磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展

何建荣, 魏晓贺, 刘煜莹, 苗欣宇, 欧阳少虎, 岳晴, 李鑫, Ramasamy Rajesh Kumar. 磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展[J]. 环境化学, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
引用本文: 何建荣, 魏晓贺, 刘煜莹, 苗欣宇, 欧阳少虎, 岳晴, 李鑫, Ramasamy Rajesh Kumar. 磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展[J]. 环境化学, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
HE Jianrong, WEI Xiaohe, LIU Yuying, MIAO Xinyu, OUYANG Shaohu, YUE Qing, LI Xin, Ramasamy Rajesh Kumar. Effects of magnetic nano - iron on soil physicochemical properties and microbial community and metabolism[J]. Environmental Chemistry, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
Citation: HE Jianrong, WEI Xiaohe, LIU Yuying, MIAO Xinyu, OUYANG Shaohu, YUE Qing, LI Xin, Ramasamy Rajesh Kumar. Effects of magnetic nano - iron on soil physicochemical properties and microbial community and metabolism[J]. Environmental Chemistry, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504

磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展

    通讯作者: E-mail:miaoxy312@126.com E-mail:ouyangshaohu@nankai.edu.cn; 
  • 基金项目:
    2021年度天津市重点研发项目(21YFSNSN00030),2021年度河北省矿产资源与生态环境监测重点实验室开放基金(HBMREEM202104),国家自然科学基金青年基金 (42107306) 和博士后面上项目 (2020M680867) 资助.
  • 中图分类号: X-1;O6

Effects of magnetic nano - iron on soil physicochemical properties and microbial community and metabolism

    Corresponding authors: MIAO Xinyu, miaoxy312@126.com ;  OUYANG Shaohu, ouyangshaohu@nankai.edu.cn
  • Fund Project: Key R&D Project of Tianjin in 2021(21YFSNSN00030), 2021 Open Fund of Hebei Key Laboratory of Mineral Resources and Ecological Environment Monitoring (HBMREEM202104), the National Natural Science Foundation of China (42107306) and the Postdoctoral Science Foundation Funded Project (2020M680867).
  • 摘要: 近年来,磁性纳米铁因其独特性能在生物医学、农业、工业、生命科学及环境保护领域广泛应用. 随着磁性纳米铁的大范围应用,其对环境和人体健康将带来的潜在影响,已经引起科学界的广泛关注. 本文系统总结了近年来磁性纳米铁的相关文献资料,探讨了磁性纳米铁的合成方法、表征及环境应用;我们重点强调了磁性纳米铁对土壤理化性质及微生物群落和代谢的潜在影响. 最后展望了磁性纳米铁在未来的环境应用、发展及纳米毒理学亟待研究的重要问题. 本文旨在更加全面地揭示磁性纳米铁的环境可持续性,为其安全使用和环境功能化应用提供一定的参考.
  • 多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类全球普遍存在的半挥发性有机污染物[13]. 研究表明,大气中的PAHs组分的致突变活性在大气污染物各组分中占比为35%—82%,且主要来自人为源[45]. 煤炭在当前我国能源消费结构中仍处于重要地位,但煤炭燃烧也是造成我国雾霾频发的重要因素之一[68]. 在煤炭燃烧过程中,会通过低温挥发和高温自由基缩合反应等途径生成和释放PAHs[911]. 认清燃煤电厂PAHs的排放特征是其污染控制及环境影响评价的基础和前提,但对于燃煤电厂烟气排放过程PAHs在细颗粒物中的迁移转化行为尚缺乏系统的研究.

    特征比值法常被用来解析环境中PAHs的来源,但是由于PAHs异构体具有较大的内源变异性,且其降解转化和大气迁移过程也会改变PAHs的分子组成,使分析结果具有较大不确定性[1214]. 单体稳定同位素分析法已普遍应用于环境痕迹调查,研究者通过分析不同燃烧源(如木材、甘蔗的燃烧、柴油车和汽油车尾气)PAHs的单体同位素值构建了人为源PAHs单体同位素数据库[1518],并探讨了13C生成途径,为其环境来源解析提供了有力证据. 研究表明,与PAHs特征比值较大的差异性不同,PAHs单体同位素比值(δ13C)受生物降解及光降解的作用不明显[19],表明出较强的源解析能力. 前期研究表明,燃煤电厂排放烟气中PAHs的含量和组成与锅炉类型、燃烧条件(如给煤性质、锅炉负荷、操作条件等)以及污染物控制过程等因素密不可分;燃煤产物(如飞灰、底灰、脱硫石膏等)中PAHs的赋存特征受其物化性质(包括粒径、残留碳和矿物种类)等因素控制[2022]. 本次对安徽淮南3家粉煤炉电厂排放烟气中的可吸入颗粒物(PM2.5–10、PM1–2.5、PM1)中PAHs的含量、组成及PAHs单体同位素值进行了系统研究.

    样品采集于安徽淮南3家燃煤电厂(HPA、HPB和HPC)的燃煤机组烟囱(图1). 根据不同的粉煤炉类型和大气污染控制设施条件将燃煤机组分别命名为HPA-1、HPA-2、HPA-3、HPB-1、HPB-2、HPC-1(表1). 其中HPA-1、HPA-2、HPA-3的运行条件为亚临界,HPB-1、HPB-2的运行条件为亚临界,HPC-1的运行条件为超临界. 所有粉煤炉均安装了静电除尘器(electrostatic precipitators,ESPs);此外,HPA-3、HPB-2、HPC-1安装了湿法烟气脱硫(wet flue-gas desulfurization,WFGD)系统. 粉煤炉中燃烧温度范围是1200—1500 ℃,在ESPs处温度大幅下降(130—180 ℃),在WFGD处为80—90 ℃.

    图 1  燃煤锅炉机组采样点示意
    Figure 1.  Schematic diagram of boiler generator set
    表 1  本实验采样的基本信息
    Table 1.  Basic information of sampling
    参数Parameter 粉煤炉类型Pulverized coal furnace type
    HPA-1 HPA-2 HPA-3 HPB-1 HPB-2 HPC-1
    运行条件 亚临界 亚临界 亚临界 亚临界 亚临界 超临界
    燃煤机组容量/MW 300 300 300 600 600 600
    大气污染控制设施 ESPs ESPs ESPs+WFGD ESPs ESPs+WFGD ESPs+WFGD
    烟气流速/(m·s–1 8.7 11.4 9.3 9.8 7.9 10.1
    烟气温度/℃ 69.4 67.2 72.3 74.5 68.5 73.5
     | Show Table
    DownLoad: CSV

    采样前将石英滤膜置于500 ℃高温条件下煅烧12 h,将XAD-2聚苯乙烯合成树脂置于丙酮和二氯甲烷中浸泡48 h. 选用改进型撞击式颗粒物采样器,采样时采样探头方向与烟气流动方向一致,控制采样器流量为18.7 L·min–1. 采集的可吸入颗粒物样品按粒径分为PM2.5–10、PM1–2.5、PM1. 为防止烟气冷凝,烟枪以及PMs撞击器温度需保持120 ℃. 采样后,用预焙铝箔包装聚氨酯泡沫基板并将其密封于聚乙烯袋中,并置于温度20 ℃、相对湿度约35%的恒定条件下保存72 h,然后称重. 为保证结果的可重复性,将不同类型的样品以3份平行样的形式收集保存.

    采用索氏提取法对样品中PAHs进行萃取,将蒽-d10、芘-d10、1-硝基芘-d9加标到提取器中,于200 mL二氯甲烷中萃取48 h,浓缩萃取液,将溶剂交换至正己烷,然后进行色谱分离. 先用10 mL正己烷洗脱色谱柱,再用15 mL正己烷和二氯甲烷(7:3,体积比)混合液洗脱PAHs. 最后氮吹至1 mL,并溶于异辛烷. 加入内标(萘-d8、二氢苊-d10、蒽-d10、䓛-d12、苝-d12).

    采用气相色谱-质谱联用仪(Shimadzu GC-MS-QP 2010)测定PAHs. 选择离子监测模式,电子轰击模式(70 eV)下进行定量分析. 色谱条件为:载气(高纯He)流速为1 mL·min–1;柱温初始为60 ℃(保持3 min),以5 ℃·min–1的速率升至200 ℃,继续以2 ℃·min–1的速率升至260 ℃(保持5 min),最后以5 ℃·min–1的速率升至290 ℃(保持3 min). 离子源温度是210 ℃,进样口温度为280 ℃;无分流自动进样1 μL. 用于通过m/z峰面积与相应的内标的m/z峰面积统一化,并利用响应因子进行定量分析. 本次分析的16种美国优控PAHs分别为:萘(Nap),苊(Acy),二氢苊(Ace),芴(Flu),蒽(Ant),菲(Phe),荧蒽(Fla),芘(Pyr),苯并[a]蒽(BaA),䓛(Chr),苯并[b]荧蒽(BbF),苯并[k]荧蒽(BkF),苯并[a]芘(BaP),二苯并[a,h]蒽(DahA),茚并[1,2,3,-cd]芘(InP),苯并[g,h,i]芘(BghiP).

    以二氯甲烷(15 mL)为流动相,流量为1.3 mL·min–1,用薄层色谱板进一步纯化,浓缩至1 mL. 采用Agilent 6890 GC和Isoprime IRMS进行同位素分析,色谱柱为DB-XLB(30 m×0.25 mm×0.25 µm),载气(高纯He)流速为1 mL·min–1. PAHs单体化合物经气相色谱流出并通过氧化铜燃烧器(900 ℃)生成CO2. 比较δ13C和二氧化碳(99.996%,δ13CVPDB = –35.4 ℃),并于每次运行开始时用作参考混入质谱仪,以分析单个PAHs化合物的C值. 同位素组成成分用δ13C表示,以VPDB标准,用下式计算:

    stringUtils.convertMath(!{formula.content})

    为提高实验的准确性,每个样品同位素测试平行样3份,结果的标准偏差在0.1—0.5 ℃范围内,准确度在±0.3 ℃范围内.

