-
近年来由于食品加工行业的发展,随之产生了大量有机物浓度较高且含盐量较高的废水. 由于高浓度盐分的存在,采用生化处理会造成微生物活性受到严重抑制,最终导致对废水中的有机物降解效率低下[1]. 好氧膜生物反应器(aerobic membrane bioreactor,MBR)技术相较于传统好氧工艺,能很好将污泥截留在系统中,从而提高处理效率. 此外,MBR能将污泥停留时间(sludge retention time, SRT)与水力停留时间(hydraulic retention time, HRT)分开控制,易于管理控制,因此近几年在高盐废水处理中受到普遍关注[2-3]. 然而在采用MBR工艺处理高盐废水过程中面临的主要问题是膜污染问题[4]. 膜污染是指混合液中的污泥絮体、胶体粒子或有机盐和无机盐类,与膜存在物理化学作用而在膜表面沉淀与积累,或由于膜孔的吸附而使膜孔堵塞,过滤性下降,从而导致膜通量与分离特性的不可逆的变化的现象[5]. 膜污染的表观现象是随着MBR的运行,系统拦截的污泥和过滤的水量增多,膜表面会堆积形成滤饼层以及凝胶层,从而造成跨膜压差(trans-membrane pressure,TMP)的增加,导致膜通量越来越低. 当TMP增加到一定值时,膜无法正常使用,需要进行物理和化学清洗,高频次的化学清洗会影响膜的寿命. 因此膜污染是膜生物反应器在运行过程种需要重点控制的对象,它不仅影响膜组件的产水率,还影响膜组件的使用寿命及设备的能耗[6].
目前关于MBR处理高盐废水的膜污染已有较多报道,李津[7]研究发现,MBR工艺处理高盐废水过程中微生物所分泌的大量溶解性微生物产物(soluble microbial products, SMP)和胞外聚合物(bound extracellular polymeric substances, BEPS)是造成膜污染的主要原因,用清水结合次氯酸钠溶液能有效清洗膜. 李彬等[8]针对MBR处理高盐废水时膜面污染物的特性进行了研究,发现随着MBR系统盐度的升高,污泥的性质发生了较大变化,污泥的悬浮性固体(SS)及挥发性悬浮固体(VSS)与SS的比值均发生了下降,SMP的含量略有上升,膜面的有机污染物主要成分为糖类、蛋白和腐殖酸等. 陈启伟[9]研究表明,较小的污泥粒径对膜通量是不利的,较小的粒径会加速浓差极化的形成,从而加速膜污染. 还有报道指出盐度的存在会增加膜表面的结垢倾向,加速膜污染的形成[10].
尽管关于高盐废水处理过程的膜污染问题及影响因素已有相关报道,然而膜污染问题及成因仍然是一个比较复杂的问题,且不同的水质和运行条件对膜污染和污泥性质产生的影响均不同. 因此,本研究针对连云港某营养食品加工企业生产的两种SO42-浓度分别为1.6%和2.6%的废水,采用两套中试规模好氧膜生物反应器(MBR)进行处理,通过对两系统的TMP和污泥性质以及膜阻分布情况进行监测,初步研究对比探讨不同硫酸盐浓度对活性污泥性质和膜污染的影响. 通过对MBR处理高盐废水中膜污染规律和污泥性质的研究,有利于MBR系统在处理高盐废水中的改造和膜清洗方案的选择,且对膜生物反应器的开发及工程化应用有一定的指导意义.
