-
电镀是工业产业链中的重要环节,在电子电器、装备制造等领域都有广泛应用. 近年来我国电镀行业发展迅速,且分布较为集中,主要位于长三角、珠三角、京津冀等制造业比较发达的地区[1]. 我国电镀加工中涉及最广的是镀锌、镀铜、镀镍、镀铬. 电镀行业使用大量强酸、强碱、重金属溶液,甚至铬酸酐、持久性有机污染物等有毒有害化学品,通过电镀液泄漏、三废排放等,将锌、铜、镍、铬等重金属和全氟化合物(perfluorinated compounds,PFASs)排入环境,危害生态系统安全[2 − 6]. 我国对电镀排放重金属的研究已久,尤其是电镀废水的处置以及对周边土壤和水体环境的影响. 卢然等搜集电镀地块调查报告和文献,分析地块中重金属、氰化物和有机物,结果发现土壤及地下水中超标因子主要为重金属[7]. 刘芸等使用化学品足迹法筛查电镀行业潜在高风险化学品,发现仅电镀一个行业在达标排放的情况下,就可能对区域生态环境产生风险[8],但缺乏对全国整体污染状况的分析.
全氟辛烷磺酸(perfluorooctane sulphonate,PFOS)是一类典型全氟化合物. 长久以来,PFOS及其盐类是电镀过程中普遍使用的铬雾抑制剂,旨在保护工人免受空气中高毒性的铬暴露. 然而,因其具有高持久性、远距离运输和生物积累的特点,对生态环境和人类健康构成巨大威胁[9 − 11],2009年被列入斯德哥尔摩公约. 全氟烷基醚磺酸盐(6:2 chlorinated polyfluorinated ether sulfonate,F-53B)在20世纪70年代首次合成,已有50多年使用历史[12 − 13]. 当前作为PFOS在电镀行业的替代品,其需求也在不断增加. F-53B被证实具有生物累积性[14]、难降解性[12],在污水、污泥、土壤、水体等多种环境中被广泛检出. 部分研究发现,F-53B的生物累积潜力可能高于PFOS[13 − 14]. 同时有迹象表明,F-53B可以在水生食物网中被生物放大[15],是目前为止发现最具生物持久性的全氟化合物[16]. 目前,针对电镀行业污染物排放的研究通常针对工业场地及周边区域展开,但缺乏对全国电镀污染物分布特征及风险评估的综合报道,尤其是针对全氟化合物的系统分析. 因此,本文通过对国内外文献的整体综述,阐述生产工艺、运行时间等对重金属及全氟化合物时空分布的影响,进而评估不同区域电镀行业带来的环境风险.
电镀行业排放重金属及全氟化合物时空分布及风险评估
Spatial and temporal distribution and risk assessment of heavy metals and perfluorinated compounds from electroplating industry
-
摘要: 随着我国经济高速增长,电镀行业也进入快速发展期,电镀过程中产生的污染物日益受到关注. 本文对电镀过程中不同环节产生的污染物进行探究,识别出重金属、全氟化合物等特征污染物. 通过对全国不同地区电镀厂污染物排放的系统分析,阐明生产工艺、运行时间等对污染物时空分布的影响,发现检测出高浓度重金属、全氟辛烷磺酸(perfluorooctane sulphonate, PFOS)以及全氟烷基醚磺酸盐(6:2 chlorinated polyfluorinated ether sulfonate, F-53B)的电镀厂集中分布在长三角、珠三角和京津冀等经济区. 与《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600—2018)建设用地第二类用地土壤污染风险筛选值对比,Ni和Cr(Ⅵ)超标较为严重,超标倍数最高达9.24倍和1965倍,超标点位均位于电镀场地内部,尤其是电镀车间及废水处理区域. 建厂时间越早的电镀厂因管理处置措施不完善等原因检测出的污染物浓度越高. 对于全氟化合物,电镀园区污水中PFOS和F-53B的含量较高,达到mg·L−1水平,非电镀园区水体中PFOS和F-53B的含量在pg·L−1至ng·L−1水平. 在同一地区随着年度的增长,PFOS和F-53B的含量也在增加,F-53B的增长速度远高于PFOS. 对重金属和PFOS进行风险评估,发现单个重金属的潜在生态风险指数
$ {E}_{\mathrm{r}}^{i} $ 平均值排序为Cd>Hg>Ni>Cu>Cr>Pb>Zn>As,这与不同地区背景值差异有关. 地表水中PFOS的风险熵RQ值为0—7.5,存在健康风险的点位分布在电镀园区内部及周边,非电镀园区附近的地表水均无健康风险. 本研究可为电镀场地污染控制以及新污染物的防控提供支撑.Abstract: Along with the robust growth of the economy, electroplating industry has entered a rapid developing period, and the contaminants generated during electroplating process have drawn tremendous attention. In this paper, the pollutants produced in different links of electroplating process were investigated. The characteristic pollutants such as heavy metals and perfluorinated compounds were identified. The effects of production technologies and running time on the spatial and temporal distribution of pollutants were illustrated via systematic analysis. High levels of heavy metals, perfluorooctane sulphonate (PFOS), and perfluoroalkyl ether sulfonate (6:2 chlorinated polyfluorinated ether sulfonate, F-53B) were detected in electroplating plants concentrated in the economic zones, namely the Yangtze River Delta, the Pearl River Delta and the Beijing-Tianjin-Hebei. Compared with the risk screening values on heavy metals for soil contamination of the second type land in the "Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land" (GB36600—2018), Ni and Cr(Ⅵ) exceeded the standard seriously, with the maximum multiple of 9.24 times and 1965 times. The exceeding points were all located inside the electroplating