    为确保PAHs浓度定量的准确性,每5个样品需做1组平行样、分析空白和加标回收. 加标回收率为蒽-d10:83%(68%—103%)、芘-d10:84%(范围:81%—115%). 仪器检测限值定义为校准标准的最低浓度与程序空白中发现的信噪比的3倍. 实验数据的统计处理使用SPSS16.0软件. 方差分析试验用于6个燃煤机组之间PAHs浓度的平均值进行比较. 通过t-test检验了不同粒度颗粒物之间PAHs浓度的平均差异,显著性水平设定为P=0.05.

    在6个燃煤机组中,同一大气污染控制设施下,机组容量为600 MW的HPB-1(PAHs:5.28 μg·m−3)相较于300 MW的HPA-1(7.45 μg·m−3)和HPA-2(6.45 μg·m−3)以及机组容量为600 MW的HPB-2(3.59 μg·m−3)和HPC-1(2.86 μg·m−3)相较于300 MW的HPA-3(PAHs:4.52 μg·m−3)烟气中PAHs的含量都明显较低(表2),这说明大机组比小机组燃烧效率更高. 此外, HPB-1排放烟气中PAHs含量明显高于同为600 MW的HPB-2和HPC-1,说明湿式脱硫对于去除烟气中的PAHs具有一定作用.

    表 2  不同采样点烟气颗粒物中PAHs的含量
    Table 2.  PAHs concentrations in particulate matters of flue gas at different sampling sites
    PAHs PM2.5-10/(µg·m−3 PM1-2.5/(µg·m−3 PM1/(µg·m−3
    1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
    Nap 0.43 0.29 0.32 0.27 0.22 0.17 0.31 0.29 0.36 0.25 0.25 0.15 0.28 0.17 0.23 0.18 0.13 0.13
    Acy 0.34 0.32 0.28 0.23 0.26 0.18 0.48 0.47 0.24 0.26 0.24 0.21 0.45 0.53 0.23 0.28 0.23 0.19
    Ace 0.25 0.23 0.19 0.15 0.17 0.13 0.15 0.16 0.12 0.13 0.15 0.13 0.19 0.21 0.13 0.21 0.18 0.13
    Flu 0.29 0.18 0.17 0.14 0.14 0.12 0.3 0.29 0.17 0.18 0.12 0.14 0.28 0.31 0.15 0.18 0.13 0.18
    Ant 0.31 0.31 0.16 0.19 0.20 0.12 0.33 0.31 0.16 0.18 0.18 0.13 0.31 0.26 0.18 0.19 0.15 0.19
    Phe 0.17 0.19 0.11 0.16 0.15 0.09 0.26 0.25 0.14 0.15 0.12 0.11 0.26 0.23 0.20 0.21 0.19 0.14
    Fla 0.93 1.0 0.89 0.87 0.61 0.45 1.4 1.3 0.93 0.88 0.82 0.48 2.0 1.8 1.4 1.8 1.1 0.72
    Pyr 0.77 0.87 0.69 0.58 0.38 0.28 1.3 1.3 0.86 0.96 0.64 0.46 1.6 1.7 0.91 1.4 0.78 0.58
    BaA 0.5 0.36 0.43 0.44 0.37 0.32 0.96 0.96 0.57 0.83 0.48 0.37 1.9 1.7 1.1 1.2 0.87 0.67
    Chr 0.47 0.47 0.22 0.29 0.28 0.18 0.93 1.1 0.61 0.94 0.49 0.32 1.4 1.6 1.0 1.2 1.0 0.59
    BbF 0.63 0.51 0.25 0.38 0.16 0.19 1.1 1.0 0.51 0.71 0.41 0.28 1.6 1.2 1.3 1.2 0.66 0.56
    BkF 0.47 0.37 0.19 0.33 0.18 0.16 0.63 0.68 0.34 0.34 0.21 0.17 0.97 0.96 0.54 0.69 0.37 0.27
    BaP 0.41 0.31 0.13 0.29 0.13 0.10 0.95 0.94 0.39 0.54 0.34 0.26 1.7 1.6 1.2 1.2 0.74 0.53
    DahA 0.52 0.35 0.16 0.23 0.12 0.11 0.64 0.45 0.33 0.42 0.17 0.18 0.78 0.94 0.49 0.74 0.52 0.39
    InP 0.55 0.38 0.16 0.29 0.11 0.14 0.74 0.74 0.38 0.69 0.28 0.21 1.2 1.1 0.63 1.1 0.58 0.35
    BghiP 0.41 0.31 0.17 0.44 0.11 0.12 0.79 0.63 0.31 0.56 0.24 0.22 1.4 1.3 0.87 1.3 0.68 0.48
    总含量 7.45 6.45 4.52 5.28 3.59 2.86 11.27 10.87 6.42 8.02 5.14 3.82 16.32 15.61 10.56 13.08 8.31 6.10
      注:1:HPA-1,2:HPA-2,3:HPA-3,4:HPB-1,5:HPB-2,6:HPC-1
     | Show Table
    DownLoad: CSV

    不同机组烟气中PAHs的组成也存在明显的差异性,高分子量PAHs化合物(如BbF、BaP、InP和BghiP)在机组容量较小的粉煤炉(即HPA-1和HPA-2)中的含量更高(图2);此外,超临界粉煤炉中高分子量PAHs的含量明显低于亚临界粉煤炉. 这可以表明相对较低热效率燃烧促进了这些PAHs化合物的产生.

    图 2  不同燃煤机组16种美国优控PAHs的分布特征
    Figure 2.  The relative compositions of 16 USEPA priority PAHs concentrations in flue gases of different coal-fired boilers

    PAHs在PM2.5-10中的浓度分数为19.6%—22.4%,在PM1-2.5中为30.0%—33.0%,在PM1中为46.6%—49.6%(表2). 不难看出,PAHs在这3种不同粒度的可吸入颗粒物中的浓度分数表现出总含量随着粒度的减少而增大的趋势,推测可能是因为颗粒越细,在燃烧室的停留时间久越短且具有的表面积也越大. 而这些细小颗粒物很大一部分可以直达人体肺泡[2325],威胁生命健康,所以针对燃煤电厂细颗粒物排放的控制十分重要.

    表2可以看出,粒径对PAHs化学分布影响显著. 高分子量PAHs趋于富集在较细的颗粒物上. 例如与PM2.5-10结合的多是4环PAHs,占比高达35.8%,其次是5环和3环PAHs;而当粒度减少到PM1-2.5时,5环PAHs的比例从16.2%—27.2%增加到22%—29.5%,6环PAHs从6.1%—13.8%增加到10.1%—15.6%. 一般情况下,细小颗粒结合的有机物可以通过挥发或吸附转移到大的粒子中,但PAHs却不是如此,吸附在细小颗粒物中高分子量PAHs不太可能转移到粗颗粒物,反而低分子量PAHs更容易在粗细颗粒之间达到分配平衡,导致高分子量PAHs在细颗粒物相对富集[26].

    PAHs特征比值用来示踪其来源的原理是假设PAHs异构体在传输和迁移过程中被稀释程度类似,以保持异构体相对比值从源到受体不变[12]. 如图3所示,大部分PAHs特征比值在不同粒度的特征比率变化趋势并不显著,显示其在PAHs源解析的应用潜力. 但PM2.5-10中BaA/(BaA+Chr)(0.43—0.64)和InP/(InP+BghiP)(0.40—0.57)表现出一定的差异性,表明锅炉类型和大气污染控制设施对其有一定的影响.

    图 3  PM2.5-10,PM1-2.5和PM1中PAHs的特征分子比值
    Figure 3.  The diagnostic ratios for PM2.5-10, PM1-2.5 and PM1-bound PAHs

    然而一些研究表明,不同来源的PAHs的特征比值表现不一致,例如Rogge报道的柴油燃烧排气值为0.35—0.7[27],另一些研究报道燃煤、柴油燃烧和木材燃烧源InP/(InP+BghiP)值分别为0.56、0.37和0.62[28-29];还有研究发现不同木材燃烧排放PAHs的InP/(InP+BghiP)比值范围为0.42—0.51[30]. 这说明不同人为源PAHs特征比值具有源内变异性和源间相似性,可能会受到不同燃煤性质、锅炉类型和燃烧条件影响. 由此可见通过PAHs特征比值的方法来判断来源有一定的局限性. 但大多数PAHs特征比率的变化较小,一定程度上说明PAHs特征比值可应用于燃煤电厂排放PAHs的来源.

    原煤和烟气颗粒物中PAHs单体稳定同位素值(δ13C)分别为−26.5‰—−24.2‰和−30.4‰—−27.6‰,说明燃烧过程中PAHs同位素发生了分馏. 前人研究表明,煤热解产物中PAHs更加富集13C,此外,δ13C值随着热解温度的升高而降低,这主要是因为12C—12C化学键相较于13C—13C键的化学能垒较低从而更容易通过化学重排反应生成[31]. 因此粉煤炉高温燃烧条件下PAHs的分子结构重组更倾向于形成新的12C—12C化学键而非13C—12C键. 燃煤机组HPA-1、HPA-2排放的PAHs的δ13C同位素相对更重,说明更高的燃烧效率导致PAHs结构演变(缩合)程度更深. 没有证据表明烟气脱污过程(静电除尘和湿式脱硫)PAHs会发生显著分馏行为. 原煤与烟气颗粒物中δ13C值具有相似的变化趋势,即低分子量PAHs如Phe、Ant更易富集13C,而高分子量PAHs如BaP、InP、BghiP中13C含量则相对较低(表3),这表明粉煤炉燃烧过程烟气中的高分子量PAHs主要是通过化学重排反应产生的,而低分子量PAHs在一定程度上来自于原煤受热挥发.