膜生物反应器(MBR)处理不同浓度高硫酸盐有机废水污泥性质和膜污染研究
Sludge properties and membrane fouling of aerobic membrane bioreactor (MBRs ) in treating organic wastewater with different concentrations of sulfate
-
摘要: 针对食品加工过程中产生的高
${\rm{SO}}_4^{2-} $ 的高浓度有机物废水,采用膜生物反应器(MBR)工艺对其进行处理研究,分别考察了1.6%和2.6%${\rm{SO}}_4^{2-} $ 浓度下反应器运行性能、污泥性质和膜污染变化情况. 经过110 d的运行时间对比发现,1.6%${\rm{SO}}_4^{2-} $ 浓度下MBR获得的最大有机负荷为1.0 kg·(m3·d)−1 COD,其化学需氧量(COD)、氨氮和总氮的去除率分别为97.2%、92.5%和89.5%. 2.6%${\rm{SO}}_4^{2-} $ 浓度下微生物受到的抑制更强,其获得的最大有机负荷仅为0.5 kg ·(m3·d)−1 COD,其COD、氨氮和总氮的去除率分别为96.3%、82.6%和80.7%. 此外,${\rm{SO}}_4^{2-} $ 浓度为1.6%的反应器在更高的膜运行通量下,膜污染速率反而比2.6%系统更慢. 进一步分析其污泥性质发现${\rm{SO}}_4^{2-} $ 浓度为1.6%系统内的混合液悬浮固体浓度(MLSS)和挥发性悬浮固体浓度(MLVSS)稳定在7.1 g·L−1和5.9 g·L−1左右,MLVSS/MLSS值较初始污泥有所提高,从80.2%升高到83%.${\rm{SO}}_4^{2-} $ 浓度为2.6%体系内MLSS和MLVSS稳定在6 g·L−1和4.5 g·L−1左右,MLVSS/MLSS较初始污泥有所降低,最终稳定在75%左右. 较低的MLSS和MLVSS/MLSS加速了膜表面滤饼层的形成,导致2.6%${\rm{SO}}_4^{2-} $ 系统膜污染更快. 经过长期的高盐环境驯化后,1.6%${\rm{SO}}_4^{2-} $ 和2.6%${\rm{SO}}_4^{2-} $ 系统成熟污泥的溶解性微生物产物(SMP)和结合性的胞外聚合物(BEPS)均有所上升,SMP从13.5 mg·g−1 VSS上升到20.4 mg·g−1 VSS和65.3 mg·g−1 VSS,BEPS从36.9 mg·g−1 VSS上升到181.8 mg·g−1 VSS和227.3 mg·g−1 VSS. 2.6%${\rm{SO}}_4^{2-} $ 系统的SMP和BEPS的值均大于1.6%${\rm{SO}}_4^{2-} $ 系统,从而使得2.6%${\rm{SO}}_4^{2-} $ 系统的TMP上升加快,膜污染加剧. 1.6%系统MBR中污泥粒径从接种时的82.3 μm增加至125.84 μm,而2.6% SO42-系统中污泥粒径降至78.23 μm. 相较于1.6%${\rm{SO}}_4^{2-} $ 系统,2.6%${\rm{SO}}_4^{2-} $ 系统的污泥粒径更小,更容易堆积于膜表面,使得滤饼层更加紧致,加速了膜污染的形成. 两套装置的膜阻力都主要来源于外部阻力,但2.6%${\rm{SO}}_4^{2-} $ 系统的内部阻力占比较1.6%${\rm{SO}}_4^{2-} $ 系统更高. 综上,不同盐度对MBR体系的运行效能、污泥性质及膜污染情况具有显著的影响. 因此本研究可为MBR应用于高盐高浓度有机物废水的处理提供理论基础和实践指导.Abstract: The organic wastewater with high${\rm{SO}}_4^{2-} $ concentration produced in the food processing plant was treated by aerobic membrane bioreactor (MBR) process, and the performance, sludge properties and membrane fouling of the MBR were investigated at different${\rm{SO}}_4^{2-} $ concentrations of 1.6% and 2.6% respectively. For the operation period of 110 days, it was found that the maximum organic loading rate (OLR) of the MBR at the concentration of 1.6%${\rm{SO}}_4^{2-} $ was 1.0 kg· (m3·d)−1 COD, and the removal efficiencies of chemical oxygen demand(COD), ammonia nitrogen and total nitrogen were 97.2%, 92.5% and 89.5% respectively. However, at the concentration of 2.6%${\rm{SO}}_4^{2-} $ , the maximum OLR was only 0.5 kg·(m3·d)−1 COD, and removal efficiencies of COD, ammonia nitrogen and total nitrogen were 96.3%, 82.6% and 80.7% respectively. In addition, the membrane fouling rate of the reactor with 1.6%${\rm{SO}}_4^{2-} $ concentration was slower than that of the 2.6% system, although the reactor with 1.6%${\rm{SO}}_4^{2-} $ concentration operated at higher membrane flux than the 2.6% system. Further analysis of the sludge properties showed that the MLSS and MLVSS in the system with 1.6%${\rm{SO}}_4^{2-} $ concentration were stable at about 7.1 g·L−1 and 5.9 g·L−1, and the MLVS/MLSS was 83% with higher than that of the initial sludge. The MLSS and MLVSS in the system with 2.6%${\rm{SO}}_4^{2-} $ concentration