[1] 2019年中国电镀行业发展现状和市场趋势分析 装饰性和高抗蚀性工艺技术不断发展[J]. 表面工程与再制造, 2019, 19(增刊1): 61-62. Analysis on the Development Status and Market Trend of Electroplating Industry in China in 2019;Decorative and highly corrosion-resistant technologies are constantly developing[J]. Surface Engineering & Remanufacturing, 2019, 19(Sup 1): 61-62 (in Chinese).
[2] HANG X S, WANG H Y, ZHOU J M, et al. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta[J]. Environmental Pollution, 2009, 157(8/9): 2542-2549.
[3] 郭鹏然, 雷永乾, 周巧丽, 等. 电镀厂周边环境中重金属分布特征及人体健康暴露风险评价[J]. 环境科学, 2015, 36(9): 3447-3456. GUO P R, LEI Y Q, ZHOU Q L, et al. Distribution characteristics of heavy metals in environmental samples around electroplating factories and the health risk assessment[J]. Environmental Science, 2015, 36(9): 3447-3456 (in Chinese).
[4] 梁秀娟, 谢润楠, 罗艺丰, 等. 典型电镀城周边土壤重金属的污染特征研究[J]. 广州化工, 2020, 48(16): 107-110. LIANG X J, XIE R N, LUO Y F, et al. Study on pollution characteristics of heavy metals in soils surrounding the typical electroplating cities[J]. Guangzhou Chemical Industry, 2020, 48(16): 107-110 (in Chinese).
[5] 赵委托. 东莞地区电镀厂重金属污染与风险评价研究[D]. 武汉: 中国地质大学, 2016. ZHAO W T. Study on pollution and risk assessment of heavy metals surrounding electroplating plants in Dongguan[D]. Wuhan: China University of Geosciences, 2016 (in Chinese).
[6] LANER D, CREST M, SCHARFF H, et al. A review of approaches for the long-term management of municipal solid waste landfills[J]. Waste Management, 2012, 32(3): 498-512. doi: 10.1016/j.wasman.2011.11.010
[7] 卢然, 王宁, 伍思扬, 等. 电镀地块污染成因分析与源头防控对策[J]. 电镀与涂饰, 2020, 39(23): 1682-1686. LU R, WANG N, WU S Y, et al. Source analysis and control countermeasures of electroplating plot pollution[J]. Electroplating & Finishing, 2020, 39(23): 1682-1686 (in Chinese).
[8] 刘芸, 赵旭, 熊涵磊, 等. 化学品足迹法筛查电镀行业潜在高风险化学品[J]. 生态毒理学报, 2020, 15(3): 184-194. LIU Y, ZHAO X, XIONG H L, et al. Application of chemical footprint method in screening of potential high-risk chemicals in electroplating industry[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 184-194 (in Chinese).
[9] CONDER J M, HOKE R A, de WOLF W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J]. Environmental Science & Technology, 2008, 42(4): 995-1003.
[10] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
[11] YOUNG C J, FURDUI V I, FRANKLIN J, et al. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation[J]. Environmental Science & Technology, 2007, 41(10): 3455-3461.
[12] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18): 10163-10170.
[13] LIU W, LI J W, GAO L C, et al. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater Alga Scenedesmus obliquus[J]. Environmental Pollution, 2018, 233: 8-15. doi: 10.1016/j.envpol.2017.10.039
[14] SHI Y L, VESTERGREN R, ZHOU Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging concern[J]. Environmental Science & Technology, 2015, 49(24): 14156-14165.
[15] LIU Y W, RUAN T, LIN Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China: Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8): 4407-4414.
[16] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5): 2396-2404.
[17] GLASS G V. Primary, secondary, and meta-analysis of research[J]. Educational Researcher, 1976, 5(10): 3-8. doi: 10.3102/0013189X005010003
[18] 詹思延. 系统综述与Meta分析[M]. 北京: 人民卫生出版社, 2019. ZHAN S Y. Systematic review and meta-analysis[M]. Beijing: People's Medical Publishing House, 2019(in Chinese).