    表 3  原料煤和烟气颗粒物中单体PAHs同位素(δ13C, ‰)组成
    Table 3.  Molecular isotopic compositions (δ13C, ‰) of individual PAHs in raw coal and particulate matters
    PAHs Coal HPA-1 HPA-2 HPA-3 HPB-1 HPB-2 HPC-1
    Phe −24.6 −27.8 −27.6 −28.1 −27.8 −28.2 −28.2
    Ant −24.2 −28.1 −27.8 −28.0 −28.0 −28.3 −28.2
    Fla −25.2 −28.4 −28.4 −28.4 −28.6 −28.5 −28.7
    Pyr −25.3 −28.3 −28.5 −28.5 −28.3 −28.4 −28.6
    BaA −25.4 −28.5 −28.3 −28.7 −28.5 −28.6 −28.7
    Chr −25.3 −28.6 −28.4 −28.6 −28.5 −28.5 −29.1
    BkF −25.4 −28.3 −28.2 −28.6 −28.7 −28.7 −29.3
    BaP −26.2 −29.0 −28.7 −29.5 −29.4 −29.4 −29.7
    InP −26.2 −29.2 −29.0 −29.9 −30.0 −30.1 −30.4
    BghiP −26.5 −29.5 −29.4 −30.0 −29.8 −30.0 −30.2
     | Show Table
    DownLoad: CSV

    通过与文献所报告的汽油或柴油排放、甘蔗和生物质燃烧的数据进行比较,发现不同来源PAHs单体同位素值具有显著差别,例如秸秆燃烧源(−25.4‰—−22.9‰)[32]、C3植物燃烧源(−28.8‰—−28.0‰)、C4植物燃烧源(−16.6‰—−15.8‰)[30]和燃煤源(−31.2‰—−22.0‰)[31],尽管存在一定的数据重叠. 但对于不同工艺过程产生PAHs的δ13C值难以进行有效的区分,例如煤气化过程中的BaA及BkF的δ13C值分别为−28.4‰、−28.8‰,而煤燃烧过程中芘的δ13C值为−28.7‰[31].

    PAHs的质量浓度与粉煤炉种类和燃烧条件并没有呈现显著的相关性. ESPs对气相PAHs的去除效率较低,WFGD系统能够有效去除高分子量PAHs. PAHs单体化合物在不同粒度之间表现出明显不同的富集和分离行为. 低分子量PAHs易在细颗粒物和粗颗粒物间平衡,高分子量PAHs因挥发和吸附慢而更易与细颗粒物结合. PAHs的特征比值对于示踪燃煤电厂源有一定的指示意义,但也受到大气污染控制设施的影响. 相比于特征比值法,PAHs单体同位素分析法由于其稳定性及不易被降解,可以有效追踪粉煤炉高温燃烧条件下PAHs的分子结构重组过程. 因此,PAHs单体同位素分析法对于区别不同人为源,如生物质燃烧、车辆尾气排放、煤炭燃烧等表现出较大的潜力,但对于工艺过程如炼焦、煤气化和煤炭燃烧尚难进行有效示踪.

  • 图 1  磁性纳米铁的几种常见合成方法及环境应用示意图

    Figure 1.  Several common synthesis methods and environmental application diagrams of magnetic nano-iron

    图 2  磁性纳米铁对土壤理化性质、酶活性及温室气体(以N2O为例)排放的影响

    Figure 2.  Effects of Magnetic Nanoscale Iron on Soil Physicochemical Properties, Enzyme Activities and Greenhouse Gas Emissions ( N2O as an Example )

    图 3  磁性纳米铁对土壤微生物群落的影响

    Figure 3.  Effects of Magnetic Nano - iron on soil microbial community

    表 1  绿色合成的磁性纳米铁去除重金属的应用

    Table 1.  Application of green synthetic magnetic iron nanoparticles for removal of heavy metals

    磁性纳米铁种类Magnetic nano iron species 去除金属种类Removing metal type 去除效率Removal efficiency 参考文献References
    纳米零价铁 六价铬 90 min 99.45% Huang et al. (2017)[29]
    四氧化三铁纳米颗粒 钙和镉 120 min 钙55%, 镉40% Sebastian et al.(2018)[30]
    铁纳米颗粒 六价铬 90 min 99.29% Wei et al. (2017)[31]
    纳米零价铁、 氧化铁纳米颗粒 六价铬 35 min 98.9% Jin et al. (2017)[32]
    氧化铁纳米颗粒 90 min 90.0% Ehrampoush et al.(2015)[33]
    纳米零价铁 六价铬 90 min 89.9% Qiu et al. (2017)[34]
    磁性纳米铁种类Magnetic nano iron species 去除金属种类Removing metal type 去除效率Removal efficiency 参考文献References
    纳米零价铁 六价铬 90 min 99.45% Huang et al. (2017)[29]
    四氧化三铁纳米颗粒 钙和镉 120 min 钙55%, 镉40% Sebastian et al.(2018)[30]
    铁纳米颗粒 六价铬 90 min 99.29% Wei et al. (2017)[31]
    纳米零价铁、 氧化铁纳米颗粒 六价铬 35 min 98.9% Jin et al. (2017)[32]
    氧化铁纳米颗粒 90 min 90.0% Ehrampoush et al.(2015)[33]
    纳米零价铁 六价铬 90 min 89.9% Qiu et al. (2017)[34]
    下载: 导出CSV
  • [1] AJINKYA N, YU X F, KAITHAL P, et al. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present andfuture[J]. Materials (Basel, Switzerland), 2020, 13(20): 4644. doi: 10.3390/ma13204644
    [2] ANDRADE R G D, VELOSO S R S, CASTANHEIRA E M S. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications[J]. International Journal of Molecular Sciences, 2020, 21(7): 2455. doi: 10.3390/ijms21072455
    [3] FATIMA H, LEE D W, YUN H J, et al. Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents[J]. RSC Advances, 2018, 8(41): 22917-22923. doi: 10.1039/C8RA02909A
    [4] JACINTO M J, SILVA V C, VALLADÃO D S, et al. Biosynthesis of magnetic iron oxide nanoparticles: A review[J]. Biotechnology Letters, 2021, 43(1): 1-12. doi: 10.1007/s10529-020-03047-0
    [5] DOLORES MÁRQUEZ-MEDINA M, RODRÍGUEZ-PADRÓN D, BALU A M, et al. Mechanochemically synthesized supported magnetic Fe-nanoparticles as catalysts for efficient vanillin production[J]. Catalysts, 2019, 9(3): 290. doi: 10.3390/catal9030290
    [6] NAYEEM J, ALIM AL-BARI M A, MAHIUDDIN M, et al. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125857. doi: 10.1016/j.colsurfa.2020.125857
    [7] TAKAI Z I, MUSTAFA M, ASMAN S, et al. Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method[J]. Int J Nanoelectron Mater, 2019, 12: 37-46.
    [8] TADIC M, PANJAN M, DAMNJANOVIC V, et al. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method[J]. Applied Surface Science, 2014, 320: 183-187. doi: 10.1016/j.apsusc.2014.08.193
    [9] MAHARJAN A, DIKSHIT P K, GUPTA A, et al. Catalytic activity of magnetic iron oxide nanoparticles for hydrogen peroxide decomposition: Optimization and characterization[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(9): 2495-2508.
    [10] LIU S L, TAO D D, ZHANG L N. Cellulose scaffold: A green template for the controlling synthesis of magnetic inorganic nanoparticles[J]. Powder Technology, 2012, 217: 502-509. doi: 10.1016/j.powtec.2011.11.010
    [11] RANE A V, KANNY K, ABITHA V K, et al. Methods for synthesis of nanoparticles and fabrication of nanocomposites[M]//Synthesis of Inorganic Nanomaterials. Amsterdam: Elsevier, 2018: 121-139.
    [12] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5): 443-466. doi: 10.1080/10643389.2015.1103832
    [13] SAMROT A V, SAHITHYA C S, SELVARANI A J, et al. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles[J]. Current Research in Green and Sustainable Chemistry, 2021, 4: 100042. doi: 10.1016/j.crgsc.2020.100042
    [14] SARWAR A, WANG J, KHAN M S, et al. Iron oxide (Fe3O4)-supported SiO2 magnetic nanocomposites for efficient adsorption of fluoride from drinking water: Synthesis, characterization, and adsorption isotherm analysis[J]. Water, 2021, 13(11): 1514. doi: 10.3390/w13111514
    [15] SHUKLA S, KHAN R, DAVEREY A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review[J]. Environmental Technology & Innovation, 2021, 24: 101924.
    [16] SMALLMAN R E, NGAN A H W. Characterization and analysis[M]//Modern Physical Metallurgy. Amsterdam: Elsevier, 2014: 159-250.
    [17] YOSHIDA T, NAKAMURA T, HIGASHI O, et al. Magnetic fractionation and characterization of magnetic nanoparticles for magnetic particle imaging[J]. Japanese Journal of Applied Physics, 2018, 57(8): 080302. doi: 10.7567/JJAP.57.080302
    [18] BHALERAO T S. Magnetic nanostructures: environmental and agricultural applications[M]//Nanotechnology in the Life Sciences. Cham: Springer International Publishing, 2019: 213-224.
    [19] BHATERIA R, SINGH R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal[J]. Journal of Water Process Engineering, 2019, 31: 100845. doi: 10.1016/j.jwpe.2019.100845
    [20] HE Y Z, WANG Z W, WANG H, et al. Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications[J]. Coordination Chemistry Reviews, 2021, 429: 213618. doi: 10.1016/j.ccr.2020.213618
    [21] SAHARAN P, CHAUDHARY G R, MEHTA S K, et al. Removal of water contaminants by iron oxide nanomaterials[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(1): 627-643. doi: 10.1166/jnn.2014.9053
    [22] LI W L, FORTNER J D. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Frontiers of Environmental Science & Engineering, 2020, 14(5): 1-9.
    [23] KOLLURU S S, AGARWAL S, SIREESHA S, et al. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects[J]. Process Safety and Environmental Protection, 2021, 150: 323-355. doi: 10.1016/j.psep.2021.04.025
    [24] MOHAMMED L, GOMAA H G, RAGAB D, et al. Magnetic nanoparticles for environmental and biomedical applications: A review[J]. Particuology, 2017, 30: 1-14. doi: 10.1016/j.partic.2016.06.001
    [25] NGUYEN M D, TRAN H V, XU S J, et al. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications[J]. Applied Sciences (Basel, Switzerland), 2021, 11(23): 11301.
    [26] REHMAN A U, NAZIR S, IRSHAD R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455
    [27] SOHAIL M I, WARIS A A, AYUB M A, et al. Environmental application of nanomaterials: A promise to sustainable future[M]//Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability. Amsterdam: Elsevier, 2019: 1-54.
    [28] ZHOU Q X, LI J, WANG M Y, et al. Iron-based magnetic nanomaterials and their environmental applications[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 783-826. doi: 10.1080/10643389.2016.1160815
    [29] HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica, 2017, 75(6): 529. doi: 10.6023/A17020051
    [30] SEBASTIAN A, NANGIA A, PRASAD M N V. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L[J]. Journal of Cleaner Production, 2018, 174: 355-366. doi: 10.1016/j.jclepro.2017.10.343
    [31] WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied Surface Science, 2017, 399: 322-329. doi: 10.1016/j.apsusc.2016.12.090
    [32] JIN S Y, PARK B C, HAM W S, et al. Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous SiO2 core-shell nanoparticles on the removal of heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 133-140.
    [33] EHRAMPOUSH M H, MIRIA M, SALMANI M H, et al. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 84. doi: 10.1186/s40201-015-0237-4
    [34] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265: 115018. doi: 10.1016/j.envpol.2020.115018
    [35] HAN X, WANG F, Zhao Y, et al. Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review[J]. Environmental Chemistry Letters, 2022: 1-24.
    [36] CHUANG P Y, CHIA Y, LIOU Y H, et al. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test[J]. Hydrogeology Journal, 2016, 24(7): 1651-1662. doi: 10.1007/s10040-016-1426-7
    [37] BANIJAMALI S, FEIZIAN M, BIDABADI A A, et al. Evaluation uptake and translocation of iron oxide nanoparticles and its effect on photosynthetic pigmentation of Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’[J]. Journal of Ornamental Plants, 2019, 9(4): 245-258.
    [38] AHMED B, RIZVI A, ALI K, et al. Nanoparticles in the soil–plant system: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1545-1609. doi: 10.1007/s10311-020-01138-y
    [39] MEDINA-PÉREZ G, FERNÁNDEZ-LUQUEÑO F, VAZQUEZ-NUÑEZ E, et al. Remediating polluted soils using nanotechnologies: Environmental benefits and risks[J]. Polish Journal of Environmental Studies, 2019, 28(3): 1013-1030. doi: 10.15244/pjoes/87099
    [40] RAFFI M M, HUSEN A. Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment[M]//Nanomaterials and Plant Potential. Cham: Springer International Publishing, 2019: 529-552.
    [41] RAWAT S, PULLAGURALA V L R, ADISA I O, et al. Factors affecting fate and transport of engineered nanomaterials in terrestrial environments[J]. Current Opinion in Environmental Science & Health, 2018, 6: 47-53.
    [42] XU Z X, LONG X, JIA Y, et al. Occurrence, transport, and toxicity of nanomaterials in soil ecosystems: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3943-3969. doi: 10.1007/s10311-022-01507-9
    [43] 张旭升. 不同植被修复模式下土壤真菌的研究及纳米材料对土壤理化性质和酶活性的影响[D]. 太原: 山西大学, 2021.