sites, especially electroplating workshops and wastewater treatment areas. The earlier the electroplating plants were built, the higher the concentrations of pollutants were detected due to imperfect management and disposal measures. For perfluorinated compounds, the contents of PFOS and F-53B in the wastewater of electroplating park were relatively high, reaching the level of mg·L−1, while the contents of PFOS and F-53B in the water of non-electroplating park ranged from pg·L−1 to ng·L−1. In the same area, the content of PFOS and F-53B also increased with the annual increase, but the growth rate of F-53B was much higher than that of PFOS. Risk assessment of heavy metals and PFOS showed that the average value of potential ecological risk index$ {E}_{\mathrm{r}}^{i} $ was Cd>Hg>Ni>Cu>Cr>Pb>Zn>As, which was related to the variations of background values in different regions. The RQ value of the risk entropy of PFOS in surface water ranged from 0 to 7.5. The points with health risks were distributed in and around the electroplating parks, the surface water not near the electroplating park did not show health risks. Insights gained from this study can provide support for electroplating site pollution control and prevention of new pollutants.-
Key words:
- electroplating /
- heavy metals /
- PFOS /
- F-53B /
- risk.
-
表 1 潜在生态风险指数法的污染评价等级划分
Table 1. Classification of pollution assessment by potential ecological risk index method
范围$ {E}_{\mathrm{r}}^{i} $ range$ {E}_{\mathrm{r}}^{i} $ RI范围
RI range重金属污染物生态风险程度分级
Classification of ecological risk of heavy metal pollutants <40$ {E}_{\mathrm{r}}^{i} $ RI≤150 低 40< ≤80$ {E}_{\mathrm{r}}^{i} $ 150<RI≤300 中 80 ≤160$ <{E}_{\mathrm{r}}^{i} $ 300<RI≤600 较高 160< ≤320$ {E}_{\mathrm{r}}^{i} $ RI>600 高 >320$ {E}_{\mathrm{r}}^{i} $ 极高 表 2 我国水环境中PFOS和F-53B总含量水平
Table 2. Total content of PFOS and F-53B in China’s water environment
研究区域
Study area采样地点
Sampling location采样时间
Sampling timePFOS /(ng·L−1) F-53B /(ng·L−1) 数据来源
Data sources电镀园区污水 珠三角 深圳 2019 3.53 0.51 [74] 深圳 2019 12.4 2.37 [74] 深圳 2019 34.9 8.54 [74] 长三角 温州 2013 进水: 65—112 [12] 出水: 43—78 杭州 2020 进水: 5500000 进水: 154500 [69] 出水: 795000 出水: 985000 电镀园区周边地区 珠三角 中山 2015 <0.11—16.02 <0.01—0.35 [75] 东莞 2015 <0.11—13.47 ND [75] 东莞 2015 <0.11—9.22 <0.01—0.97 [75] 惠州 2015 <0.11—32.52 <0.01—0.32 [75] 长三角 浙江 2016 4.4—77 [76] 上海 2019 5.89 <10—968 [64] 杭州 2020 300— 1500 300— 1500 [69] 其他地区 山东 2016 0.59—5.7 [76] 非电镀园区周边地区 长三角 浙江 2013 8.5—14.8 31.6—77.3 [77] 浙江 2013 0.9—2.6 <0.56—5.1 [77] 浙江 2013 2.7—3.2 2.8—3.6 [77] 上海 2013 3.8—14.1 2.6—7 [77] 上海 2013 1.0—10.7 <0.56—6.7 [77] 上海 2013 0.8—1.0 1.0—2.3 [77] 长江 2016 0.39—12.12 0.12—12.94 [73] 江苏 2016 0.22—15.2 0.21—27.6 [73] 江苏 2016 0.258—79 0.17—1.83 [78] 珠三角 广东 2016 1.38—23.57 0.13—11.06 [73] 广东 2017 ND—0.307 [79] 广东 2018 0.0115 —0.09398 [79] 京津冀 河北 2013 0.4—0.5 <0.56 [77] 河北 2013 15.7—17.8 12.1—12.4 [77] 天津 2013 16.5—55 17.8—78.5 [77] 北京 2013—2014 ND—50.75 ND—6.93 [80] 河北 2016 <0.21—7.9 [81] 北京 2017 0.335 [82] 河北 2017 ND—36.9 [83] 长江经济带 江西 2016 0.31—0.52 0.84—3.58 [71] 江西 2016 <0.01—5.8 <0.06—0.41 [71] 景德镇 2016 <0.01—1.13 0.19—1.43 [71] 非电镀园区周边地区 长江经济带 南昌 2016 0.09—17.01 <0.06—117.5 [71] 上饶 2016 <0.01—32.65 0.1—0.49 [71] 鹰潭 2016 <0.01—33.75 <0.06—4.59 [71] 安徽 2016 1.96—29.7 0.69—52.2 [73] 四川 2019 1.11—4.54 0.051—2.48 [84] 其他地区 山东 2013 0.9—1.8 <0.56 [77] 山东 2013 0.5—0.6 <0.56 [77] 福建 2013 3.2—7.7 <0.56—0.8 [77] 福建 2013 2.4—3.0 <0.56 [77] 福建 2013 1.6—3.4 <0.56—2.0 [77] 沈阳 2013 0.9—3.0 <0.56—3.6 [77] 沈阳 2013 0.4—0.6 <0.56—1.1 [77] 沈阳 2013 1.1 <0.56 [77] 沈阳 2013 2.3—3.0 4.7—5.6 [77] 山东 2015 2.05—10.2 1.52—15.6 [85] 辽宁 2016 0.48—3.72 0.36—21.38 [73] 山东 2016 0.09—4.4 0.01—0.29 [73] 东北河流 2016 <0.21—51 [81] 辽宁 2016 2.26—5.66 0.24—2.29 [73] 山西 2017 0.05—12.27 0.02—8.37 [86] 广西 2018—2019 0.06—0.21 ND—0.06 [87] 山东 2019 ND—10.1 ND—2.59 [88] ND,未检出. ND,Not detected. 表 3 我国土壤、污泥环境中PFOS和F-53B总含量水平
Table 3. Total content of PFOS and F-53B in soil and sludge environment in China
研究区域
Study area样品类型
Sample type采样地点
Sampling location采样时间
Sampling timePFOS/(ng·g−1) F-53B/(ng·g−1) 数据来源
Data sources电镀园区 长三角 土壤 宁波、杭州 2016 38.34— 3672.59 6.33—837.15 [89] 电镀园区周边 珠三角 土壤 中山 2015 0.37—14.95 0.04—10.77 [75] 东莞 2015 0.41—5.89 0.09—0.65 [75] 惠州 2015 0.37—4.54 0.02—209 [75] 非电镀园区周边 全国 污泥 20个省市污水处理厂 2010—2011 ND—218 0.02—209 [90] 注:ND(Not detected)为未检出. -
[1] 2019年中国电镀行业发展现状和市场趋势分析 装饰性和高抗蚀性工艺技术不断发展[J]. 表面工程与再制造, 2019, 19(增刊1): 61-62. Analysis on the Development Status and Market Trend of Electroplating Industry in China in 2019;Decorative and highly corrosion-resistant technologies are constantly developing[J]. Surface Engineering & Remanufacturing, 2019, 19(Sup 1): 61-62 (in Chinese).
[2] HANG X S, WANG H Y, ZHOU J M, et al. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta[J]. Environmental Pollution, 2009, 157(8/9): 2542-2549. [3] 郭鹏然, 雷永乾, 周巧丽, 等. 电镀厂周边环境中重金属分布特征及人体健康暴露风险评价[J]. 环境科学, 2015, 36(9): 3447-3456. GUO P R, LEI Y Q, ZHOU Q L, et al. Distribution characteristics of heavy metals in environmental samples around electroplating factories and the health risk assessment[J]. Environmental Science, 2015, 36(9): 3447-3456 (in Chinese).
[4] 梁秀娟, 谢润楠, 罗艺丰, 等. 典型电镀城周边土壤重金属的污染特征研究[J]. 广州化工, 2020, 48(16): 107-110. LIANG X J, XIE R N, LUO Y F, et al. Study on pollution characteristics of heavy metals in soils surrounding the typical electroplating cities[J]. Guangzhou Chemical Industry, 2020, 48(16): 107-110 (in Chinese).
[5] 赵委托. 东莞地区电镀厂重金属污染与风险评价研究[D]. 武汉: 中国地质大学, 2016. ZHAO W T. Study on pollution and risk assessment of heavy metals surrounding electroplating plants in Dongguan[D]. Wuhan: China University of Geosciences, 2016 (in Chinese).
[6] LANER D, CREST M, SCHARFF H, et al. A review of approaches for the long-term management of municipal solid waste landfills[J]. Waste Management, 2012, 32(3): 498-512. doi: 10.1016/j.wasman.2011.11.010 [7] 卢然, 王宁, 伍思扬, 等. 电镀地块污染成因分析与源头防控对策[J]. 电镀与涂饰, 2020, 39(23): 1682-1686. LU R, WANG N, WU S Y, et al. Source analysis and control countermeasures of electroplating plot pollution[J]. Electroplating & Finishing, 2020, 39(23): 1682-1686 (in Chinese).
[8] 刘芸, 赵旭, 熊涵磊, 等. 化学品足迹法筛查电镀行业潜在高风险化学品[J]. 生态毒理学报, 2020, 15(3): 184-194. LIU Y, ZHAO X, XIONG H L, et al. Application of chemical footprint method in screening of potential high-risk chemicals in electroplating industry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 184-194 (in Chinese).