[19] 邹森. 清洁生产与电镀技术发展[J]. 建材与装饰, 2018(1): 169-170. ZOU S. Cleaner production and development of electroplating technology[J]. Construction Materials & Decoration, 2018(1): 169-170 (in Chinese).
[20] 赵旭, 胡小英, 刘芸, 等. 电镀行业有机污染物免疫毒性研究进展[J]. 毒理学杂志, 2021, 35(4): 346-350, 359. ZHAO X, HU X Y, LIU Y, et al. Research progress on immunotoxicity of organic pollutants in electroplating industry[J]. Journal of Toxicology, 2021, 35(4): 346-350, 359 (in Chinese).
[21] 刘玉兰. 某电镀行业地块土壤污染调查及原因分析[J]. 广东化工, 2020, 47(21): 110-112, 124. LIU Y L. Investigation and analysis of soil pollution in an electroplating industry[J]. Guangdong Chemical Industry, 2020, 47(21): 110-112, 124 (in Chinese).
[22] 孙威, 张莉, 吴小丽, 等. 电镀废水有机污染物去除技术初探[J]. 科技创新导报, 2017, 14(35): 104-105, 107. SUN W, ZHANG L, WU X L, et al. Preliminary study on removal technology of organic pollutants from electroplating wastewater[J]. Science and Technology Innovation Herald, 2017, 14(35): 104-105, 107 (in Chinese).
[23] 杨晓丽. 电镀工业园内企业污染防治措施分析探讨[J]. 皮革制作与环保科技, 2022, 3(6): 138-141. YANG X L. Analysis and discussion on pollution prevention and control measures of enterprises in electroplating industrial park[J]. Leather Manufacture and Environmental Technology, 2022, 3(6): 138-141 (in Chinese).
[24] 蔡昂祖. 邯郸市工业区周边土壤重金属来源解析及污染评估研究[D]. 邯郸: 河北工程大学, 2022. CAI A Z. Source apportionment and pollution assessment of heavy metals in industrial area soil in Handan[D]. Handan: Hebei University of Engineering, 2022 (in Chinese).
[25] 刘胜然. 典型城市单元的土壤重金属溯源方法与实证研究[D]. 长春: 吉林大学, 2019. LIU S R. Source analysis method and empirical study of heavy metals in soils of typical urbanized areas[D]. Changchun: Jilin University, 2019 (in Chinese).
[26] LI J, PENG G Y, XU X M, et al. Per- and polyfluoroalkyl substances (PFASs) in groundwater from a contaminated site in the North China Plain: Occurrence, source apportionment, and health risk assessment[J]. Chemosphere, 2022, 302: 134873. doi: 10.1016/j.chemosphere.2022.134873
[27] XIE S W, WANG T Y, LIU S J, et al. Industrial source identification and emission estimation of perfluorooctane sulfonate in China[J]. Environment International, 2013, 52: 1-8. doi: 10.1016/j.envint.2012.11.004
[28] TI B W, LI L, LIU J G, et al. Global distribution potential and regional environmental risk of F-53B[J]. Science of the Total Environment, 2018, 640/641: 1365-1371. doi: 10.1016/j.scitotenv.2018.05.313
[29] 曹静, 余节发. 安徽某退役电镀厂搬迁后土地污染与健康风险评估[J]. 化工设计通讯, 2020, 46(4): 228-229. CAO J, YU J F. Land pollution and health risk assessment after relocation of a decommissioned electroplating plant in Anhui Province[J]. Chemical Engineering Design Communications, 2020, 46(4): 228-229 (in Chinese).
[30] 陈洁. 场地重金属健康风险评价: 苏州市某电镀遗留场地重金属健康风险评价[D]. 苏州: 苏州科技大学, 2018. CHEN J. Health risk assessment of heavy metals in the site— Health risk assessment of heavy metals in electroplating left site in Suzhou[D]. Suzhou: Suzhou University of Science and Technology, 2018 (in Chinese).
[31] 陈志良, 周建民, 蒋晓璐, 等. 典型电镀污染场地重金属污染特征与环境风险评价[J]. 环境工程技术学报, 2014, 4(1): 80-85. CHEN Z L, ZHOU J M, JIANG X L, et al. Pollution characteristics and environmental risk assessment of heavy metals in typical electroplating contaminated site[J]. Journal of Environmental Engineering Technology, 2014, 4(1): 80-85 (in Chinese).