were stable at 6 g·L−1 and 4.5 g·L−1, and the MLSS/MLVSS was only 75% with lower than that of the initial sludge. Lower MLSS and MLVSS/MLSS accelerated the formation of cake layer on the membrane surface, resulting in a serious membrane fouling of 2.6%${\rm{SO}}_4^{2-} $ system. After long-term acclimation in high-salt environment, SMP and BEPS of mature sludge for 1.6%${\rm{SO}}_4^{2-} $ and 2.6%${\rm{SO}}_4^{2-} $ systems increased. SMP increased from 13.5 mg·g−1VSS to 20.4 mg·g−1VSS and 65.3 mg·g−1VSS, and BEPS increased from 36.9 mg·g−1VSS to 181.8 mg·g−1VSS and 227.3 mg·g−1VSS respectively for 1.6%${\rm{SO}}_4^{2-} $ and 2.6%${\rm{SO}}_4^{2-} $ systems. The SMP and BEPS in 2.6%${\rm{SO}}_4^{2-} $ system were both higher than that of 1.6% SO42- system, thus the TMP of 2.6%${\rm{SO}}_4^{2-} $ system increases rapidly and the fouling aggravated. Compared with inoculated sludge, the particle size of MBR in 1.6% system increased from 82.3 μm to 125.84 μm respectively, while that of 2.6%${\rm{SO}}_4^{2-} $ system decreased from 82.3 μm to 78.23 μm. Compared with 1.6%${\rm{SO}}_4^{2-} $ system, the smaller particle size in 2.6%${\rm{SO}}_4^{2-} $ system was easier to accumulate on the membrane surface, which made the cake layer more compact and accelerated the membrane fouling. The membrane resistances of both the two MBRs mainly composed of the external resistance. However, the internal resistance of 2.6%${\rm{SO}}_4^{2-} $ system was higher than that of 1.6%${\rm{SO}}_4^{2-} $ system. In short, different salinity had significant influence on the operation efficiency, sludge properties and membrane fouling of MBR system. Therefore this study can provide theoretical basis and practical guidance for the application of MBR in the treatment of high-salt and high-concentration organic wastewater. -
表 1 1.6%
系统进水水质${\rm{SO}}_4^{2-} $ Table 1. The influent quality of 1.6%
system${\rm{SO}}_4^{2-} $ 第1 天—第25天 第26天—第60天 第61天—第110天 pH 3.8—4.2 3.8—4.2 3.8—4.2 硫酸根/(mg·L−1) 16000—17800 17200—17900 17200—17900 COD/(mg·L−1) 5400—5600 5400—5600 7500—8100 TDS/(g·L−1) 27—30 27—30 27—30 电导率/(ms·cm−1) 25—30 28—30 28—30 TN/(mg·L−1) 20—25 180—200 320—350 TP/(mg·L−1) 5—10 8—10 8—10 氨氮/(mg·L−1) 15—20 15—20 15—20 Ca/(mg·L−1) 25—35 25—35 25—35 Mg/(mg·L−1) 5—15 5—15 5—15 Fe/(mg·L−1) 0.1—0.6 0.1—0.6 0.1—0.6 表 2 2.6%
系统进水水质${\rm{SO}}_4^{2-} $ Table 2. The influent quality of 2.6%
system${\rm{SO}}_4^{2-} $ 第1天—第40天 第41天—第50天 第51天—第110天 pH 3.7—3.9 3.5—4.1 3.6—4.2 硫酸根/(mg·L−1) 26800—28000 26800—28000 22600—23000 COD/(mg·L−1) 8000—8900 7000—7800 7500—8000 TDS/(g·L−1) 42—45 45—55 50—54 电导率/(ms·cm−1) 38—40 38—40 38—40 TN/(mg·L−1) 28—30 320—350 320—350 TP/(mg·L−1) 10—15 10—15 15—20 氨氮/(mg·L−1) 15—20 15—20 15—20 Ca/(mg·L−1) 35—45 35—45 35—45 Mg/(mg·L−1) 10—20 10—20 10—20 Fe/(mg·L−1) 0.2—0.8 0.2—0.8 0.2—0.8 表 3 MBR反应器运行策略
Table 3. Operating strategy of MBR reactor
浓度${\rm{SO}}_4^{2-} $
concentration${\rm{SO}}_4^{2-} $ 阶段
Stage天数/d
Days容积负荷/(kg·(m3·d)−1
COD)