[9] CONDER J M, HOKE R A, de WOLF W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J]. Environmental Science & Technology, 2008, 42(4): 995-1003. [10] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [11] YOUNG C J, FURDUI V I, FRANKLIN J, et al. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation[J]. Environmental Science & Technology, 2007, 41(10): 3455-3461. [12] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18): 10163-10170. [13] LIU W, LI J W, GAO L C, et al. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater Alga Scenedesmus obliquus[J]. Environmental Pollution, 2018, 233: 8-15. doi: 10.1016/j.envpol.2017.10.039 [14] SHI Y L, VESTERGREN R, ZHOU Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging concern[J]. Environmental Science & Technology, 2015, 49(24): 14156-14165. [15] LIU Y W, RUAN T, LIN Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China: Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8): 4407-4414. [16] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5): 2396-2404. [17] GLASS G V. Primary, secondary, and meta-analysis of research[J]. Educational Researcher, 1976, 5(10): 3-8. doi: 10.3102/0013189X005010003 [18] 詹思延. 系统综述与Meta分析[M]. 北京: 人民卫生出版社, 2019. ZHAN S Y. Systematic review and meta-analysis[M]. Beijing: People's Medical Publishing House, 2019(in Chinese).
[19] 邹森. 清洁生产与电镀技术发展[J]. 建材与装饰, 2018(1): 169-170. ZOU S. Cleaner production and development of electroplating technology[J]. Construction Materials & Decoration, 2018(1): 169-170 (in Chinese).
[20] 赵旭, 胡小英, 刘芸, 等. 电镀行业有机污染物免疫毒性研究进展[J]. 毒理学杂志, 2021, 35(4): 346-350, 359. ZHAO X, HU X Y, LIU Y, et al. Research progress on immunotoxicity of organic pollutants in electroplating industry[J]. Journal of Toxicology, 2021, 35(4): 346-350, 359 (in Chinese).
[21] 刘玉兰. 某电镀行业地块土壤污染调查及原因分析[J]. 广东化工, 2020, 47(21): 110-112, 124. LIU Y L. Investigation and analysis of soil pollution in an electroplating industry[J]. Guangdong Chemical Industry, 2020, 47(21): 110-112, 124 (in Chinese).
[22] 孙威, 张莉, 吴小丽, 等. 电镀废水有机污染物去除技术初探[J]. 科技创新导报, 2017, 14(35): 104-105, 107. SUN W, ZHANG L, WU X L, et al. Preliminary study on removal technology of organic pollutants from electroplating wastewater[J]. Science and Technology Innovation Herald, 2017, 14(35): 104-105, 107 (in Chinese).
[23] 杨晓丽. 电镀工业园内企业污染防治措施分析探讨[J]. 皮革制作与环保科技, 2022, 3(6): 138-141. YANG X L. Analysis and discussion on pollution prevention and control measures of enterprises in electroplating industrial park[J]. Leather Manufacture and Environmental Technology, 2022, 3(6): 138-141 (in Chinese).
[24] 蔡昂祖. 邯郸市工业区周边土壤重金属来源解析及污染评估研究[D]. 邯郸: 河北工程大学, 2022. CAI A Z. Source apportionment and pollution assessment of heavy metals in industrial area soil in Handan[D]. Handan: Hebei University of Engineering, 2022 (in Chinese).
[25] 刘胜然. 典型城市单元的土壤重金属溯源方法与实证研究[D]. 长春: 吉林大学, 2019. LIU S R. Source analysis method and empirical study of heavy metals in soils of typical urbanized areas[D]. Changchun: Jilin University, 2019 (in Chinese).
[26] LI J, PENG G Y, XU X M, et al. Per- and polyfluoroalkyl substances (PFASs) in groundwater from a contaminated site in the North China Plain: Occurrence, source apportionment, and health risk assessment[J]. Chemosphere, 2022, 302: 134873. doi: 10.1016/j.chemosphere.2022.134873 [27] XIE S W, WANG T Y, LIU S J, et al. Industrial source identification and emission estimation of perfluorooctane sulfonate in China[J]. Environment International, 2013, 52: 1-8. doi: 10.1016/j.envint.2012.11.004 [28] TI B W, LI L, LIU J G, et al. Global distribution potential and regional environmental risk of F-53B[J]. Science of the Total Environment, 2018, 640/641: 1365-1371. doi: 10.1016/j.scitotenv.2018.05.313 [29] 曹静, 余节发. 安徽某退役电镀厂搬迁后土地污染与健康风险评估[J]. 化工设计通讯, 2020, 46(4): 228-229. CAO J, YU J F. Land pollution and health risk assessment after relocation of a decommissioned electroplating plant in Anhui Province[J]. Chemical Engineering Design Communications, 2020, 46(4): 228-229 (in Chinese).
[30] 陈洁. 场地重金属健康风险评价: 苏州市某电镀遗留场地重金属健康风险评价[D]. 苏州: 苏州科技大学, 2018. CHEN J. Health risk assessment of heavy metals in the site— Health risk assessment of heavy metals in electroplating left site in Suzhou[D]. Suzhou: Suzhou University of Science and Technology, 2018 (in Chinese).