[32] 常家华, 杨世利, 余江. 典型企业场地土壤重金属污染及风险水平研究[J]. 东北师大学报(自然科学版), 2019, 51(1): 154-160. CHANG J H, YANG S L, YU J. Study on pollution state and risk level of heavy metals in soil of typical enterprise sites[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(1): 154-160 (in Chinese).
[33] 杭小帅, 王火焰, 周健民, 等. 电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响[J]. 农业环境科学学报, 2010, 29(11): 2133-2138. HANG X S, WANG H Y, ZHOU J M, et al. Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory[J]. Journal of Agro-Environment Science, 2010, 29(11): 2133-2138 (in Chinese).
[34] 甘文君, 何跃, 张孝飞, 等. 电镀厂污染土壤重金属形态及淋洗去除效果[J]. 生态与农村环境学报, 2012, 28(1): 82-87. GAN W J, HE Y, ZHANG X F, et al. Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 82-87 (in Chinese).
[35] 陈洁, 施维林, 张一梅, 等. 电镀厂遗留场地污染分析及健康风险空间分布评价[J]. 环境工程, 2018, 36(4): 153-159. CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site[J]. Environmental Engineering, 2018, 36(4): 153-159 (in Chinese).
[36] 杜丹丹. 电镀场地土壤重金属元素Cr、Zn、Cu形态分析及土壤修复[D]. 济南: 山东大学, 2017. DU D D. The curing stabilization of heavy metals Cr, Cu, Zn in the electroplating site and the soil repair[D]. Jinan: Shandong University, 2017 (in Chinese).
[37] 刘杰, 钟雪梅, 梁延鹏, 等. 电镀废水污染水稻田土壤中重金属的形态分析[J]. 农业环境科学学报, 2006, 25(2): 398-401. LIU J, ZHONG X M, LIANG Y P, et al. Fractionations of heavy metals in paddy soils contaminated by electroplating wastewater[J]. Journal of Agro-Environment Science, 2006, 25(2): 398-401 (in Chinese).
[38] 张毅, 王伟民, 王伟, 等. 电镀企业搬迁场地土壤环境质量调查及评价[C]//“第四届重金属污染防治及风险评价研讨会”暨重金属污染防治专业委员会2014年学术年会论文集. 盐城, 2014: 68-74. ZHANG Y, WANG W M, WANG W, et al. Investigation and evaluation of soil environmental quality in the relocation site of electroplating enterprises [C]. "The Fourth Symposium on Heavy Metal Pollution Control and Risk Assessment" and Proceedings of the Annual Conference of Heavy Metal Pollution Control Committee. Yancheng: 2014, 2014: 68-74(in Chinese)
[39] 刘媛. 电镀企业搬迁后场地调查及其环境影响评价[J]. 岩矿测试, 2012, 31(4): 638-644. LIU Y. Environmental survey and impact assessment on the relocation site of an electroplate factory[J]. Rock and Mineral Analysis, 2012, 31(4): 638-644 (in Chinese).
[40] 吴克华, 周飞. 电镀企业遗留场地调查及生态修复研究[J]. 中国资源综合利用, 2018, 36(11): 26-28, 32. WU K H, ZHOU F. Investigation of the remaining sites of electroplating enterprises and research on ecological restoration[J]. China Resources Comprehensive Utilization, 2018, 36(11): 26-28, 32 (in Chinese).
[41] 麻井彪, 姜延花, 李培辰, 等. 电镀污染土壤中七种重金属潜在生态风险评估[C]//2018中国环境科学学会科学技术年会论文集(第三卷). 合肥, 2018: 509-516. MA J B, JIANG Y H, LI P C, et al Potential ecological risk assessment of seven heavy metals in electroplating contaminated soil [C] Proceedings of 2018 Annual Conference of Science and Technology of Chinese Academy of Environmental Sciences (Volume III). Hefei: 2018: 509-516(in Chinese)
[42] 刘志杰, 张家伟. 电镀行业企业场地土壤污染调查及成因分析[J]. 广东化工, 2018, 45(6): 167-169. LIU Z J, ZHANG J W. Site investigation and reasons of pollution in a electroplating plant[J]. Guangdong Chemical Industry, 2018, 45(6): 167-169 (in Chinese).
