-1358. [4] 毛治超, 李阳, 李会茹, 等. 贵屿及其上下游沉积物中23种金属元素的污染特征、来源和风险 [J]. 地球化学, 2021, 50(5): 513-524. doi: 10.19700/j.0379-1726.2021.05.007 MAO Z C, LI Y, LI H R, et al. Pollution characteristics, sources, and risks of 23 metallic elements in sediments from Guiyu and its upstream and downstream [J]. Geochimica, 2021, 50(5): 513-524(in Chinese). doi: 10.19700/j.0379-1726.2021.05.007
[5] LIU R R, MA S T, LI G Y, et al. Comparing pollution patterns and human exposure to atmospheric PBDEs and PCBs emitted from different e-waste dismantling processes [J]. Journal of Hazardous Materials, 2019, 369: 142-149. doi: 10.1016/j.jhazmat.2019.02.029 [6] CAI K H, SONG Q B, YUAN W Y, et al. Human exposure to PBDEs in e-waste areas: A review [J]. Environmental Pollution, 2020, 267: 115634. doi: 10.1016/j.envpol.2020.115634 [7] 张鸣, 温汉辉, 蔡立梅, 等. 普宁土壤重金属的生态风险与健康风险评价 [J]. 环境科学与技术, 2019, 42(12): 202-210. doi: 10.19672/j.cnki.1003-6504.2019.12.031 ZHANG M, WEN H H, CAI L M, et al. Ecological risk and health risk assessment of heavy metals in soil of different land use types in Puning City, Guangdong Province [J]. Environmental Science & Technology, 2019, 42(12): 202-210(in Chinese). doi: 10.19672/j.cnki.1003-6504.2019.12.031
[8] LUO C L, LIU C P, WANG Y, et al. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China [J]. Journal of Hazardous Materials, 2011, 186(1): 481-490. doi: 10.1016/j.jhazmat.2010.11.024 [9] SONG Q B, LI J H. A review on human health consequences of metals exposure to e-waste in China [J]. Environmental Pollution, 2015, 196: 450-461. doi: 10.1016/j.envpol.2014.11.004 [10] 张清华, 韦永著, 曹建华, 等. 柳江流域饮用水源地重金属污染与健康风险评价 [J]. 环境科学, 2018, 39(4): 1598-1607. doi: 10.13227/j.hjkx.201708210 ZHANG Q H, WEI Y Z, CAO J H, et al. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments [J]. Environmental Science, 2018, 39(4): 1598-1607(in Chinese). doi: 10.13227/j.hjkx.201708210
[11] 徐美娟, 鲍波, 陈春燕, 等. 宁波市地表水重金属污染现状和健康风险评价 [J]. 环境科学, 2018, 39(2): 729-737. doi: 10.13227/j.hjkx.201705251 XU M J, BAO B, CHEN C Y, et al. Assessment of heavy metal pollution and human health risk of surface waters in the city of Ningbo, China [J]. Environmental Science, 2018, 39(2): 729-737(in Chinese). doi: 10.13227/j.hjkx.201705251
[12] 林文杰, 吴荣华, 郑泽纯, 等. 贵屿电子垃圾处理对河流底泥及土壤重金属污染 [J]. 生态环境学报, 2011, 20(1): 160-163. doi: 10.3969/j.issn.1674-5906.2011.01.028 LIN W J, WU R H, ZHENG Z C, et al. Heavy metals in sediments and soils contaminated by electronic waste recycling in Guiyu town [J]. Ecology and Environmental Sciences, 2011, 20(1): 160-163(in Chinese). doi: 10.3969/j.issn.1674-5906.2011.01.028
[13] 方嘉, 何影, 黄乃涛, 等. 基于PMF模型的农田土壤重金属源暴露风险综合评价: 以浙江省某电子垃圾拆解区为例[J]. 环境科学, 2020, 41(11): 5114-5124. FANG J, HE Y, HUANG N T, et al. Integrated analysis on source-exposure risk of heavy metal in farmland soil based on PMF model: A case study in the E-waste dismantling area in Zhejiang Province[J]. Environmental Science, 2020, 41(11): 5114-5124(in Chinese).