[31] 陈志良, 周建民, 蒋晓璐, 等. 典型电镀污染场地重金属污染特征与环境风险评价[J]. 环境工程技术学报, 2014, 4(1): 80-85. CHEN Z L, ZHOU J M, JIANG X L, et al. Pollution characteristics and environmental risk assessment of heavy metals in typical electroplating contaminated site[J]. Journal of Environmental Engineering Technology, 2014, 4(1): 80-85 (in Chinese).
[32] 常家华, 杨世利, 余江. 典型企业场地土壤重金属污染及风险水平研究[J]. 东北师大学报(自然科学版), 2019, 51(1): 154-160. CHANG J H, YANG S L, YU J. Study on pollution state and risk level of heavy metals in soil of typical enterprise sites[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(1): 154-160 (in Chinese).
[33] 杭小帅, 王火焰, 周健民, 等. 电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响[J]. 农业环境科学学报, 2010, 29(11): 2133-2138. HANG X S, WANG H Y, ZHOU J M, et al. Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory[J]. Journal of Agro-Environment Science, 2010, 29(11): 2133-2138 (in Chinese).
[34] 甘文君, 何跃, 张孝飞, 等. 电镀厂污染土壤重金属形态及淋洗去除效果[J]. 生态与农村环境学报, 2012, 28(1): 82-87. GAN W J, HE Y, ZHANG X F, et al. Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 82-87 (in Chinese).
[35] 陈洁, 施维林, 张一梅, 等. 电镀厂遗留场地污染分析及健康风险空间分布评价[J]. 环境工程, 2018, 36(4): 153-159. CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site[J]. Environmental Engineering, 2018, 36(4): 153-159 (in Chinese).
[36] 杜丹丹. 电镀场地土壤重金属元素Cr、Zn、Cu形态分析及土壤修复[D]. 济南: 山东大学, 2017. DU D D. The curing stabilization of heavy metals Cr, Cu, Zn in the electroplating site and the soil repair[D]. Jinan: Shandong University, 2017 (in Chinese).
[37] 刘杰, 钟雪梅, 梁延鹏, 等. 电镀废水污染水稻田土壤中重金属的形态分析[J]. 农业环境科学学报, 2006, 25(2): 398-401. LIU J, ZHONG X M, LIANG Y P, et al. Fractionations of heavy metals in paddy soils contaminated by electroplating wastewater[J]. Journal of Agro-Environment Science, 2006, 25(2): 398-401 (in Chinese).
[38] 张毅, 王伟民, 王伟, 等. 电镀企业搬迁场地土壤环境质量调查及评价[C]//“第四届重金属污染防治及风险评价研讨会”暨重金属污染防治专业委员会2014年学术年会论文集. 盐城, 2014: 68-74. ZHANG Y, WANG W M, WANG W, et al. Investigation and evaluation of soil environmental quality in the relocation site of electroplating enterprises [C]. "The Fourth Symposium on Heavy Metal Pollution Control and Risk Assessment" and Proceedings of the Annual Conference of Heavy Metal Pollution Control Committee. Yancheng: 2014, 2014: 68-74(in Chinese)
[39] 刘媛. 电镀企业搬迁后场地调查及其环境影响评价[J]. 岩矿测试, 2012, 31(4): 638-644. LIU Y. Environmental survey and impact assessment on the relocation site of an electroplate factory[J]. Rock and Mineral Analysis, 2012, 31(4): 638-644 (in Chinese).
[40] 吴克华, 周飞. 电镀企业遗留场地调查及生态修复研究[J]. 中国资源综合利用, 2018, 36(11): 26-28, 32. WU K H, ZHOU F. Investigation of the remaining sites of electroplating enterprises and research on ecological restoration[J]. China Resources Comprehensive Utilization, 2018, 36(11): 26-28, 32 (in Chinese).
[41] 麻井彪, 姜延花, 李培辰, 等. 电镀污染土壤中七种重金属潜在生态风险评估[C]//2018中国环境科学学会科学技术年会论文集(第三卷). 合肥, 2018: 509-516. MA J B, JIANG Y H, LI P C, et al Potential ecological risk assessment of seven heavy metals in electroplating contaminated soil [C] Proceedings of 2018 Annual Conference of Science and Technology of Chinese Academy of Environmental Sciences (Volume III). Hefei: 2018: 509-516(in Chinese)
[42] 刘志杰, 张家伟. 电镀行业企业场地土壤污染调查及成因分析[J]. 广东化工, 2018, 45(6): 167-169. LIU Z J, ZHANG J W. Site investigation and reasons of pollution in a electroplating plant[J]. Guangdong Chemical Industry, 2018, 45(6): 167-169 (in Chinese).
[43] 孔莹莹. 东莞市某电镀厂重金属污染场地风险评估[D]. 兰州: 西北师范大学, 2020. KONG Y Y. Risk assessment of heavy metal contaminated site in an electroplating plant in Dongguan[D]. Lanzhou: Northwest Normal University, 2020 (in Chinese).
[44] 马宁, 高先萍, 秦勇军, 等. 工业场地再开发前的污染辨识与风险评估: 以电镀企业遗留场地为例[J]. 资源与产业, 2017, 19(3): 48-52. MA N, GAO X P, QIN Y J, et al. Identification of pollution and risk assessment of industrial sites before redevelopment based on a case study on remained sites by electroplating factory[J]. Resources & Industries, 2017, 19(3): 48-52 (in Chinese).