[43] 孔莹莹. 东莞市某电镀厂重金属污染场地风险评估[D]. 兰州: 西北师范大学, 2020. KONG Y Y. Risk assessment of heavy metal contaminated site in an electroplating plant in Dongguan[D]. Lanzhou: Northwest Normal University, 2020 (in Chinese).
[44] 马宁, 高先萍, 秦勇军, 等. 工业场地再开发前的污染辨识与风险评估: 以电镀企业遗留场地为例[J]. 资源与产业, 2017, 19(3): 48-52. MA N, GAO X P, QIN Y J, et al. Identification of pollution and risk assessment of industrial sites before redevelopment based on a case study on remained sites by electroplating factory[J]. Resources & Industries, 2017, 19(3): 48-52 (in Chinese).
[45] 吴江涛, 于芳芳, 谭镇. 惠城区典型电镀企业搬迁遗留地重金属污染防治调查及防控建议[J]. 广东化工, 2018, 45(13): 49-50, 105. WU J T, YU F F, TAN Z. Pollution survey and prevention and control suggestions of typical electroplating enterprises in Huicheng district[J]. Guangdong Chemical Industry, 2018, 45(13): 49-50, 105 (in Chinese).
[46] 甘文君, 何跃, 张孝飞, 等. 秸秆生物炭修复电镀厂污染土壤的效果和作用机理初探[J]. 生态与农村环境学报, 2012, 28(3): 305-309. GAN W J, HE Y, ZHANG X F, et al. Effects and mechanisms of straw biochar on remediation contaminated soil in electroplating factory[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 305-309 (in Chinese).
[47] 廉晶晶, 罗泽娇, 靳孟贵. 某厂电镀车间场地土壤与地下水污染特征[J]. 地质科技情报, 2013, 32(2): 150-155. LIAN J J, LUO Z J, JIN M G. Contamination characteristics of soil and groundwater in electroplating plant[J]. Geological Science and Technology Information, 2013, 32(2): 150-155 (in Chinese).
[48] 周鼎, 周建民, 彭晓春, 等. 某电镀搬迁场地土壤重金属污染健康风险评估[J]. 湖南农业大学学报(自然科学版), 2014, 40(3): 321-324. ZHOU D, ZHOU J M, PENG X C, et al. Health risk assessments of soil polluted by heavy metals at a site of relocated electroplating[J]. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(3): 321-324 (in Chinese).
[49] 倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报, 2022, 12(3): 878-885. NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 878-885 (in Chinese).
[50] 雒寒梦. 某电镀厂对土壤、地下水的污染程度及健康风险评价[D]. 石家庄: 河北地质大学, 2017. LUO H M. Pollution degree and health risk assessment of soil and groundwater in an electroplating factory[D]. Shijiazhuang: Hebei GEO University, 2017 (in Chinese).
[51] 王辉, 刘国良, 许建军. 某电镀厂重金属污染土壤治理措施探讨[C]//2013中国环境科学学会学术年会论文集(第五卷). 昆明, 2013: 1832-1835. WANG H, LIU G L, XU J J. Discussion on the treatment measures of heavy metal contaminated soil in an electroplating factory [C] Proceedings of the 2013 Annual Academic Conference of the Chinese Academy of Environmental Sciences (Volume V). Kunming: 2013: 1832-1835(in Chinese)
[52] 张湘文, 吴代赦, 黄庭, 等. 南昌市进贤县电镀厂周边表层土壤重金属污染特征及健康风险评价[C]//第九届重金属污染防治技术及风险评价研讨会论文集. 武汉, 2019: 34-46. ZHANG X W, WU D S, HUANG T, et al Heavy metal pollution characteristics and health risk assessment of topsoil around Jinxian electroplating plant in Nanchang [C] Proceedings of the 9th Symposium on Heavy Metal Pollution Control Technology and Risk Assessment. Wuhan: 2019: 34-46(in Chinese)
[53] 张磊, 展漫军, 杭静, 等. 南京市某电镀企业搬迁遗留场地调查及风险评估[J]. 环境监测管理与技术, 2015, 27(6): 33-36. ZHANG L, ZHAN M J, HANG J, et al. Environmental site investigation and health risk assessment for the remaining site of A relocated electroplating factory in Nanjing[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(6): 33-36 (in Chinese).
