[1] AJINKYA N, YU X F, KAITHAL P, et al. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present andfuture[J]. Materials (Basel, Switzerland), 2020, 13(20): 4644. doi: 10.3390/ma13204644
[2] ANDRADE R G D, VELOSO S R S, CASTANHEIRA E M S. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications[J]. International Journal of Molecular Sciences, 2020, 21(7): 2455. doi: 10.3390/ijms21072455
[3] FATIMA H, LEE D W, YUN H J, et al. Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents[J]. RSC Advances, 2018, 8(41): 22917-22923. doi: 10.1039/C8RA02909A
[4] JACINTO M J, SILVA V C, VALLADÃO D S, et al. Biosynthesis of magnetic iron oxide nanoparticles: A review[J]. Biotechnology Letters, 2021, 43(1): 1-12. doi: 10.1007/s10529-020-03047-0
[5] DOLORES MÁRQUEZ-MEDINA M, RODRÍGUEZ-PADRÓN D, BALU A M, et al. Mechanochemically synthesized supported magnetic Fe-nanoparticles as catalysts for efficient vanillin production[J]. Catalysts, 2019, 9(3): 290. doi: 10.3390/catal9030290
[6] NAYEEM J, ALIM AL-BARI M A, MAHIUDDIN M, et al. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125857. doi: 10.1016/j.colsurfa.2020.125857
[7] TAKAI Z I, MUSTAFA M, ASMAN S, et al. Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method[J]. Int J Nanoelectron Mater, 2019, 12: 37-46.
[8] TADIC M, PANJAN M, DAMNJANOVIC V, et al. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method[J]. Applied Surface Science, 2014, 320: 183-187. doi: 10.1016/j.apsusc.2014.08.193
[9] MAHARJAN A, DIKSHIT P K, GUPTA A, et al. Catalytic activity of magnetic iron oxide nanoparticles for hydrogen peroxide decomposition: Optimization and characterization[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(9): 2495-2508.
[10] LIU S L, TAO D D, ZHANG L N. Cellulose scaffold: A green template for the controlling synthesis of magnetic inorganic nanoparticles[J]. Powder Technology, 2012, 217: 502-509. doi: 10.1016/j.powtec.2011.11.010
[11] RANE A V, KANNY K, ABITHA V K, et al. Methods for synthesis of nanoparticles and fabrication of nanocomposites[M]//Synthesis of Inorganic Nanomaterials. Amsterdam: Elsevier, 2018: 121-139.
[12] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5): 443-466. doi: 10.1080/10643389.2015.1103832
[13] SAMROT A V, SAHITHYA C S, SELVARANI A J, et al. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles[J]. Current Research in Green and Sustainable Chemistry, 2021, 4: 100042. doi: 10.1016/j.crgsc.2020.100042
[14] SARWAR A, WANG J, KHAN M S, et al. Iron oxide (Fe3O4)-supported SiO2 magnetic nanocomposites for efficient adsorption of fluoride from drinking water: Synthesis, characterization, and adsorption isotherm analysis[J]. Water, 2021, 13(11): 1514. doi: 10.3390/w13111514
[15] SHUKLA S, KHAN R, DAVEREY A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review[J]. Environmental Technology & Innovation, 2021, 24: 101924.
[16] SMALLMAN R E, NGAN A H W. Characterization and analysis[M]//Modern Physical Metallurgy. Amsterdam: Elsevier, 2014: 159-250.
[17] YOSHIDA T, NAKAMURA T, HIGASHI O, et al. Magnetic fractionation and characterization of magnetic nanoparticles for magnetic particle imaging[J]. Japanese Journal of Applied Physics, 2018, 57(8): 080302. doi: 10.7567/JJAP.57.080302
[18] BHALERAO T S. Magnetic nanostructures: environmental and agricultural applications[M]//Nanotechnology in the Life Sciences. Cham: Springer International Publishing, 2019: 213-224.
[19] BHATERIA R, SINGH R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal[J]. Journal of Water Process Engineering, 2019, 31: 100845. doi: 10.1016/j.jwpe.2019.100845
[20] HE Y Z, WANG Z W, WANG H, et al. Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications[J]. Coordination Chemistry Reviews, 2021, 429: 213618. doi: 10.1016/j.ccr.2020.213618
[21] SAHARAN P, CHAUDHARY G R, MEHTA S K, et al. Removal of water contaminants by iron oxide nanomaterials[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(1): 627-643. doi: 10.1166/jnn.2014.9053
[22] LI W L, FORTNER J D. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Frontiers of Environmental Science & Engineering, 2020, 14(5): 1-9.