[45] 吴江涛, 于芳芳, 谭镇. 惠城区典型电镀企业搬迁遗留地重金属污染防治调查及防控建议[J]. 广东化工, 2018, 45(13): 49-50, 105. WU J T, YU F F, TAN Z. Pollution survey and prevention and control suggestions of typical electroplating enterprises in Huicheng district[J]. Guangdong Chemical Industry, 2018, 45(13): 49-50, 105 (in Chinese).
[46] 甘文君, 何跃, 张孝飞, 等. 秸秆生物炭修复电镀厂污染土壤的效果和作用机理初探[J]. 生态与农村环境学报, 2012, 28(3): 305-309. GAN W J, HE Y, ZHANG X F, et al. Effects and mechanisms of straw biochar on remediation contaminated soil in electroplating factory[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 305-309 (in Chinese).
[47] 廉晶晶, 罗泽娇, 靳孟贵. 某厂电镀车间场地土壤与地下水污染特征[J]. 地质科技情报, 2013, 32(2): 150-155. LIAN J J, LUO Z J, JIN M G. Contamination characteristics of soil and groundwater in electroplating plant[J]. Geological Science and Technology Information, 2013, 32(2): 150-155 (in Chinese).
[48] 周鼎, 周建民, 彭晓春, 等. 某电镀搬迁场地土壤重金属污染健康风险评估[J]. 湖南农业大学学报(自然科学版), 2014, 40(3): 321-324. ZHOU D, ZHOU J M, PENG X C, et al. Health risk assessments of soil polluted by heavy metals at a site of relocated electroplating[J]. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(3): 321-324 (in Chinese).
[49] 倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报, 2022, 12(3): 878-885. NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 878-885 (in Chinese).
[50] 雒寒梦. 某电镀厂对土壤、地下水的污染程度及健康风险评价[D]. 石家庄: 河北地质大学, 2017. LUO H M. Pollution degree and health risk assessment of soil and groundwater in an electroplating factory[D]. Shijiazhuang: Hebei GEO University, 2017 (in Chinese).
[51] 王辉, 刘国良, 许建军. 某电镀厂重金属污染土壤治理措施探讨[C]//2013中国环境科学学会学术年会论文集(第五卷). 昆明, 2013: 1832-1835. WANG H, LIU G L, XU J J. Discussion on the treatment measures of heavy metal contaminated soil in an electroplating factory [C] Proceedings of the 2013 Annual Academic Conference of the Chinese Academy of Environmental Sciences (Volume V). Kunming: 2013: 1832-1835(in Chinese)
[52] 张湘文, 吴代赦, 黄庭, 等. 南昌市进贤县电镀厂周边表层土壤重金属污染特征及健康风险评价[C]//第九届重金属污染防治技术及风险评价研讨会论文集. 武汉, 2019: 34-46. ZHANG X W, WU D S, HUANG T, et al Heavy metal pollution characteristics and health risk assessment of topsoil around Jinxian electroplating plant in Nanchang [C] Proceedings of the 9th Symposium on Heavy Metal Pollution Control Technology and Risk Assessment. Wuhan: 2019: 34-46(in Chinese)
[53] 张磊, 展漫军, 杭静, 等. 南京市某电镀企业搬迁遗留场地调查及风险评估[J]. 环境监测管理与技术, 2015, 27(6): 33-36. ZHANG L, ZHAN M J, HANG J, et al. Environmental site investigation and health risk assessment for the remaining site of A relocated electroplating factory in Nanjing[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(6): 33-36 (in Chinese).
[54] 蒋旭, 王婷婷, 林广宇. 天津市某典型电镀场地重金属污染特征及健康风险评价[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(一). 西安, 2019: 276-283. JIANG X, WANG T T, LIN G Y. Heavy metal pollution characteristics and health risk assessment of a typical electroplating site in Tianjin [C] Proceedings of the 2019 Science and Technology Annual Meeting of Chinese Academy of Environmental Sciences — Environmental Engineering Technology Innovation and Application Sub Forum (I). Xi’an: 2019: 276-283(in Chinese)
[55] 殷伟庆, 郭蕾, 黄莹, 等. 土壤中氰化物的快速测定: 以江苏镇江电镀园区土壤监测为例[J]. 干旱环境监测, 2014, 28(2): 70-74. YIN W Q, GUO L, HUANG Y, et al. The rapid determination of cyanide in soil by flow injection technique[J]. Arid Environmental Monitoring, 2014, 28(2): 70-74 (in Chinese).
[56] 耿治鹏, 宋颉, 王春林, 等. 污染场地土壤重金属污染空间特征分析: 以某搬迁电镀厂为例[J]. 环境工程技术学报, 2023, 13(1): 295-302. GENG Z P, SONG J, WANG C L, et al. Spatial characteristics of soil heavy metal pollution in polluted sites: Taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 295-302 (in Chinese).
[57] 侯文隽, 龚星, 詹泽波, 等. 粤港澳大湾区丘陵地带某电镀场地重金属污染特征与迁移规律分析[J]. 环境科学, 2019, 40(12): 5604-5614. HOU W J, GONG X, ZHAN Z B, et al. Heavy metal contamination and migration in correspondence of an electroplating site on the hilly lands of the Guangdong-Hong Kong-Macau greater bay area, China[J]. Environmental Science, 2019, 40(12): 5604-5614 (in Chinese).