[54] 蒋旭, 王婷婷, 林广宇. 天津市某典型电镀场地重金属污染特征及健康风险评价[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(一). 西安, 2019: 276-283. JIANG X, WANG T T, LIN G Y. Heavy metal pollution characteristics and health risk assessment of a typical electroplating site in Tianjin [C] Proceedings of the 2019 Science and Technology Annual Meeting of Chinese Academy of Environmental Sciences — Environmental Engineering Technology Innovation and Application Sub Forum (I). Xi’an: 2019: 276-283(in Chinese)
[55] 殷伟庆, 郭蕾, 黄莹, 等. 土壤中氰化物的快速测定: 以江苏镇江电镀园区土壤监测为例[J]. 干旱环境监测, 2014, 28(2): 70-74. YIN W Q, GUO L, HUANG Y, et al. The rapid determination of cyanide in soil by flow injection technique[J]. Arid Environmental Monitoring, 2014, 28(2): 70-74 (in Chinese).
[56] 耿治鹏, 宋颉, 王春林, 等. 污染场地土壤重金属污染空间特征分析: 以某搬迁电镀厂为例[J]. 环境工程技术学报, 2023, 13(1): 295-302. GENG Z P, SONG J, WANG C L, et al. Spatial characteristics of soil heavy metal pollution in polluted sites: Taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 295-302 (in Chinese).
[57] 侯文隽, 龚星, 詹泽波, 等. 粤港澳大湾区丘陵地带某电镀场地重金属污染特征与迁移规律分析[J]. 环境科学, 2019, 40(12): 5604-5614. HOU W J, GONG X, ZHAN Z B, et al. Heavy metal contamination and migration in correspondence of an electroplating site on the hilly lands of the Guangdong-Hong Kong-Macau greater bay area, China[J]. Environmental Science, 2019, 40(12): 5604-5614 (in Chinese).
[58] 厉炯慧, 翁珊, 方婧, 等. 浙江海宁电镀工业园区周边土壤重金属污染特征及生态风险分析[J]. 环境科学, 2014, 35(4): 1509-1515. LI J H, WENG S, FANG J, et al. Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park[J]. Environmental Science, 2014, 35(4): 1509-1515 (in Chinese).
[59] 王古月. 镇江绿色化工新材料产业园土壤重金属污染现状及其风险[D]. 镇江: 江苏大学, 2018. WANG G Y. Pollution status and risk assessment of heavy metals in soils of chemical new material industrial park in Zhenjiang[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese).
[60] 朱伟, 张毅, 王伟民, 等. 重金属污染场地土壤环境调查及环境影响评价方法探讨——以上坊电镀厂地块为例[C]. “第四届重金属污染防治及风险评价研讨会”暨重金属污染防治专业委员会2014年学术年会论文集. 盐城: 2014: 254-260. ZHU W, ZHANG Y, WANG W M, et al. Discussion on soil environment and environmental impact assessment method of heavy metal polluted site: A case study of Shangfang Electroplating Plant plot [C]. "The Fourth Symposium on Heavy Metal Pollution Prevention and Risk Assessment" and the Proceedings of the Annual Conference of Heavy Metal Pollution Prevention and Control Committee 2014. Yancheng: 2014: 254-260(in Chinese).
[61] 黄珊. 重金属污染土壤风险评价及化学淋洗研究[D]. 重庆: 重庆大学, 2013. HUANG S. Research of heavy metals pollution soil risk evaluation and chemical leaching[D]. Chongqing: Chongqing University, 2013 (in Chinese).