[23] KOLLURU S S, AGARWAL S, SIREESHA S, et al. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects[J]. Process Safety and Environmental Protection, 2021, 150: 323-355. doi: 10.1016/j.psep.2021.04.025
[24] MOHAMMED L, GOMAA H G, RAGAB D, et al. Magnetic nanoparticles for environmental and biomedical applications: A review[J]. Particuology, 2017, 30: 1-14. doi: 10.1016/j.partic.2016.06.001
[25] NGUYEN M D, TRAN H V, XU S J, et al. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications[J]. Applied Sciences (Basel, Switzerland), 2021, 11(23): 11301.
[26] REHMAN A U, NAZIR S, IRSHAD R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455
[27] SOHAIL M I, WARIS A A, AYUB M A, et al. Environmental application of nanomaterials: A promise to sustainable future[M]//Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability. Amsterdam: Elsevier, 2019: 1-54.
[28] ZHOU Q X, LI J, WANG M Y, et al. Iron-based magnetic nanomaterials and their environmental applications[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 783-826. doi: 10.1080/10643389.2016.1160815
[29] HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica, 2017, 75(6): 529. doi: 10.6023/A17020051
[30] SEBASTIAN A, NANGIA A, PRASAD M N V. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L[J]. Journal of Cleaner Production, 2018, 174: 355-366. doi: 10.1016/j.jclepro.2017.10.343
[31] WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied Surface Science, 2017, 399: 322-329. doi: 10.1016/j.apsusc.2016.12.090
[32] JIN S Y, PARK B C, HAM W S, et al. Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous SiO2 core-shell nanoparticles on the removal of heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 133-140.
[33] EHRAMPOUSH M H, MIRIA M, SALMANI M H, et al. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 84. doi: 10.1186/s40201-015-0237-4
[34] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265: 115018. doi: 10.1016/j.envpol.2020.115018
[35] HAN X, WANG F, Zhao Y, et al. Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review[J]. Environmental Chemistry Letters, 2022: 1-24.
[36] CHUANG P Y, CHIA Y, LIOU Y H, et al. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test[J]. Hydrogeology Journal, 2016, 24(7): 1651-1662. doi: 10.1007/s10040-016-1426-7
[37] BANIJAMALI S, FEIZIAN M, BIDABADI A A, et al. Evaluation uptake and translocation of iron oxide nanoparticles and its effect on photosynthetic pigmentation of Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’[J]. Journal of Ornamental Plants, 2019, 9(4): 245-258.
[38] AHMED B, RIZVI A, ALI K, et al. Nanoparticles in the soil–plant system: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1545-1609. doi: 10.1007/s10311-020-01138-y
[39] MEDINA-PÉREZ G, FERNÁNDEZ-LUQUEÑO F, VAZQUEZ-NUÑEZ E, et al. Remediating polluted soils using nanotechnologies: Environmental benefits and risks[J]. Polish Journal of Environmental Studies, 2019, 28(3): 1013-1030. doi: 10.15244/pjoes/87099
[40] RAFFI M M, HUSEN A. Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment[M]//Nanomaterials and Plant Potential. Cham: Springer International Publishing, 2019: 529-552.
[41] RAWAT S, PULLAGURALA V L R, ADISA I O, et al. Factors affecting fate and transport of engineered nanomaterials in terrestrial environments[J]. Current Opinion in Environmental Science & Health, 2018, 6: 47-53.
[42] XU Z X, LONG X, JIA Y, et al. Occurrence, transport, and toxicity of nanomaterials in soil ecosystems: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3943-3969. doi: 10.1007/s10311-022-01507-9
[43] 张旭升. 不同植被修复模式下土壤真菌的研究及纳米材料对土壤理化性质和酶活性的影响[D]. 太原: 山西大学, 2021. ZHANG X S. Study on soil fungi under different vegetation restoration patterns and the effect of nanomaterials on soil physical and chemical properties and enzyme activities[D]. Taiyuan: Shanxi University, 2021 (in Chinese).