[14] 尹伊梦, 赵委托, 黄庭, 等. 电子垃圾拆解区土壤-水稻系统重金属分布特征及健康风险评价 [J]. 环境科学, 2018, 39(2): 916-926. doi: 10.13227/j.hjkx.201704122 YIN Y M, ZHAO W T, HUANG T, et al. Distribution characteristics and health risk assessment of heavy metals in a soil-rice system in an E-waste dismantling area [J]. Environmental Science, 2018, 39(2): 916-926(in Chinese). doi: 10.13227/j.hjkx.201704122
[15] 吴江平, 陈小云, 韩义君, 等. 电子垃圾拆解地稻田土壤和稻米中重金属污染评估 [J]. 环境科学学报, 2018, 38(4): 1628-1634. doi: 10.13671/j.hjkxxb.2017.0440 WU J P, CHEN X Y, HAN Y J, et al. Assessment of heavy metal pollution in paddy soils and rice grains from an e-waste recycling area in South China [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1628-1634(in Chinese). doi: 10.13671/j.hjkxxb.2017.0440
[16] 叶昊, 李良忠, 向明灯, 等. 电子垃圾拆解场地土壤重金属和溴代阻燃剂的污染现状及其对生态环境和人体健康影响 [J]. 环境卫生学杂志, 2015, 5(3): 293-297. doi: 10.13421/j.cnki.hjwsxzz.2015.03.025 YE H, LI L Z, XIANG M D, et al. Pollution and ecological environment in electronic waste dismantling places and health effects of heavy metals and bromine flame retardants [J]. Journal of Environmental Hygiene, 2015, 5(3): 293-297(in Chinese). doi: 10.13421/j.cnki.hjwsxzz.2015.03.025
[17] 陈佳佳. 基于GIS的贵屿地区农田土壤重金属的空间分布以及生态风险评价[D]. 广州: 暨南大学, 2011. CHEN J J. Spatial distribution and ecological risk assessment of heavy metals in farmland soil of Guiyu based on GIS[D]. Guangzhou: Jinan University, 2011
[18] 肖潇, 陈德翼, 梅俊, 等. 贵屿某电子垃圾拆解点附近大气颗粒物中氯代/溴代二英、四溴双酚A污染水平研究 [J]. 环境科学学报, 2012, 32(5): 1142-1148. doi: 10.13671/j.hjkxxb.2012.05.021 XIAO X, CHEN D Y, MEI J, et al. Particle-bound PCDD/Fs, PBDD/Fs and TBBPA in the atmosphere around an electronic waste dismantling site in Guiyu, China [J]. Acta Scientiae Circumstantiae, 2012, 32(5): 1142-1148(in Chinese). doi: 10.13671/j.hjkxxb.2012.05.021
[19] 中华人民共和国环境保护部. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境科学出版社, 2004. Ministry of Environmental Protection of the People's Republic of China. The Technical Specification for soil Environmental monitoring : HJ/T 166—2004[S]. Beijing: China Environment Science Press, 2004(in Chinese).
[20] 中华人民共和国环境保护部. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People's Republic of China. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[21] 中华人民共和国环境保护部. 水质 65种元素的测定电感耦合等离子体质谱法: HJ 700—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of 65 elements-Inductively coupled plasma-mass spectrometry: HJ/T 700-2014[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[22] 中华人民共和国环境保护部. 水质采样技术指导: HJ/T 494—2009[S]. 北京: 中国环境科学出版社, 2009. Ministry of Environmental Protection of the People's Republic of China. Water quality-Guidance on sampling techniques: HJ/T 494—2009[S]. Beijing: China Environment Science Press, 2009 (in Chinese).
[23] HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [24] US EPA. Exposure factors handbook (2011 Edition)[R]. Washington: National Center for Environmental Assessment. 2011 [25] 生态环境部. 中国人群暴露参数手册[M]. 成人卷. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection. Chinese Population Exposure Parameter Manual[M]. Adult Volume. Beijing: China Environmental Science Press, 2013(in Chinese).
[26] 王刚. 南京市地表水重金属污染特征及风险研究 [J]. 环境生态学, 2020, 2(7): 37-47. WANG G. Characteristic and risk of heavy metals contamination of surface water in Nanjing City [J]. Environmental Ecology, 2020, 2(7): 37-47(in Chinese).
[27] ZUCKERMAN A J. IARC monographs on the evaluation of carcinogenic risks to humans[M]. Lyon, France: World Health Organisation, IARC Press. 2011. [28] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China National Environmental Monitoring Centre. Background value of soil elements in China[M]. Beijing: China Environment Science Press, 1990(in Chinese).