[62] 李红艳, 黄雷, 张时伟, 等. 珠三角地区电镀厂土壤重金属形态分析[J]. 安徽农业科学, 2016, 44(36): 95-99. doi: 10.3969/j.issn.0517-6611.2016.36.035 LI H Y, HUANG L, ZHANG S W, et al. Speciation analysis of heavy metals in the soil of electroplating factories of the Pearl River Delta[J]. Journal of Anhui Agricultural Sciences, 2016, 44(36): 95-99 (in Chinese). doi: 10.3969/j.issn.0517-6611.2016.36.035
[63] ZHAO L, DING Z L, SIMA J K, et al. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil[J]. Chemosphere, 2017, 182: 15-21. doi: 10.1016/j.chemosphere.2017.05.004
[64] XIAO L, GUAN D S, CHEN Y J, et al. Distribution and availability of heavy metals in soils near electroplating factories[J]. Environmental Science and Pollution Research, 2019, 26(22): 22596-22610. doi: 10.1007/s11356-019-04706-0
[65] ZHANG W H, ZHUANG L W, TONG L Z, et al. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium[J]. Chemosphere, 2012, 86(8): 809-816. doi: 10.1016/j.chemosphere.2011.11.042
[66] LIU J, ZHANG X H, TRAN H, et al. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant[J]. Environmental Science and Pollution Research, 2011, 18(9): 1623-1632. doi: 10.1007/s11356-011-0523-3
[67] 陶亮, 万开, 刘承帅, 等. 场地土壤重金属污染健康风险评价及固化处置: 以东莞市某电镀厂搬迁场地为例[J]. 生态环境学报, 2015, 24(10): 1710-1717. TAO L, WAN K, LIU C S, et al. The health risk assessment and curing treatment of site soils contaminated by heavy metals: Application in one electroplating factory relocation field in Dongguan city, China[J]. Ecology and Environmental Sciences, 2015, 24(10): 1710-1717 (in Chinese).
[68] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China Environmental Monitoring Station. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[69] QU Y X, HUANG J, WILLAND W, et al. Occurrence, removal and emission of per- and polyfluorinated alkyl substances (PFASs) from chrome plating industry: A case study in Southeast China[J]. Emerging Contaminants, 2020, 6: 376-384. doi: 10.1016/j.emcon.2020.10.001
[70] MUNOZ G, LIU J X, VO DUY S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23: e00066. doi: 10.1016/j.teac.2019.e00066
[71] WANG Q, SONG X, WEI C L, et al. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China[J]. Chemosphere, 2022, 291: 132946. doi: 10.1016/j.chemosphere.2021.132946
[72] GEBBINK W A, BOSSI R, RIGÉT F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144: 2384-2391. doi: 10.1016/j.chemosphere.2015.10.116
[73] PAN Y T, ZHANG H X, CUI Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14): 7621-7629.
[74] 齐观景. 电镀企业排放及周边水环境中典型全氟及多氟烷基化合物的环境风险评估[D]. 哈尔滨: 哈尔滨工业大学, 2020. QI G J. Environmental risk assessment of typical per-and polyfluoroalkyl substances in electroplating factories discharge wastewater and surrounding aquaic environment[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[75] 李闯修. F-53B和OBS等多/全氟化合物在典型区域的污染特征研究[D]. 青岛: 青岛理工大学, 2016. LI C X. Contamination characteristics of F-53B, OBS and other poly-and per fluoroalky substances in typical areas[D]. Qingdao: Qingdao Technology University, 2016 (in Chinese).
[76] LIN Y F, RUAN T, LIU A F, et al. Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities[J]. Environmental Science & Technology, 2017, 51(20): 11588-11596.
[77] WANG T, VESTERGREN R, HERZKE D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers[J]. Environmental Science & Technology, 2016, 50(21): 11584-11592.