[44] SUN P, SUN Y Y, LUO Y H, et al. The application progress of nano materials for remediation in contaminated soil[J]. IOP Conference Series: Earth and Environmental Science, 2021, 692(3): 032035. doi: 10.1088/1755-1315/692/3/032035
[45] XIN X P, ZHAO F L, ZHAO H M, et al. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties[J]. Geoderma, 2020, 367: 114278. doi: 10.1016/j.geoderma.2020.114278
[46] JAIN A, SINGH N, KHAN S. Nanomaterials for soil reclamation[M]//Advances in Environmental Engineering and Green Technologies. IGI Global, 2021: 530-541.
[47] YAN L, LI P Y, ZHAO X P, et al. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles[J]. Science of the Total Environment, 2020, 718: 137400. doi: 10.1016/j.scitotenv.2020.137400
[48] GALAKTIONOVA L, GAVRISH I, LEBEDEV S. Bioeffects of Zn and Cu nanoparticles in soil systems[J]. Toxicology and Environmental Health Sciences, 2019, 11(4): 259-270. doi: 10.1007/s13530-019-0413-5
[49] ASADISHAD B, CHAHAL S, AKBARI A, et al. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition[J]. Environmental Science & Technology, 2018, 52(4): 1908-1918.
[50] YOU T T, LIU D D, CHEN J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types[J]. Journal of Soils and Sediments, 2018, 18(1): 211-221. doi: 10.1007/s11368-017-1716-2
[51] SUN W, DOU F, Li C, et al. Impacts of metallic nanoparticles and transformed products on soil health[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(10): 973-1002. YANG H Y, ZHANG X, DANG D, et al. Effects of iron oxide nanoparticles on CH4 and N2O emissions and microbial communities in two typical paddy soils[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 725-733 (in Chinese).
[52] ELHAMBAKHSH A, GHANAATIAN A, KESHAVARZ P. Glutamine functionalized iron oxide nanoparticles for high-performance carbon dioxide absorption[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104081. doi: 10.1016/j.jngse.2021.104081
[53] DIMKPA C O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?[J]. Journal of Basic Microbiology, 2014, 54(9): 889-904. doi: 10.1002/jobm.201400298
[54] PEREA VELEZ Y S, CARRILLO-GONZALEZ R, GONZÁLEZ-CHÁVEZ M. Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation[J]. Journal of Nanoparticle Research, 2021, 23(9): 1-48.
[55] HU L F, FENG Z Y, YU Y X, et al. Effects of metal oxide nanoparticles on nitrous oxide emissions in agriculture soil[J]. Agriculture, 2022, 12(6): 770. doi: 10.3390/agriculture12060770
[56] RAJA M A, HUSEN A. Role of nanomaterials in soil and water quality management[M]//Nanomaterials for Agriculture and Forestry Applications. Amsterdam: Elsevier, 2020: 491-503.
[57] PUSPITASARI P, YAZIRIN C, BACHTIAR L A, et al. Application of nanocatalyst iron oxide (Fe2O3) to reduce exhaust emissions (CO and HC)[J]. IOP Conference Series: Materials Science and Engineering, 2018, 432: 012004. doi: 10.1088/1757-899X/432/1/012004
[58] 吴江利, 罗学刚, 李宝强, 等. 微生物菌肥作用下荒漠土壤微生物群落结构和功能研究[J]. 中国农学通报, 2015, 31(9) 216-223. WU J L, LUO X G, LI B Q, et al. Researches on microbial community structure and function in desert soil under microbial fertilizer[J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 216-223 (in Chinese).
[59] FU L, SONG T Z, ZHANG W, et al. Stimulatory effect of magnetite nanoparticles on a highly enriched butyrate-oxidizing consortium[J]. Frontiers in Microbiology, 2018, 9: 1480. doi: 10.3389/fmicb.2018.01480
[60] 杨浩宇, 张潇, 党迪, 等. 纳米氧化铁对水稻土CH4和N2O排放及微生物的影响[J]. 应用与环境生物学报, 2021, 27(3): 725-733. YANG H Y, ZHANG X, DANG D, et al. Effects of iron oxide nanoparticles on CH4 and N2O emissions and microbial communities in two typical paddy soils[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 725-733 (in Chinese).