    ZHANG X S. Study on soil fungi under different vegetation restoration patterns and the effect of nanomaterials on soil physical and chemical properties and enzyme activities[D]. Taiyuan: Shanxi University, 2021 (in Chinese).

    [44] SUN P, SUN Y Y, LUO Y H, et al. The application progress of nano materials for remediation in contaminated soil[J]. IOP Conference Series: Earth and Environmental Science, 2021, 692(3): 032035. doi: 10.1088/1755-1315/692/3/032035
    [45] XIN X P, ZHAO F L, ZHAO H M, et al. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties[J]. Geoderma, 2020, 367: 114278. doi: 10.1016/j.geoderma.2020.114278
    [46] JAIN A, SINGH N, KHAN S. Nanomaterials for soil reclamation[M]//Advances in Environmental Engineering and Green Technologies. IGI Global, 2021: 530-541.
    [47] YAN L, LI P Y, ZHAO X P, et al. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles[J]. Science of the Total Environment, 2020, 718: 137400. doi: 10.1016/j.scitotenv.2020.137400
    [48] GALAKTIONOVA L, GAVRISH I, LEBEDEV S. Bioeffects of Zn and Cu nanoparticles in soil systems[J]. Toxicology and Environmental Health Sciences, 2019, 11(4): 259-270. doi: 10.1007/s13530-019-0413-5
    [49] ASADISHAD B, CHAHAL S, AKBARI A, et al. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition[J]. Environmental Science & Technology, 2018, 52(4): 1908-1918.
    [50] YOU T T, LIU D D, CHEN J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types[J]. Journal of Soils and Sediments, 2018, 18(1): 211-221. doi: 10.1007/s11368-017-1716-2
    [51] SUN W, DOU F, Li C, et al. Impacts of metallic nanoparticles and transformed products on soil health[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(10): 973-1002. YANG H Y, ZHANG X, DANG D, et al. Effects of iron oxide nanoparticles on CH4 and N2O emissions and microbial communities in two typical paddy soils[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 725-733 (in Chinese).
    [52] ELHAMBAKHSH A, GHANAATIAN A, KESHAVARZ P. Glutamine functionalized iron oxide nanoparticles for high-performance carbon dioxide absorption[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104081. doi: 10.1016/j.jngse.2021.104081
    [53] DIMKPA C O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?[J]. Journal of Basic Microbiology, 2014, 54(9): 889-904. doi: 10.1002/jobm.201400298
    [54] PEREA VELEZ Y S, CARRILLO-GONZALEZ R, GONZÁLEZ-CHÁVEZ M. Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation[J]. Journal of Nanoparticle Research, 2021, 23(9): 1-48.
    [55] HU L F, FENG Z Y, YU Y X, et al. Effects of metal oxide nanoparticles on nitrous oxide emissions in agriculture soil[J]. Agriculture, 2022, 12(6): 770. doi: 10.3390/agriculture12060770
    [56] RAJA M A, HUSEN A. Role of nanomaterials in soil and water quality management[M]//Nanomaterials for Agriculture and Forestry Applications. Amsterdam: Elsevier, 2020: 491-503.
    [57] PUSPITASARI P, YAZIRIN C, BACHTIAR L A, et al. Application of nanocatalyst iron oxide (Fe2O3) to reduce exhaust emissions (CO and HC)[J]. IOP Conference Series: Materials Science and Engineering, 2018, 432: 012004. doi: 10.1088/1757-899X/432/1/012004
    [58] 吴江利, 罗学刚, 李宝强, 等. 微生物菌肥作用下荒漠土壤微生物群落结构和功能研究[J]. 中国农学通报, 2015, 31(9) 216-223.

    WU J L, LUO X G, LI B Q, et al. Researches on microbial community structure and function in desert soil under microbial fertilizer[J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 216-223 (in Chinese).

    [59] FU L, SONG T Z, ZHANG W, et al. Stimulatory effect of magnetite nanoparticles on a highly enriched butyrate-oxidizing consortium[J]. Frontiers in Microbiology, 2018, 9: 1480. doi: 10.3389/fmicb.2018.01480
    [60] 杨浩宇, 张潇, 党迪, 等. 纳米氧化铁对水稻土CH4和N2O排放及微生物的影响[J]. 应用与环境生物学报, 2021, 27(3): 725-733.

    YANG H Y, ZHANG X, DANG D, et al. Effects of iron oxide nanoparticles on CH4 and N2O emissions and microbial communities in two typical paddy soils[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 725-733 (in Chinese).