VLRHRT /d SRT/d 1.6% 提盐驯化阶 1—20 0.5 10 不排泥 负荷提升阶段Ⅰ 21—40 0.6 8.5 44 负荷提升阶段Ⅱ 41—80 0.72 8.5—10.2 44 负荷提升阶段Ⅲ 81—110 1.0 7 44 2.6% 提盐驯化阶段 1—36 0.5 16 不排泥 负荷稳定阶段 37—110 0.5 16—22 44 注:进水 浓度为1.6%的反应器在负荷提升阶段Ⅰ内(第26 天)开始排泥,控制SRT为44 d. 1.6%系统在负荷提升阶段Ⅱ和2.6%系统的负荷稳定阶段进水COD有所变化,HRT作了相应调整.${\rm{SO}}_4^{2-} $ Note: The reactor with influent of 1.6% discharged sludge at the 26th day in stage I of VLR improvement, with SRT controlled at 44 days; As the influent COD concentration changed from stage Ⅱ of VLR improvement in 1.6% system and the VLR stabilizing stage in 2.6% system, the HRT was adjusted accordingly.${\rm{SO}}_4^{2-} $ 表 4 反应器运行数据
Table 4. Reactor Operation Data
浓度$ {\rm{SO} }_4^{2-} $ concentration$ {\rm{SO} }_4^{2-} $ 阶段
Stage天数/d
Days容积负荷/
(kg·(m3·d)−1 COD)
VLR出水COD值/
(mg·L−1)
COD value of
effluentCOD去除率/%
COD removal
rate氨氮去除率/%
Ammonia
nitrogen
removal rateTN去除率/%
TN removal rateTP去除率/%
TP
removal
rate
1.6%提盐驯化阶 1—20 0.5 205—210 96.2 81.3 36.7 35.2 负荷提升阶段Ⅰ 21—40 0.6 135—145 97.4 57.6 88.4 57.5 负荷提升阶段Ⅱ 41—80 0.7 120—145 97.5 90.8 89.7 99.8 负荷提升阶段Ⅲ 81—110 1.0 180—190 97.2 92.5 89.5 100.0 2.6% 提盐驯化阶段 1—36 0.5 400—460 94.7 68.2 35.6 59.6 负荷稳定阶段 37—110 0.5 280—290 96.3 82.6 80.7 100.0 -
[1] 叶芳凝, 石先阳. 盐度对MBR处理高氨氮废水的运行及微生物群落影响研究 [J]. 膜科学与技术, 2018, 38(5): 77-83. YE F N, SHI X Y. Effect of salinity on operation and microbial community of MBR for treatment of high ammonia nitrogen wastewater [J]. Membrane Science and Technology, 2018, 38(5): 77-83(in Chinese).
[2] 张万友, 张茜新, 张海丰, 等. 膜生物反应器工艺及其在高盐废水处理中的应用 [J]. 硅酸盐通报, 2014, 33(6): 1439-1442. ZHANG W Y, ZHANG X X, ZHANG H F, et al. MBR process and its application to high salinity wastewater [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(6): 1439-1442(in Chinese).
[3] 于得旭. 膜分离技术在水处理工作中的运用分析 [J]. 冶金管理, 2020(11): 83-84. YU D X. Application of membrane separation technology in water treatment [J]. China Steel Focus, 2020(11): 83-84(in Chinese).
[4] 许宝华, 朱桂生, 黄诚. 膜生物反应器处理轻工废水研究进展 [J]. 安徽化工, 2016, 42(6): 12-17. doi: 10.3969/j.issn.1008-553X.2016.06.004 XU B H, ZHU G S, HUANG C. Application of membrane bioreactor in light industrial wastewater treatment [J]. Anhui Chemical Industry, 2016, 42(6): 12-17(in Chinese). doi: 10.3969/j.issn.1008-553X.2016.06.004
[5] 吴金玲, 黄霞. 膜-生物反应器混合液性质对膜污染影响的研究进展 [J]. 环境污染治理技术与设备, 2006(2): 16-24. WU J L, HUANG X. Research progress on effect of mixed liquor characteristics on membrane fouling in membrane reactors [J]. Techniques and Equipment for Environmental Pollution Control, 2006(2): 16-24(in Chinese).
[6] 袁野, 罗玲, 陆柳鲜, 等. MBR膜污染缓解与处理技术 [J]. 应用化工, 2021, 50(10): 2834-2839,2846. doi: 10.3969/j.issn.1671-3206.2021.10.044 YUAN Y, LUO L, LU L X, et al. MBR membrane pollution mitigation and treatment technology [J]. Applied Chemical Industry, 2021, 50(10): 2834-2839,2846(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.10.044
[7] 李津. 膜生物反应器(MBR)处理高盐废水的试验研究[D]. 青岛: 青岛大学, 2008. LI J. Experimental study on treatment of high salinity wastewater by membrane bioreactor (MBR)[D]. Qingdao: Qingdao University, 2008 (in Chinese).