[61] CHEN Q L, DING J, ZHU Y G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140: 105766. doi: 10.1016/j.envint.2020.105766
[62] JIA Y, WHALEN J K. A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities[J]. Pedosphere, 2020, 30(1): 18-24. doi: 10.1016/S1002-0160(19)60826-X
[63] ZHONG Y, YAN W M, WANG R W, et al. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession[J]. Soil Biology and Biochemistry, 2018, 123: 207-217. doi: 10.1016/j.soilbio.2018.05.017
[64] van der BOM F, NUNES I, RAYMOND N S, et al. Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field[J]. Soil Biology and Biochemistry, 2018, 122: 91-103. doi: 10.1016/j.soilbio.2018.04.003
[65] ZHENG Q, HU Y T, ZHANG S S, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J]. Soil Biology and Biochemistry, 2019, 136: 107521. doi: 10.1016/j.soilbio.2019.107521
[66] 尹雪梅, 王晓凤. 纳米Fe3O4对玉米叶面积和根际微生物群落功能多样性的影响[C]//中国土壤学会土壤环境专业委员会第十九次会议暨“农田土壤污染与修复研讨会”第二届山东省土壤污染防控与修复技术研讨会摘要集. 济南, 2017: 139. YIN X M, WANG X F. Effects of nano Fe3O4 on leaf area and rhizosphere microbial community functional diversity in maize[C]//. The 19th Conference of Soil Environment Committee of Soil Society of China and the 2nd Workshop on Soil Pollution Control and Remediation in Shandong Province Abstract Collection. Jinan, 2017: 139(in Chinese).
[67] HE S Y, FENG Y Z, REN H X, et al. The impact of iron oxide magnetic nanoparticles on the soil bacterial community[J]. Journal of Soils and Sediments, 2011, 11(8): 1408-1417. doi: 10.1007/s11368-011-0415-7
[68] KUMAR P, BURMAN U, KAUL R K. Ecological risks of nanoparticles[M]//Nanomaterials in Plants, Algae, and Microorganisms. Amsterdam: Elsevier, 2018: 429-452.
[69] REN X M, GUO L, CHEN Y, et al. Effect of magnet powder (Fe3O4) on aerobic granular sludge (AGS) formation and microbial community structure characteristics[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9707-9715.
[70] SAIF S, TAHIR A, CHEN Y S. Green synthesis of iron nanoparticles and their environmental applications and implications[J]. Nanomaterials (Basel, Switzerland), 2016, 6(11): 209. doi: 10.3390/nano6110209
[71] SHEN Y X, JIANG B, XING Y. Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants[J]. Environmental Science and Pollution Research, 2021, 28(7): 7599-7620. doi: 10.1007/s11356-020-11877-8
[72] MAI T, HILT J Z. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications[J]. Journal of Nanoparticle Research, 2017, 19(7): 1-10.
[73] ZENG Q Z, XU J, HOU Y, et al. Effect of Fe3O4 nanoparticles exposure on the treatment efficiency of phenol wastewater and community shifts in SBR system[J]. Journal of Hazardous Materials, 2021, 407: 124828. doi: 10.1016/j.jhazmat.2020.124828
[74] LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003
[75] FAJARDO C, GARCÍA-CANTALEJO J, BOTÍAS P, et al. New insights into the impact of nZVI on soil microbial biodiversity and functionality[J]. Journal of Environmental Science and Health, Part A, 2019, 54(3): 157-167. doi: 10.1080/10934529.2018.1535159
[76] ANZA M, SALAZAR O, EPELDE L, et al. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity[J]. Frontiers in Environmental Science, 2019, 7: 19. doi: 10.3389/fenvs.2019.00019
[77] FAJARDO C, ORTÍZ L T, RODRÍGUEZ-MEMBIBRE M L, et al. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach[J]. Chemosphere, 2012, 86(8): 802-808. doi: 10.1016/j.chemosphere.2011.11.041
[78] PAWLETT M, RITZ K, DOREY R A, et al. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent[J]. Environmental Science and Pollution Research, 2013, 20(2): 1041-1049. doi: 10.1007/s11356-012-1196-2
[79] YE W F, LU J, YE J F, et al. The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review[J]. Journal of Cleaner Production, 2021, 278: 123567. doi: 10.1016/j.jclepro.2020.123567
[80] KOCUR C M D, LOMHEIM L, MOLENDA O, et al. Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection[J]. Environmental Science & Technology, 2016, 50(14): 7658-7670.
[81] LIU C E, YUE M H, TAN H L, et al. Effects of nano-zero-valent iron(nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722-1732.
[82] KASEM K K, MOSTAFA M, ABD-ELSALAM K A. Iron-based nanomaterials: Effect on soil microbes and soil health[M]//Nanotechnology in the Life Sciences. Cham: Springer International Publishing, 2019: 261-285.