    [61] CHEN Q L, DING J, ZHU Y G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140: 105766. doi: 10.1016/j.envint.2020.105766
    [62] JIA Y, WHALEN J K. A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities[J]. Pedosphere, 2020, 30(1): 18-24. doi: 10.1016/S1002-0160(19)60826-X
    [63] ZHONG Y, YAN W M, WANG R W, et al. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession[J]. Soil Biology and Biochemistry, 2018, 123: 207-217. doi: 10.1016/j.soilbio.2018.05.017
    [64] van der BOM F, NUNES I, RAYMOND N S, et al. Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field[J]. Soil Biology and Biochemistry, 2018, 122: 91-103. doi: 10.1016/j.soilbio.2018.04.003
    [65] ZHENG Q, HU Y T, ZHANG S S, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J]. Soil Biology and Biochemistry, 2019, 136: 107521. doi: 10.1016/j.soilbio.2019.107521
    [66] 尹雪梅, 王晓凤. 纳米Fe3O4对玉米叶面积和根际微生物群落功能多样性的影响[C]//中国土壤学会土壤环境专业委员会第十九次会议暨“农田土壤污染与修复研讨会”第二届山东省土壤污染防控与修复技术研讨会摘要集. 济南, 2017: 139.

    YIN X M, WANG X F. Effects of nano Fe3O4 on leaf area and rhizosphere microbial community functional diversity in maize[C]//. The 19th Conference of Soil Environment Committee of Soil Society of China and the 2nd Workshop on Soil Pollution Control and Remediation in Shandong Province Abstract Collection. Jinan, 2017: 139(in Chinese).

    [67] HE S Y, FENG Y Z, REN H X, et al. The impact of iron oxide magnetic nanoparticles on the soil bacterial community[J]. Journal of Soils and Sediments, 2011, 11(8): 1408-1417. doi: 10.1007/s11368-011-0415-7
    [68] KUMAR P, BURMAN U, KAUL R K. Ecological risks of nanoparticles[M]//Nanomaterials in Plants, Algae, and Microorganisms. Amsterdam: Elsevier, 2018: 429-452.
    [69] REN X M, GUO L, CHEN Y, et al. Effect of magnet powder (Fe3O4) on aerobic granular sludge (AGS) formation and microbial community structure characteristics[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9707-9715.
    [70] SAIF S, TAHIR A, CHEN Y S. Green synthesis of iron nanoparticles and their environmental applications and implications[J]. Nanomaterials (Basel, Switzerland), 2016, 6(11): 209. doi: 10.3390/nano6110209
    [71] SHEN Y X, JIANG B, XING Y. Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants[J]. Environmental Science and Pollution Research, 2021, 28(7): 7599-7620. doi: 10.1007/s11356-020-11877-8
    [72] MAI T, HILT J Z. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications[J]. Journal of Nanoparticle Research, 2017, 19(7): 1-10.
    [73] ZENG Q Z, XU J, HOU Y, et al. Effect of Fe3O4 nanoparticles exposure on the treatment efficiency of phenol wastewater and community shifts in SBR system[J]. Journal of Hazardous Materials, 2021, 407: 124828. doi: 10.1016/j.jhazmat.2020.124828
    [74] LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003
    [75] FAJARDO C, GARCÍA-CANTALEJO J, BOTÍAS P, et al. New insights into the impact of nZVI on soil microbial biodiversity and functionality[J]. Journal of Environmental Science and Health, Part A, 2019, 54(3): 157-167. doi: 10.1080/10934529.2018.1535159
    [76] ANZA M, SALAZAR O, EPELDE L, et al. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity[J]. Frontiers in Environmental Science, 2019, 7: 19. doi: 10.3389/fenvs.2019.00019
    [77] FAJARDO C, ORTÍZ L T, RODRÍGUEZ-MEMBIBRE M L, et al. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach[J]. Chemosphere, 2012, 86(8): 802-808. doi: 10.1016/j.chemosphere.2011.11.041
    [78] PAWLETT M, RITZ K, DOREY R A, et al. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent[J]. Environmental Science and Pollution Research, 2013, 20(2): 1041-1049. doi: 10.1007/s11356-012-1196-2
    [79] YE W F, LU J, YE J F, et al. The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review[J]. Journal of Cleaner Production, 2021, 278: 123567. doi: 10.1016/j.jclepro.2020.123567
    [80] KOCUR C M D, LOMHEIM L, MOLENDA O, et al. Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection[J]. Environmental Science & Technology, 2016, 50(14): 7658-7670.
    [81] LIU C E, YUE M H, TAN H L, et al. Effects of nano-zero-valent iron(nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722-1732.
    [82] KASEM K K, MOSTAFA M, ABD-ELSALAM K A. Iron-based nanomaterials: Effect on soil microbes and soil health[M]//Nanotechnology in the Life Sciences. Cham: Springer International Publishing, 2019: 261-285.
    [83] AHMAD S, LIU X M, TANG J C, et al. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants[J]. Chemical Engineering Journal, 2022, 431: 133187. doi: 10.1016/j.cej.2021.133187
    [84] PENG D H, WU B, TAN H, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44-53. doi: 10.1016/j.chemosphere.2019.04.106
    [85] ADHIKARI K, HARTEMINK A E. Linking soils to ecosystem services—a global review[J]. Geoderma, 2016, 262: 101-111. doi: 10.1016/j.geoderma.2015.08.009
    [86] LI L, XU M G, EYAKUB ALI M, et al. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment[J]. PLoS One, 2018, 13(9): e0203812. doi: 10.1371/journal.pone.0203812
    [87] MOSCATELLI M C, SECONDI L, MARABOTTINI R, et al. Assessment of soil microbial functional diversity: Land use and soil properties affect CLPP-MicroResp and enzymes responses[J]. Pedobiologia, 2018, 66: 36-42. doi: 10.1016/j.pedobi.2018.01.001
    [88] NKONGOLO K K, NARENDRULA-KOTHA R. Advances in monitoring soil microbial community dynamic and function[J]. Journal of Applied Genetics, 2020, 61(2): 249-263. doi: 10.1007/s13353-020-00549-5
    [89] GHOSH S, JOSHI K, WEBSTER T J. Removal of heavy metals by microbial communities[M]//Wastewater Treatment Reactors. Amsterdam: Elsevier, 2021: 537-566.
    [90] FAKRUDDIN M, BIN MANNAN K S. Methods for analyzing diversity of microbial communities in natural environments[J]. Ceylon Journal of Science (Biological Sciences), 2013, 42(1): 19. doi: 10.4038/cjsbs.v42i1.5896
    [91] KHAN S T. Interaction of engineered nanomaterials with soil microbiome and plants: Their impact on plant and soil health[M]//Sustainable Agriculture Reviews 41. Cham: Springer International Publishing, 2020: 181-199.
    [92] QIAN H F, KE M J, QU Q, et al. Ecological effects of single-walled carbon nanotubes on soil microbial communities and soil fertility[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(4): 536-542. doi: 10.1007/s00128-018-2437-y
    [93] 曹鑫磊, 姜浩, 杨宝山, 等. 纳米银对小麦秸秆还田土壤中酶活性及微生物群落功能多样性的影响[J]. 山东科学, 2021, 34(3): 80-89.

    CAO X L, JIANG H, YANG B S, et al. Effects of nano-silver on enzyme activity and microbial community functional diversity in wheat straw returning soil[J]. Shandong Science, 2021, 34(3): 80-89.(in Chinese).

    [94] RAJPUT V D, MINKINA T M, BEHAL A, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms A review[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 76-84.
    [95] SHI X D, WEI W, WU L, et al. Zero-valent iron mediated biological wastewater and sludge treatment[J]. Chemical Engineering Journal, 2021, 426: 130821. doi: 10.1016/j.cej.2021.130821
    [96] TIAN L Y, SHEN J P, SUN G X, et al. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L. ) rhizosphere grown in contaminated mine soil[J]. Environmental Science & Technology, 2020, 54(20): 13137-13146.
    [97] VANZETTO G V, THOMÉ A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation[J]. Environmental Pollution, 2019, 252: 74-83. doi: 10.1016/j.envpol.2019.05.092
    [98] ZHU X W, BLANCO E, BHATTI M, et al. Impact of metallic nanoparticles on anaerobic digestion: A systematic review[J]. Science of the Total Environment, 2021, 757: 143747. doi: 10.1016/j.scitotenv.2020.143747
    [99] LEI C, SUN Y Q, TSANG D C W, et al. Environmental transformations and ecological effects of iron-based nanoparticles[J]. Environmental Pollution, 2018, 232: 10-30. doi: 10.1016/j.envpol.2017.09.052
    [100] MAHANTY B, JESUDAS S, PADMAPRABHA A. Toxicity of surface functionalized iron oxide nanoparticles toward pure suspension culture and soil microcosm[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100235.
    [101] RANMADUGALA D, EBRAHIMINEZHAD A, MANLEY-HARRIS M, et al. Magnetic immobilization of bacteria using iron oxide nanoparticles[J]. Biotechnology Letters, 2018, 40(2): 237-248. doi: 10.1007/s10529-017-2477-0
    [102] SEIFAN M, EBRAHIMINEZHAD A, GHASEMI Y, et al. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3595-3606. doi: 10.1007/s00253-018-8860-5
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.3 %DOWNLOAD: 5.3 %HTML全文: 94.1 %HTML全文: 94.1 %摘要: 0.6 %摘要: 0.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.5 %其他: 99.5 %北京: 0.2 %北京: 0.2 %天津: 0.1 %天津: 0.1 %张家口: 0.1 %张家口: 0.1 %其他北京天津张家口Highcharts.com
图( 3) 表( 1)
计量
  • 文章访问数:  3121
  • HTML全文浏览数:  3121
  • PDF下载数:  77
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-05
  • 录用日期:  2023-02-03
  • 刊出日期:  2024-06-27
何建荣, 魏晓贺, 刘煜莹, 苗欣宇, 欧阳少虎, 岳晴, 李鑫, Ramasamy Rajesh Kumar. 磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展[J]. 环境化学, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
引用本文: 何建荣, 魏晓贺, 刘煜莹, 苗欣宇, 欧阳少虎, 岳晴, 李鑫, Ramasamy Rajesh Kumar. 磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展[J]. 环境化学, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
HE Jianrong, WEI Xiaohe, LIU Yuying, MIAO Xinyu, OUYANG Shaohu, YUE Qing, LI Xin, Ramasamy Rajesh Kumar. Effects of magnetic nano - iron on soil physicochemical properties and microbial community and metabolism[J]. Environmental Chemistry, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504
Citation: HE Jianrong, WEI Xiaohe, LIU Yuying, MIAO Xinyu, OUYANG Shaohu, YUE Qing, LI Xin, Ramasamy Rajesh Kumar. Effects of magnetic nano - iron on soil physicochemical properties and microbial community and metabolism[J]. Environmental Chemistry, 2024, 43(6): 1820-1831. doi: 10.7524/j.issn.0254-6108.2022120504