[78] WEI C L, WANG Q, SONG X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152: 141-150. doi: 10.1016/j.ecoenv.2018.01.039
[79] WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China Sea coastal region[J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162
[80] WANG Y, SHI Y L, CAI Y Q. Spatial distribution, seasonal variation and risks of legacy and emerging per- and polyfluoroalkyl substances in urban surface water in Beijing, China[J]. Science of the Total Environment, 2019, 673: 177-183. doi: 10.1016/j.scitotenv.2019.04.067
[81] CHEN H, HAN J B, ZHANG C, et al. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China[J]. Environmental Pollution, 2017, 231: 1223-1231. doi: 10.1016/j.envpol.2017.08.068
[82] LI Y, FENG X M, ZHOU J, et al. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River Basin in China using receptor models and isomeric fingerprints[J]. Water Research, 2020, 168: 115145. doi: 10.1016/j.watres.2019.115145
[83] ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391
[84] 宋娇娇, 汪艺梅, 孙静, 等. 沱江流域典型及新兴全氟/多氟化合物的污染特征及来源解析[J]. 环境科学, 2022, 43(9): 4522-4531. SONG J J, WANG Y M, SUN J, et al. Pollution characteristics and source apportionment of typical and emerging per- and polyfluoroalkylated substances in Tuojiang River Basin[J]. Environmental Science, 2022, 43(9): 4522-4531 (in Chinese).
[85] PAN Y T, ZHANG H X, CUI Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern[J]. Environmental Science & Technology, 2017, 51(17): 9553-9560.
[86] 周健. 新型全氟化合物在黄土高原水环境中的污染特征及在植物中富集转化机制研究[D]. 杨凌: 西北农林科技大学, 2020. ZHOU J. The pollution characteristics of emerging per-and polyfluoroalkyl substances in water environment in the loess plateau and mechanism of bioaccumulation and transformation in plants[D]. Yangling: Northwest A & F University, 2020 (in Chinese).
[87] 肖少可. 传统和替代全氟化合物在北部湾的空间分布、生物富集及营养级迁移[D]. 南宁: 广西大学, 2021. XIAO S K. Spatial distribution, bioaccumulation and trophic transfer of legacy and alternative per-and polyfluoroalkyl substances in the Beibu Gulf[D]. Nanning: Guangxi University, 2021 (in Chinese).
[88] 孙琳婷. 全(多)氟化合物在典型氟工业园区河流中的污染特征研究[D]. 北京: 中国科学院大学, 2020. SUN L T. Study on pollution characteristics of perfluorinated (polyfluorinated) compounds in rivers of typical fluorine industrial park[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese).
[89] 曲映溪, 姜新舒, 刘立全, 等. 典型电镀厂土壤中全/多氟烷基化合物的污染特征及风险评估[J]. 能源环境保护, 2020, 34(1): 88-91. QU Y X, JIANG X S, LIU L Q, et al. Poly-and perfluoroalkyl substances in soil in a typical electroplating plant of China: Contamination characteristic and risk assessment[J]. Energy Environmental Protection, 2020, 34(1): 88-91 (in Chinese).
[90] RUAN T, LIN Y F, WANG T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11): 6519-6527.
[91] U. S. Environmental Protection Agency. 2009. Provisory Health Advisory for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) [EB/OL]. [2009-01-08].
[92] LI J, ZHENG T T, YUAN D, et al. Probing the single and combined toxicity of PFOS and Cr(Ⅵ) to soil bacteria and the interaction mechanisms[J]. Chemosphere, 2020, 249: 126039. doi: 10.1016/j.chemosphere.2020.126039
[93] WEI C L, SONG X, WANG Q, et al. Influence of coexisting Cr(Ⅵ) and sulfate anions and Cu(II) on the sorption of F-53B to soils[J]. Chemosphere, 2019, 216: 507-515. doi: 10.1016/j.chemosphere.2018.10.098
[94] HUANG D D, KHAN N A, WANG G C, et al. The Co-Transport of PFAS and Cr(Ⅵ) in porous media[J]. Chemosphere, 2022, 286: 131834. doi: 10.1016/j.chemosphere.2021.131834
[95] RUAN J Q, TANG T H, ZHANG M, et al. Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F–53B) and chromium on different types of soil surfaces[J]. Environmental Pollution, 2022, 311: 119820. doi: 10.1016/j.envpol.2022.119820
[96] LI J, ZHENG T T, LIU C G. Soil acidification enhancing the growth and metabolism inhibition of PFOS and Cr(Ⅵ) to bacteria involving oxidative stress and cell permeability[J]. Environmental Pollution, 2021, 275: 116650. doi: 10.1016/j.envpol.2021.116650