[83] AHMAD S, LIU X M, TANG J C, et al. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants[J]. Chemical Engineering Journal, 2022, 431: 133187. doi: 10.1016/j.cej.2021.133187
[84] PENG D H, WU B, TAN H, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44-53. doi: 10.1016/j.chemosphere.2019.04.106
[85] ADHIKARI K, HARTEMINK A E. Linking soils to ecosystem services—a global review[J]. Geoderma, 2016, 262: 101-111. doi: 10.1016/j.geoderma.2015.08.009
[86] LI L, XU M G, EYAKUB ALI M, et al. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment[J]. PLoS One, 2018, 13(9): e0203812. doi: 10.1371/journal.pone.0203812
[87] MOSCATELLI M C, SECONDI L, MARABOTTINI R, et al. Assessment of soil microbial functional diversity: Land use and soil properties affect CLPP-MicroResp and enzymes responses[J]. Pedobiologia, 2018, 66: 36-42. doi: 10.1016/j.pedobi.2018.01.001
[88] NKONGOLO K K, NARENDRULA-KOTHA R. Advances in monitoring soil microbial community dynamic and function[J]. Journal of Applied Genetics, 2020, 61(2): 249-263. doi: 10.1007/s13353-020-00549-5
[89] GHOSH S, JOSHI K, WEBSTER T J. Removal of heavy metals by microbial communities[M]//Wastewater Treatment Reactors. Amsterdam: Elsevier, 2021: 537-566.
[90] FAKRUDDIN M, BIN MANNAN K S. Methods for analyzing diversity of microbial communities in natural environments[J]. Ceylon Journal of Science (Biological Sciences), 2013, 42(1): 19. doi: 10.4038/cjsbs.v42i1.5896
[91] KHAN S T. Interaction of engineered nanomaterials with soil microbiome and plants: Their impact on plant and soil health[M]//Sustainable Agriculture Reviews 41. Cham: Springer International Publishing, 2020: 181-199.
[92] QIAN H F, KE M J, QU Q, et al. Ecological effects of single-walled carbon nanotubes on soil microbial communities and soil fertility[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(4): 536-542. doi: 10.1007/s00128-018-2437-y
[93] 曹鑫磊, 姜浩, 杨宝山, 等. 纳米银对小麦秸秆还田土壤中酶活性及微生物群落功能多样性的影响[J]. 山东科学, 2021, 34(3): 80-89. CAO X L, JIANG H, YANG B S, et al. Effects of nano-silver on enzyme activity and microbial community functional diversity in wheat straw returning soil[J]. Shandong Science, 2021, 34(3): 80-89.(in Chinese).
[94] RAJPUT V D, MINKINA T M, BEHAL A, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms A review[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 76-84.
[95] SHI X D, WEI W, WU L, et al. Zero-valent iron mediated biological wastewater and sludge treatment[J]. Chemical Engineering Journal, 2021, 426: 130821. doi: 10.1016/j.cej.2021.130821
[96] TIAN L Y, SHEN J P, SUN G X, et al. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L. ) rhizosphere grown in contaminated mine soil[J]. Environmental Science & Technology, 2020, 54(20): 13137-13146.
[97] VANZETTO G V, THOMÉ A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation[J]. Environmental Pollution, 2019, 252: 74-83. doi: 10.1016/j.envpol.2019.05.092
[98] ZHU X W, BLANCO E, BHATTI M, et al. Impact of metallic nanoparticles on anaerobic digestion: A systematic review[J]. Science of the Total Environment, 2021, 757: 143747. doi: 10.1016/j.scitotenv.2020.143747
[99] LEI C, SUN Y Q, TSANG D C W, et al. Environmental transformations and ecological effects of iron-based nanoparticles[J]. Environmental Pollution, 2018, 232: 10-30. doi: 10.1016/j.envpol.2017.09.052
[100] MAHANTY B, JESUDAS S, PADMAPRABHA A. Toxicity of surface functionalized iron oxide nanoparticles toward pure suspension culture and soil microcosm[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100235.
[101] RANMADUGALA D, EBRAHIMINEZHAD A, MANLEY-HARRIS M, et al. Magnetic immobilization of bacteria using iron oxide nanoparticles[J]. Biotechnology Letters, 2018, 40(2): 237-248. doi: 10.1007/s10529-017-2477-0
[102] SEIFAN M, EBRAHIMINEZHAD A, GHASEMI Y, et al. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3595-3606. doi: 10.1007/s00253-018-8860-5