磁性纳米铁对土壤理化性质及微生物群落和代谢的影响研究进展

    通讯作者: E-mail:miaoxy312@126.com;  E-mail:ouyangshaohu@nankai.edu.cn; 
  • 1. 天津理工大学环境科学与安全工程学院,天津,300384
  • 2. 南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室,天津市城市生态环境修复与污染防治重点实验室,天津,300071
  • 3. 天科院环境科技发展(天津)有限公司,天津,300450
  • 4. Bharti大学,印度,491001
基金项目:
2021年度天津市重点研发项目(21YFSNSN00030),2021年度河北省矿产资源与生态环境监测重点实验室开放基金(HBMREEM202104),国家自然科学基金青年基金 (42107306) 和博士后面上项目 (2020M680867) 资助.

摘要: 近年来,磁性纳米铁因其独特性能在生物医学、农业、工业、生命科学及环境保护领域广泛应用. 随着磁性纳米铁的大范围应用,其对环境和人体健康将带来的潜在影响,已经引起科学界的广泛关注. 本文系统总结了近年来磁性纳米铁的相关文献资料,探讨了磁性纳米铁的合成方法、表征及环境应用;我们重点强调了磁性纳米铁对土壤理化性质及微生物群落和代谢的潜在影响. 最后展望了磁性纳米铁在未来的环境应用、发展及纳米毒理学亟待研究的重要问题. 本文旨在更加全面地揭示磁性纳米铁的环境可持续性,为其安全使用和环境功能化应用提供一定的参考.

English Abstract

  • 磁性纳米铁具有特殊的物理化学性质,随着纳米科学技术的快速发展,磁性纳米铁已成功应用于催化、生物技术、生物医药、磁共振成像、数据存储、生物传感器、环境污染物去除等广泛领域[1],但与此同时,此种材料所带来的潜在环境危害也有所增加[2]. 磁性纳米铁除了被用于土壤污染物去除(例如去除土壤中的重金属离子、有机污染物、无机污染物)时进入土壤,还会在生产与废弃过程中通过各种途径以“三废”的形式在土壤中积累[3].

    土壤为陆生生物提供生活所必需的矿质元素和水分,是生态系统中物质与能量交换的重要场所;同时也是生态系统中生物部分和无机环境部分相互作用的产物[4]. 磁性纳米铁在土壤中的积累除了会对土壤理化性质、酶活性和温室气体排出造成影响,还会影响到土壤微生物群落的结构、功能和代谢,从而影响到整个土壤生态系统[5]. 本研究以此为出发点,总结了磁性纳米铁(以四氧化三铁磁性纳米颗粒(Fe3O4-NPs)、三氧化二铁磁性纳米颗粒(Fe2O3-NPs)和纳米零价铁(nZVI-NPs)为主)在土壤中积累所带来影响的相关研究,以期为合理利用磁性纳米铁修复土壤污染的同时尽可能减少对土壤以及微生物的危害提供理论依据.

    • 磁性纳米铁可以通过原子组装或块体材料断裂来制备,常用的制备方法有溶胶-凝胶法、水热法、共沉淀法、浸渍法、模板法、化学气相沉积法(图1[6].

      溶胶-凝胶法制备Fe3O4-NPs以亚硝酸铁为前驱体经过溶解、水解、缩聚、老化等步骤制得[7];采用水热法制备Fe2O3-NPs,样品形成的起始点是由氢氧化钠、去离子水、乙醇和油酸混合制备的溶液与七水硫酸铁水溶液混合后电磁搅拌6 h,将混合溶液在160 ℃加热24 h后,在去离子水和乙醇中洗涤6次,在75 ℃温度下干燥12 h后得到[8];采用化学共沉淀法合成Fe3O4-NPs的材料有: 六水合氯化铁(FeCl3·6H2O)、四水合氯化铁(FeCl2·4H2O)、水溶液混合后得到混合溶液,向混合溶液中添加NaOH将混合溶液pH调整至6后共沉淀生成Fe3O4-NPs;用浸渍法制备Fe2O3-NPs时,首先是将制备好的水凝胶与铁盐浸渍,然后在180 ℃温度下煅烧,合成分散在硅干凝胶中不同含量的Fe2O3-NPs样品[9];在绿色合成战略中,对环境无害的溶剂、无毒化学品和可再生材料的利用是要考虑的一些关键问题,例如利用纤维素薄膜作为辅助材料,通过电抛光、阳极阴化等步骤合成了单分散磁性Fe2O3-NPs[10];化学气相沉积是一种用于生产高质量、高性能固体材料的化学过程. 在利用化学气相沉积法合成Fe2O3-NPs、Fe3O4-NPs的过程中,水(基材)暴露在一种或多种挥发性前驱体中,这些前驱体在基材表面发生反应和分解,以产生所需的沉积[11].

      nZVI-NPs的合成可以通过铣削、蚀刻和机加工等机械和化学过程将大尺寸材料转化为nZVI-NPs;或是通过化学合成、自组装、位置组装等方法逐个将原子或分子组装为nZVI-NPs,具体可分为氯化铁合成法、硫酸亚铁合成法以及自上而下法合成nZVI-NPs[12].

    • 为了研究不同合成技术制备的磁性纳米铁的性能,目前已有多种技术用于磁性纳米铁的表征,例如采用X射线衍射(XRD)、场发射散射电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、原子力显微镜(AFM)、光子相关光谱(PCS)、动态光散射(DLS)、凝聚粒子计数器(CPC)等设备获得所制备样品的尺寸和形状,通过扫描电子显微镜、透射电子显微镜等设备观察纳米粒子的表面形貌以及长度和直径[1314].

      介电损耗切线、电阻率、电导率等是研究者通常观察到的磁性纳米铁的性质. 热电功率(TEP)测量和红外光谱证实,激光辐照纳米颗粒后,随着温度的升高,纳米颗粒的电导率增加,电阻率降低[15]. 磁性纳米铁的光电导性质,无论正负,都可以通过对光电导研究来证实,同时在对磁性纳米铁光学性质的表征上,目前已有一系列模型来确定纳米颗粒的光学性质,但其中最流行的模型是Tauc模型[16]. Tauc模型目前已经被用来观察铁酸镁(MgFe2O4)纳米材料的能量带隙等光学性质[17].

    • 磁性纳米铁作为一种新型的纳米材料,因其独特的性质,如纳米效应、磁性、热/pH敏感性、生物相容性和稳定性等而备受关注[18]. 因此,磁性纳米铁应用越来越广泛,特别是在环境保护领域,例如作为环境污染物的催化剂、有机/无机污染物的环境修复治理等. 本节讨论了铁基磁性纳米材料用于环境应用的最新进展[19].

    • 磁性纳米铁可以作为催化剂将污染物分子分解或转化为毒性较小的代谢物. 浸渍氧化-沉淀法合成的Fe3O4-NPs是降解泮托拉唑的非均相催化剂,在最佳条件下降解效率达到98.0%[20]. 另一种采用先进的反向共沉淀法制备的Fe3O4-NPs在超声辐照和活化H2O2作用下,60 min内可以降解约90%的罗丹明B[21]. 此外,Fe3O4-NPs还被用作非均相催化剂载体,以获得易于分散在普通溶剂中、高比表面积和可重复利用性的生物制品[22]. 例如,制备氨基功能化的Fe3O4-NPs并将其与戊二醛偶联(粒径范围为10—100 nm),可催化多种生物转化反应,包括乙酸乙酯合成和植物油酯交换制备生物柴油[23].

    • 近年来,nZVI-NPs因其卓越的环境修复能力而受到极大关注. 它们的修复机制取决于nZVI-NPs的吸附和还原性能以及污染物的性质[24]. 实验研究表明,nZVI-NPs可以有效转化各种环境有机污染物,包括有机污染物,如卤代烃(如三氯乙烯)和有机染料(如甲基橙、紫红),采用nZVI-NPs对三氯乙烯进行脱氯,三氯乙烯去除率大于99%[25]. nZVI-NPs还可以有效转化多种环境无机污染物,包括重金属离子(如镍、汞、砷、铬)、放射性元素(如铀)和类金属(如硝酸盐或磷酸盐)[26].

    • 利用Fe3O4-NPs修饰酵母细胞制成的纳米复合材料是去除铬的良好生物吸附剂[27]. Fe3O4-NPs修饰后的酵母细胞的吸附能力比未修饰的酵母细胞提高了3倍. 改性吸附剂对1000 mg·g−1铬溶液在最佳条件下的吸附量为186.32 mg·g−1,而未改性吸附剂的吸附量为137.31 mg·g−1[28]. 此外,表1归纳了部分通过各种方法合成的磁性纳米铁去除重金属应用的相关研究.