[58] 厉炯慧, 翁珊, 方婧, 等. 浙江海宁电镀工业园区周边土壤重金属污染特征及生态风险分析[J]. 环境科学, 2014, 35(4): 1509-1515. LI J H, WENG S, FANG J, et al. Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park[J]. Environmental Science, 2014, 35(4): 1509-1515 (in Chinese).
[59] 王古月. 镇江绿色化工新材料产业园土壤重金属污染现状及其风险[D]. 镇江: 江苏大学, 2018. WANG G Y. Pollution status and risk assessment of heavy metals in soils of chemical new material industrial park in Zhenjiang[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese).
[60] 朱伟, 张毅, 王伟民, 等. 重金属污染场地土壤环境调查及环境影响评价方法探讨——以上坊电镀厂地块为例[C]. “第四届重金属污染防治及风险评价研讨会”暨重金属污染防治专业委员会2014年学术年会论文集. 盐城: 2014: 254-260. ZHU W, ZHANG Y, WANG W M, et al. Discussion on soil environment and environmental impact assessment method of heavy metal polluted site: A case study of Shangfang Electroplating Plant plot [C]. "The Fourth Symposium on Heavy Metal Pollution Prevention and Risk Assessment" and the Proceedings of the Annual Conference of Heavy Metal Pollution Prevention and Control Committee 2014. Yancheng: 2014: 254-260(in Chinese).
[61] 黄珊. 重金属污染土壤风险评价及化学淋洗研究[D]. 重庆: 重庆大学, 2013. HUANG S. Research of heavy metals pollution soil risk evaluation and chemical leaching[D]. Chongqing: Chongqing University, 2013 (in Chinese).
[62] 李红艳, 黄雷, 张时伟, 等. 珠三角地区电镀厂土壤重金属形态分析[J]. 安徽农业科学, 2016, 44(36): 95-99. doi: 10.3969/j.issn.0517-6611.2016.36.035 LI H Y, HUANG L, ZHANG S W, et al. Speciation analysis of heavy metals in the soil of electroplating factories of the Pearl River Delta[J]. Journal of Anhui Agricultural Sciences, 2016, 44(36): 95-99 (in Chinese). doi: 10.3969/j.issn.0517-6611.2016.36.035
[63] ZHAO L, DING Z L, SIMA J K, et al. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil[J]. Chemosphere, 2017, 182: 15-21. doi: 10.1016/j.chemosphere.2017.05.004 [64] XIAO L, GUAN D S, CHEN Y J, et al. Distribution and availability of heavy metals in soils near electroplating factories[J]. Environmental Science and Pollution Research, 2019, 26(22): 22596-22610. doi: 10.1007/s11356-019-04706-0 [65] ZHANG W H, ZHUANG L W, TONG L Z, et al. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium[J]. Chemosphere, 2012, 86(8): 809-816. doi: 10.1016/j.chemosphere.2011.11.042 [66] LIU J, ZHANG X H, TRAN H, et al. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant[J]. Environmental Science and Pollution Research, 2011, 18(9): 1623-1632. doi: 10.1007/s11356-011-0523-3 [67] 陶亮, 万开, 刘承帅, 等. 场地土壤重金属污染健康风险评价及固化处置: 以东莞市某电镀厂搬迁场地为例[J]. 生态环境学报, 2015, 24(10): 1710-1717. TAO L, WAN K, LIU C S, et al. The health risk assessment and curing treatment of site soils contaminated by heavy metals: Application in one electroplating factory relocation field in Dongguan city, China[J]. Ecology and Environmental Sciences, 2015, 24(10): 1710-1717 (in Chinese).
[68] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China Environmental Monitoring Station. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[69] QU Y X, HUANG J, WILLAND W, et al. Occurrence, removal and emission of per- and polyfluorinated alkyl substances (PFASs) from chrome plating industry: A case study in Southeast China[J]. Emerging Contaminants, 2020, 6: 376-384. doi: 10.1016/j.emcon.2020.10.001 [70] MUNOZ G, LIU J X, VO DUY S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23: e00066. doi: 10.1016/j.teac.2019.e00066 [71] WANG Q, SONG X, WEI C L, et al. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China[J]. Chemosphere, 2022, 291: 132946. doi: 10.1016/j.chemosphere.2021.132946 [72] GEBBINK W A, BOSSI R, RIGÉT F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144: 2384-2391. doi: 10.1016/j.chemosphere.2015.10.116 [73] PAN Y T, ZHANG H X, CUI Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14): 7621-7629. [74] 齐观景. 电镀企业排放及周边水环境中典型全氟及多氟烷基化合物的环境风险评估[D]. 哈尔滨: 哈尔滨工业大学, 2020. QI G J. Environmental risk assessment of typical per-and polyfluoroalkyl substances in electroplating factories discharge wastewater and surrounding aquaic environment[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[75] 李闯修. F-53B和OBS等多/全氟化合物在典型区域的污染特征研究[D]. 青岛: 青岛理工大学, 2016. LI C X. Contamination characteristics of F-53B, OBS and other poly-and per fluoroalky substances in typical areas[D]. Qingdao: Qingdao Technology University, 2016 (in Chinese).