[29] 陈海棠, 周丹丹, 薛南冬, 等. 电子固体废弃物拆解作坊附近土壤重金属污染特征及风险 [J]. 环境化学, 2015, 34(5): 956-964. doi: 10.7524/j.issn.0254-6108.2015.05.2014120901 CHEN H T, ZHOU D D, XUE N D, et al. Contamination and health risk of heavy metals in soils near e-waste recycling workshops [J]. Environmental Chemistry, 2015, 34(5): 956-964(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2014120901
[30] GULLETT B K, LINAK W P, TOUATI A, et al. Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations [J]. Journal of Material Cycles and Waste Management, 2007, 9: 69-79. doi: 10.1007/s10163-006-0161-x [31] 罗勇, 罗孝俊, 杨中艺, 等. 电子废物不当处置的重金属污染及其环境风险评价 Ⅱ. 分布于人居环境(村镇)内的电子废物拆解作坊及其附近农田的土壤重金属污染 [J]. 生态毒理学报, 2008, 3(2): 123-129. LUO Y, LUO X J, YANG Z Y, et al. Studies on heavy metal contamination by improper handling of E-waste and its environmental risk evaluation Ⅱ. Heavy metal contamination in surface soils on E-waste disassembling workshops within villages and the adjacent agricultural soils [J]. Asian Journal of Ecotoxicology, 2008, 3(2): 123-129(in Chinese).
[32] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. . Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[33] LI J H, DUAN H B, SHI P X. Heavy metal contamination of surface soil in electronic waste dismantling area: Site investigation and source-apportionment analysis [J]. Waste Management & Research, 2011, 29(7): 727-738. [34] 杨东升. 广东省典型电子垃圾拆解区土壤重金属的空间分布特征及时间动态模拟[D]. 广州: 暨南大学, 2020. YANG D S. Spatial distribution characteristics and temporal dynamic simulation of heavy metals in soil of A typical E-waste disassembly area in Guangdong Province[D]. Guangzhou: Jinan University, 2020 (in Chinese).
[35] YEKEEN T A, XU X J, ZHANG Y L, et al. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China [J]. Environmental Science and Pollution Research, 2016, 23(17): 17511-17524. doi: 10.1007/s11356-016-6896-6 [36] 黄华伟, 朱崇岭, 任源. 龙塘镇电子垃圾拆解区土壤和河流底泥重金属赋存形态及生态风险 [J]. 环境化学, 2015, 34(2): 254-261. HUANG H W, ZHU C L, REN Y. Speciation and potential ecological risk of heavy metals in the soils and river sediments of the E-waste recycling region of Longtang Town [J]. Environmental Chemistry, 2015, 34(2): 254-261(in Chinese).
[37] 任露陆, 曹美苑, 王固宁, 等. 电子废弃物拆解区周边农田土壤重金属污染及生态风险 [J]. 安徽农业科学, 2020, 48(10): 50-53. doi: 10.3969/j.issn.0517-6611.2020.10.014 REN L L, CAO M Y, WANG G N, et al. Heavy metal contamination and ecological risks in the farmland soils around the E-waste disassembling site [J]. Journal of Anhui Agricultural Sciences, 2020, 48(10): 50-53(in Chinese). doi: 10.3969/j.issn.0517-6611.2020.10.014
[38] 郑宇娜, 刘鹏, 刘金河, 等. 台州市典型电子垃圾拆解场地周边农田土壤重金属污染特征和来源解析 [J]. 农业环境科学学报, 2022, 41(7): 1442-1451. doi: 10.11654/jaes.2021-1395 ZHENG Y N, LIU P, LIU J H, et al. Pollution characteristics and source analysis of heavy metals in farmland soils around the e-waste dismantling sites in Taizhou City, China [J]. Journal of Agro-Environment Science, 2022, 41(7): 1442-1451(in Chinese). doi: 10.11654/jaes.2021-1395
[39] GUO Y, HUANG C J, ZHANG H, et al. Heavy metal contamination from electronic waste recycling at Guiyu, Southeastern China [J]. Journal of Environmental Quality, 2009, 38(4): 1617-1626. doi: 10.2134/jeq2008.0398 [40] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB5749—2022[S]. State Administration for Market Regulation, Standardization Administration. Standard for drinking water quality: GB5749—2022[S].