    • 一些向环境释放大量磁性纳米铁的产品包括涂料、颜料、油漆、电子仪器,在生产阶段,大约有0.1%—2%的磁性纳米铁会到达环境中[35]. 其中进入土壤的磁性纳米铁占进入环境总量的10%—25%[36],磁性纳米铁不仅通过农业中的直接土地应用进入土壤(例如以磁性纳米铁为原料制成的具有成本效益、生物相容性和生物降解性的功能纳米材料被人为释放到土壤中以增加作物产量和有针对性地输送农药和营养物质,增强植物对各种胁迫因素的抵抗力,并作为纳米传感器检测各种污染物、植物疾病和植物营养不足)[37],还可通过垃圾焚烧进入大气沉积、降水和农业灌溉从大气和水环境中进入土壤[38],之后对土壤生态系统、团聚体的平均质量直径、光合作用和土壤结构等方面产生影响[39].

    • 磁性纳米铁通过废物处理、空中沉积或污水处理厂等直接或间接处理方法进入土壤,因此需要了解磁性纳米铁与土壤之间的相互作用以及对土壤理化性质的影响[40],天然纳米颗粒如铁氧化物、黏土、有机质和其他矿物,是陆地生态系统进行生化过程的重要组成部分[4142]. 磁性纳米铁的进入可能通过改变天然纳米颗粒的分布而影响土壤的发育或行为,从而影响生态系统[43]. 此外,磁性纳米铁的存在也会改变土壤性质,Sun等将Fe3O4-NPs应用于低钙寒农田,结果表明,Fe3O4-NPs降低了团聚体的平均质量直径,并且增加了土壤容重和土壤体积含水量. 此外,增加Fe3O4-NPs含量也会增加土壤的渗透阻力,从而使土壤的渗透阻力增大,减少根系生长,同时降低土壤饱和导水率,影响植物吸水[4445]. 此外Fe3O4-NPs的积累会增加土壤中三价铁的浓度,从而使土壤pH值升高,pH的升高同样会影响植物生长. 另一方面,当土壤的水饱和时,三价铁可以转化为亚铁,亚铁参与其中叶绿素的合成,在光合作用中起着重要的作用[46].

      此外,根据Yan等的研究,向土壤中释放Fe3O4-NPs会提高玉米的抗氧化能力,促进玉米的生长,其原因是Fe3O4-NPs造成土壤中叶绿素、糖、蛋白质和营养元素含量的增加以及丙二醛含量的降低,对土壤中的有机质含量产生了影响[47].

    • 土壤酶是土壤中最活跃的有机成分之一[48],磁性纳米铁与土壤酶接触后,会降低部分土壤酶的活性,并最终会影响氮磷的转化、增加过氧化氢的积累、造成土壤肥力降低和对微生物产生不良影响. 此部分总结了磁性纳米铁对转化酶、脲酶、磷酸酶和过氧化氢酶等酶活性的影响,以评估磁性纳米铁对土壤酶活性的影响[49]. You等[50]用3种纳米材料(纳米氧化锌、纳米氧化铈、纳米氧化钛)与Fe3O4-NPs对土壤酶活性的影响进行比较,结果表明两种土壤微生物群落在纳米氧化锌处理后均表现出过氧化氢酶活性降低、脲酶活性升高的趋势. 此外,与对照相比,黑土中含纳米氧化锌的土壤转化酶活性显著提高,盐碱地土壤转化酶活性呈下降趋势,而在在黑土中,只有纳米氧化锌处理后显著降低了磷酸酶活性[50]. 因此,在上述几类磁性纳米铁中,纳米氧化锌对4种酶活性的影响均强于其他材料. 与含纳米氧化锌的土壤相比,含纳米氧化铈的土壤过氧化氢酶和磷酸酶活性与对照差异不显著,含纳米氧化铈的土壤的脲酶活性显著低于对照组. 纳米氧化钛和Fe3O4-NPs处理的过氧化氢酶和转化酶活性在盐碱地显著降低,而在黑土中不显著. 在不同浓度的磁性纳米铁处理下,黑土和盐碱土土壤酶活性变化一致[51].

      此外,Fe2O3-NPs和Fe3O4-NPs增加土壤中转化酶和脲酶的数量,促进土壤中碳、氮的周转[52]. 然而,只有某些特定的细菌受益于这种变化,而不是整个土壤微生物种群,这是由于土壤微生物的脱氢酶没有得到增强[53].

    • 通过各种途径释放到土壤中的磁性纳米铁不仅影响土壤养分循环,还影响CO2、CH4和N2O等温室气体的排放[54],并影响全球气候变化,N2O是全球变暖的重要温室气体之一[55],在100年时间尺度上其全球变暖趋势是CO2的298倍,生态系统过程在N2O排放中起着重要作用,农业系统每年排放N2O约为2.7亿t[56]. 不同类型的纳米颗粒直接影响土壤硝化和反硝化过程,并影响N2O的排放,例如磁性氧化铁纳米颗粒可显著影响土壤的硝化电位,从而降低土壤中N2O的排放量,硝化菌和反硝化菌对纳米颗粒的响应随纳米颗粒类型和土壤类型的不同而不同[57](如图2所示).

      Fe2O3-NPs由于其所具有的磁性从而对土壤呼吸产生影响,在Fe2O3-NPs磁性的辐射作用下,土壤微生物增强对土壤有机碳的分解能力,增强了土壤的呼吸作用,最终导致土壤排放量增加[58],并且会通过影响土壤中的电子迁移过程来抑制CH4的排放,此外,Fe2O3-NPs的磁性会对土壤微生物的活性有激活作用,并且对土壤呼吸产生影响,最终导致土壤中CO2的排放量增加[59].

      YANG等[60]的研究发现,Fe3O4-NPs会促进土壤中一种高度富集的丁酸盐氧化联合体的富集转移过程,在Fe3O4-NPs的作用下会持续增强丁酸盐氧化和CH4的生成,添加碳纳米管替代Fe3O4-NPs也产生了类似的刺激效果,而Fe3O4-NPs表面的二氧化硅涂层则完全消除了这种刺激作用,说明Fe3O4-NPs的导电性在促进共氧化过程释放CH4中起着关键作用[60].

    • 微生物在地球化学循环中发挥着重要作用,对土壤功能,特别是有机质分解和养分循环至关重要;因此,它们在调节植物生产力、群落动态和土壤形成中都很重要[61]. 微生物通过其代谢活性参与土壤无机组分的转化、移动和固定化,一个表面为1 Ha、度为30 cm的土壤可能总共含有10 mg的细菌和10 mg的真菌[62],这种微生物群落在维持土壤功能和陆地生态系统方面发挥着重要作用[63]. 它们也是污染物降解过程中的主要参与者,如有机质矿化,促进生态系统中的养分循环,从而促进土壤肥力[64]. 微生物之间以及微生物与高等生物之间也保持着关键的共生和致病关系[65],由于其关键而广泛的作用,土壤微生物的代谢活动已被用作评估土壤中人为活动释放的污染物(如金属和农药)的影响的测量端点. 这些测量值通常被用于生态风险评估[66].

    • Fe2O3-NPs和Fe3O4-NPs对细菌群落的影响可能归因于纳米颗粒的两种特性及其对微生物代谢的促进作用[67],由于其微小的尺寸和稳定性,Fe2O3-NPs和Fe3O4-NPs极容易运输到土壤中[68],提高了土壤表面积与体积之比,因此相对于块状材料,纳米颗粒更容易部分分解和释放离子[69]. 此外,纳米颗粒具有最活跃的表面位点(主要是Fe2O3-NPs上的Fe-OH位点,能够与天然有机化合物结合)[70]. 例如,在土壤中的有机化合物,如腐殖酸和黄腐酸的辅助下,磁性纳米铁的添加可以增强铁对土壤细菌的生物有效性. 腐植酸是动植物残基在理化和微生物降解过程中形成的,在自然系统中含量丰富,它具有由烷基和芳香族单元组成的骨架,与羧酸、酚羟基和醌官能团结合,可与磁性纳米铁表面产生很强的亲和力[71]. 腐殖酸对磁性纳米铁的吸收通常通过空间和静电效应的结合提高其稳定性. 此外,由于腐殖酸与氧化铁表面位之间的配体交换反应,溶解的三价铁离子从磁性纳米铁表面进入水相. 因此,土壤中的生物有效铁离子增加,进而刺激土壤中某些微生物的生长[72].

      并且Fe2O3-NPs对土壤细菌群落的影响更有利,Zeng等的研究指出,大部分磁性纳米铁由于产生活性氧(ROS)而具有毒性,而化学稳定的Fe2O3-NPs没有明显的细胞毒性,含有Fe2+的纳米颗粒会导致大肠杆菌存活率的剂量依赖性下降,主要是由于氧化应激,纳米颗粒由完全氧化的晶体组成,因此在环境中高度稳定,产生氧化应激的能力较低[73]. 相比之下,Fe3O4-NPs由于其结构内电子迁移率高和Fe2+的扩散而不稳定,因此,部分磁性纳米铁的不良影响可以通过Fe3O4-NPs释放Fe2+来抵消,导致细菌群落丰富度的增强较弱,细菌群落组成的变化较小[74].