[76] LIN Y F, RUAN T, LIU A F, et al. Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities[J]. Environmental Science & Technology, 2017, 51(20): 11588-11596. [77] WANG T, VESTERGREN R, HERZKE D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers[J]. Environmental Science & Technology, 2016, 50(21): 11584-11592. [78] WEI C L, WANG Q, SONG X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152: 141-150. doi: 10.1016/j.ecoenv.2018.01.039 [79] WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China Sea coastal region[J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162 [80] WANG Y, SHI Y L, CAI Y Q. Spatial distribution, seasonal variation and risks of legacy and emerging per- and polyfluoroalkyl substances in urban surface water in Beijing, China[J]. Science of the Total Environment, 2019, 673: 177-183. doi: 10.1016/j.scitotenv.2019.04.067 [81] CHEN H, HAN J B, ZHANG C, et al. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China[J]. Environmental Pollution, 2017, 231: 1223-1231. doi: 10.1016/j.envpol.2017.08.068 [82] LI Y, FENG X M, ZHOU J, et al. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River Basin in China using receptor models and isomeric fingerprints[J]. Water Research, 2020, 168: 115145. doi: 10.1016/j.watres.2019.115145 [83] ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391 [84] 宋娇娇, 汪艺梅, 孙静, 等. 沱江流域典型及新兴全氟/多氟化合物的污染特征及来源解析[J]. 环境科学, 2022, 43(9): 4522-4531. SONG J J, WANG Y M, SUN J, et al. Pollution characteristics and source apportionment of typical and emerging per- and polyfluoroalkylated substances in Tuojiang River Basin[J]. Environmental Science, 2022, 43(9): 4522-4531 (in Chinese).
[85] PAN Y T, ZHANG H X, CUI Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern[J]. Environmental Science & Technology, 2017, 51(17): 9553-9560. [86] 周健. 新型全氟化合物在黄土高原水环境中的污染特征及在植物中富集转化机制研究[D]. 杨凌: 西北农林科技大学, 2020. ZHOU J. The pollution characteristics of emerging per-and polyfluoroalkyl substances in water environment in the loess plateau and mechanism of bioaccumulation and transformation in plants[D]. Yangling: Northwest A & F University, 2020 (in Chinese).
[87] 肖少可. 传统和替代全氟化合物在北部湾的空间分布、生物富集及营养级迁移[D]. 南宁: 广西大学, 2021. XIAO S K. Spatial distribution, bioaccumulation and trophic transfer of legacy and alternative per-and polyfluoroalkyl substances in the Beibu Gulf[D]. Nanning: Guangxi University, 2021 (in Chinese).
[88] 孙琳婷. 全(多)氟化合物在典型氟工业园区河流中的污染特征研究[D]. 北京: 中国科学院大学, 2020. SUN L T. Study on pollution characteristics of perfluorinated (polyfluorinated) compounds in rivers of typical fluorine industrial park[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese).
[89] 曲映溪, 姜新舒, 刘立全, 等. 典型电镀厂土壤中全/多氟烷基化合物的污染特征及风险评估[J]. 能源环境保护, 2020, 34(1): 88-91. QU Y X, JIANG X S, LIU L Q, et al. Poly-and perfluoroalkyl substances in soil in a typical electroplating plant of China: Contamination characteristic and risk assessment[J]. Energy Environmental Protection, 2020, 34(1): 88-91 (in Chinese).
[90] RUAN T, LIN Y F, WANG T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11): 6519-6527. [91] U. S. Environmental Protection Agency. 2009. Provisory Health Advisory for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) [EB/OL]. [2009-01-08]. [92] LI J, ZHENG T T, YUAN D, et al. Probing the single and combined toxicity of PFOS and Cr(Ⅵ) to soil bacteria and the interaction mechanisms[J]. Chemosphere, 2020, 249: 126039. doi: 10.1016/j.chemosphere.2020.126039 [93] WEI C L, SONG X, WANG Q, et al. Influence of coexisting Cr(Ⅵ) and sulfate anions and Cu(II) on the sorption of F-53B to soils[J]. Chemosphere, 2019, 216: 507-515. doi: 10.1016/j.chemosphere.2018.10.098 [94] HUANG D D, KHAN N A, WANG G C, et al. The Co-Transport of PFAS and Cr(Ⅵ) in porous media[J]. Chemosphere, 2022, 286: 131834. doi: 10.1016/j.chemosphere.2021.131834 [95] RUAN J Q, TANG T H, ZHANG M, et al. Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F–53B) and chromium on different types of soil surfaces[J]. Environmental Pollution, 2022, 311: 119820. doi: 10.1016/j.envpol.2022.119820 [96] LI J, ZHENG T T, LIU C G. Soil acidification enhancing the growth and metabolism inhibition of PFOS and Cr(Ⅵ) to bacteria involving oxidative stress and cell permeability[J]. Environmental Pollution, 2021, 275: 116650. doi: 10.1016/j.envpol.2021.116650