    • nZVI-NPs可以潜在地刺激细菌生长,从而可能发生土壤细菌群落结构的一些变化[7576]. 采用荧光原位杂交(FISH)、变性梯度凝胶电泳(DGGE)和磷脂脂肪酸分析(PLFA)研究nZVI-NPs对微生物多样性的影响[77]. 施用nZVI-NPs 72 h后,Fajardo等观察到土壤微生物群落结构和系统发育组成发生了显著变化[78]. 荧光原位杂交分析表明,当nZVI-NPs对微生物群落施加选择性压力时,微生物多样性发生了变化,促进了某些微生物类群(古菌、α-变形菌和低G + C革兰氏阳性菌)的优势,而其他微生物类群(β-变形菌和γ-变形菌及其亚纲)的减少,添加10 g·kg−1 nZVI-NPs 28 d后的性梯度凝胶电泳图谱也表明细菌群落组成发生了显著变化. Pawlett等人的报告提到,nZVI-NPs导致所有测试的土壤质地中的磷脂脂肪酸分析剖面发生改变,但这些影响取决于土壤中的有机质含量[79]. 这些研究表明,nZVI-NPs可在短期内(4个月)显著改变土壤微生物群落结构,影响细菌、古菌和真菌的种群数量[80].

      Liu等将不同浓度nZVI-NPs暴露后,观测土壤生态系统的响应,结果表明长期暴露nZVI-NPs对土壤微生物群落特征无显著影响,但可以促进蚯蚓的生长,从而进一步提高了土壤营养元素的生物有效性,为nZVI-NPs应用于污染修复与治理的环境安全性评估提供了科学依据[81].

      Kasem等[82]的研究结果表明,注射羧甲基纤维素稳定的nZVI-NPs通过促进厌氧菌和脱氯菌的生长,对污染修复产生了积极的影响. 此外,这种影响是非常持久的,可能是由于羧甲基纤维素的缓慢发酵和生物质的缓慢腐烂[82]. 根据Kocur等观察到的含氯挥发性有机物降解产物,在使用注射羧甲基纤维素稳定的nZVI-NPs后,呼吸有机卤化物的微生物会得到增强[83],在两年的监测期间,含氯挥发性有机污染物在处理区域持续降解. Ahmad等的实验结果表明,nZVI-NPs会降低抑瘤性化合物和氯仿等生物可降解化合物的浓度,从而降低对微生物活性的抑制作用,由此产生的条件促进了有机卤化物呼吸微生物的丰度的增加[84]. 随着纳米技术产业的不断发展,以及其对环境所具有的潜在污染性质,纳米颗粒对自然系统的影响正成为一个日益活跃的研究领域,实验结果表明施用注射羧甲基纤维素稳定的nZVI-NPs后,微生物种群数量显著增加,其中包括负责含氯挥发性有机物降解的脱卤菌. 由于观察到这种显著的含氯挥发性有机物降解是由于两种电子供体(nZVI-NPs和羧甲基纤维素)的结合,因此需要做更多的工作来进一步评估纳米颗粒和纳米技术对环境的影响[85].

    • 单一碳源利用(SCSU)系统基于对土壤微生物群落代谢特性的广泛调查,检测土壤微生物种群的功能能力,所得数据可以使用多元技术进行分析,以比较群落的代谢能力[86]. 然而,由于土壤微生物群落是由快速生长和缓慢生长的有机体组成的,因此生长缓慢的有机体可能不包括在本分析中[87]. SCSU的优势包括其区分微生物群落的能力强、操作简便、可重复性和大量描述群落代谢特征数据的生成[88].

      微量热法是通过微量热仪对代谢过程的热效应进行实时、高频、精确的监测、绘制微量热曲线,展示土壤微生物稳定期及对数生长期的热散逸[89],再通过模型拟合,可分析获得微生物生物量,微生物群落的潜在最大代谢活性、响应时间、比生长速率、周转速率,活性微生物比例等参数,用于表征微生物群落的代谢特征[9091].

    • 磁性纳米铁会直接作用或通过废水排放等间接方式作用于土壤微生物群落,许多磁性纳米铁对微生物具有杀伤特性,从而进一步抑制土壤微生物群落的代谢活动,如固氮、氨化、反硝化、溶磷和其他促进微生物生长的活动[92]. 但是某些磁性纳米铁在低浓度下会促进某些微生物代谢过程,从而促进微生物生长,对土壤微生物群落的数量及丰富度产生影响[93]. 例如,Rajput等过研究对纳米银和Fe2O3-NPs对土壤微生物硝化作用的影响,发现Fe2O3-NPs能促进土壤微生物的硝化作用,而纳米银则抑制微生物硝化作用,且存在剂量效应[9495]. 当浓度增大时,氨氮不易转化,氨氧化较弱,而后通过实时定量PCR发现,纳米银降低了对土壤中微生物数量的影响,而Fe2O3-NPs的影响不显著,然后通过分析土壤中氨氧化细菌和古菌,发现随着纳米银浓度的增加,土壤中氨氧化细菌和古菌数量显著减少[9697],Fe2O3-NPs增加了土壤中氨氧化细菌的数量[98]. 通过微热仪表征土壤微生物的代谢特征,发现纳米氧化银对土壤微生物的代谢活动有负作用,且表现为剂量效应,即随着纳米银浓度的增加,负作用越大. 相反,Fe2O3-NPs对微生物代谢有正向作用,且随着浓度的增加而增加[99],此外土壤中有机卤化物呼吸微生物在Fe2O3-NPs的刺激下,在提高对含氯挥发性有机污染物降解的同时,微生物丰富度也会发生变化(如图3).

    • 环境中的各种因素(如天然有机物(NOM)、酸碱度(pH)、离子(IONS)和背景离子)可以改变磁性纳米铁和测试生物的表面性质,从而改变磁性纳米铁对土壤微生物代谢的影响. 溶液pH和IS在磁性纳米铁和藻类细胞的异质团聚中发挥重要作用,这有助于稀释纳米颗粒的细胞毒性[100]. Ranmadugala等报道了Ca2+在影响nZVI-NPs对大肠杆菌的毒性方面的双重作用. 一方面,Ca2+的存在可以通过增强nZVI-NPs的聚集和沉淀来抑制nZVI-NPs的杀菌作用;另一方面,Ca2+可能作为桥梁促进nZVI-NPs对细菌的粘附,从而造成更严重的影响[101]. 相对高浓度的Ca2+(40 mg·L−1)甚至可以将带负电荷的nZVI-NPs转化为带正电荷的nZVI-NPs,使颗粒更有利于吸附带负电荷的大肠杆菌. 每种生物都有特定的适宜温度,光的进入对某些生物,特别是藻类和植物的生长至关重要. 环境中营养物质的可获得性也是一个决定性因素,一般来说,充足的营养物质的供应可以提高生物体对磁性纳米铁的耐受性. 基质类型(水、土壤或沉积物)是控制纳米颗粒毒性的重要因素. 组分尤其是有机质和黏土会强烈影响磁性纳米铁的流动性和有效性,导致磁性纳米铁在土壤或沉积物中的毒性低于水体. 在现实环境中,生物接触到的是转化后的磁性纳米铁,因此,在环境相关的测试条件下,磁性纳米铁对微生物代谢影响的研究备受关注,这使我们能够更好地了解其生态危害,尽可能减轻其对土壤微生物群落的不良影响[102].

    • 随着磁性纳米铁应用的日益广泛,人们对其在环境中发展潜力和潜在影响进行了研究,磁性纳米铁通过多种方式释放到土壤中后,与土壤中的生物化学成分及微生物相互作用,最终对土壤理化性质以及微生物群落自身及代谢产生影响. 磁性纳米铁进入土壤后,会对土壤容重、土壤体积含水量、渗透阻力以及有机物质含量等产生影响,且在不同类型的土壤中,磁性纳米铁对土壤酶活的影响不同. 此外,磁性纳米铁通过改变土壤的硝化电位、微生物对有机碳的分解能力及电子迁移来改变土壤温室气体排放量. 磁性纳米铁对微生物群落的影响则体现在刺激土壤微生物的生长、改变微生物群落的结构与数量以及对微生物代谢的影响. 未来的研究方向可从以下几个方面开展:

      (1)磁性纳米铁在环境领域和农业上的应用使得它通过主动或被动的方式进入土壤环境,在最大限度地减少或消除废物的产生和减少污染的同时,自身在土壤中的积累也会对土壤理化性质以及微生物群落的结构、功能以及代谢产生负面效应;因此今后除了加强农业及环境领域应用的同时,还需要考虑自身积聚所带来的负面生态效应,寻求用最适合的用量来达到最优的效果.

      (2)重金属等有害有毒污染物(如铅、镉、汞等)和有机化合物(如苯、二甲苯、甲苯溶剂和农药)农药是环境中的整治目标,通过共价键、马来酰亚胺、配体交换,在磁性纳米铁表面设计并引入功能和活性位点,可提高磁性纳米铁的反应性和与重金属等污染物的反应程度,应用前景广阔,因为通过这些途径功能化的磁性纳米铁吸附剂用于污染物去除的研究十分匮乏.

      (3)在研究磁性纳米铁对土壤组成结构及微生物群落代谢特征的影响的同时,以微生物为基础合成磁性纳米铁的研究取得了重大进展,然而,磁性纳米铁生物合成过程的改进和应用还需要进行大量的研究. 与物理和化学方法相比,微生物合成纳米颗粒的过程相对较慢,在合成中不建议使用病原微生物,因为它可能限制所产生的磁性纳米铁在涉及人类或动物接触的应用中使用,制备的磁性纳米铁应对生物和环境无毒,因此对利用微生物合成磁性纳米铁进行毒性研究至关重要,对能够产生稳定磁性纳米铁的微生物的研究有助于开发可靠的生产工艺,促进磁性纳米铁的发展.

    参考文献 (102)

返回顶部

目录

/

返回文章
返回