[8] 李彬, 王志伟, 安莹, 等. 膜-生物反应器处理高盐废水膜面污染物特性研究 [J]. 环境科学, 2014, 35(2): 643-650. LI B, WANG Z W, AN Y, et al. Membrane surface fouling properties in MBRs for high-salinity wastewater treatment [J]. Environmental Science, 2014, 35(2): 643-650(in Chinese).
[9] 陈启伟. 浸没式正渗透膜生物反应器通量提高策略研究[D]. 合肥: 合肥工业大学, 2019. CHEN Q W. Study on flux enhancement strategy of submerged osmotic membrane bioreactor[D]. Hefei: Hefei University of Technology, 2019 (in Chinese).
[10] HE Z W, KASEMSET S, KIRSCHNER A Y, et al. The effects of salt concentration and foulant surface charge on hydrocarbon fouling of a poly(vinylidene fluoride) microfiltration membrane [J]. Water Research, 2017, 117: 230-241. doi: 10.1016/j.watres.2017.03.051 [11] 国家环保局本书编委会. 水和废水监测分析方法 [M]. 水和废水监测分析方法, 1989. Editorial Board of the State Environmental Protection Agency. Monitoring and Analysis Methods of Water and Wastewater [M]. Monitoring and Analysis Methods of Water and Wastewater, 1989(in Chinese).
[12] 陈康. 钙离子调配下污泥性质及膜污染行为的识别研究[D]. 无锡: 江南大学, 2012. CHEN K. Identification of sludge properties and membrane fouling in membrane bioreactors with the addition of calcium ion[D]. Wuxi: Jiangnan University, 2012 (in Chinese).
[13] 亓金鹏. AnMBR+AO-MBR组合工艺处理高盐榨菜废水的运行效能及膜污染研究[D]. 无锡: 江南大学, 2021. QI J P. Operation performance and membrane fouling of AnMBR+AO-MBR process for treating high-salt mustard wastewater[D]. Wuxi: Jiangnan University, 2021 (in Chinese).
[14] LEE H S, KIM C G, YOON T I. Comment on Comparison of the filtration characteristics between attached and suspended microorganisms in submerged membrane bioreactor [J]. Water Research, 2002, 36(19): 4938-4939. doi: 10.1016/S0043-1354(02)00039-8 [15] TAN X, ACQUAH I, LIU H Z, et al. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective [J]. Chemosphere, 2019, 220: 1150-1162. doi: 10.1016/j.chemosphere.2019.01.027 [16] CAO T N D, BUI X T, LE L T, et al. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance [J]. Bioresource Technology, 2022, 363: 127831. doi: 10.1016/j.biortech.2022.127831 [17] JANG D, HWANG Y, SHIN H, et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors [J]. Bioresource Technology, 2013, 141: 50-56. doi: 10.1016/j.biortech.2013.02.062 [18] 简陈生. 高盐氨氮废水MBR处理效能及微生物特性研究[D]. 赣州: 江西理工大学, 2016. JIAN C S. Study on MBR treatment efficiency and microbial characteristics of high salinity ammonia nitrogen wastewater[D]. Ganzhou: Jiangxi University of Science and Technology, 2016 (in Chinese).
[19] HE H J, CHEN Y J, LI X, et al. Influence of salinity on microorganisms in activated sludge processes: A review [J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527. [20] 武骁. 好氧颗粒污泥处理含盐有机废水性能及耐盐机理研究[D]. 上海: 华东理工大学, 2020. WU X. Study on performance and salt-tolerance mechanism of aerobic granular sludge treating saline organic wastewater[D]. Shanghai: East China University of Science and Technology, 2020 (in Chinese).
[21] 肖小兰, 亓金鹏, 刘皓, 等. AOA-MBR处理高盐榨菜废水厌氧膜生物反应器出水的效能 [J]. 环境工程学报, 2021, 15(9): 3057-3066. doi: 10.12030/j.cjee.202105095 XIAO X L, QI J P, LIU H, et al. Operation performance of an AOA-MBR treating the effluent from an anaerobic membrane bioreactor dealing with high-salt mustard tuber wastewater [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3057-3066(in Chinese). doi: 10.12030/j.cjee.202105095
[22] LE-CLECH P, CHEN V, FANE T A G. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science, 2006, 284(1/2): 17-53. [23] 陆继来, 刘舒华, 张敏健, 等. 污泥浓度对MBR混合液特性及膜污染的影响 [J]. 中国给水排水, 2014, 30(9): 92-95. doi: 10.19853/j.zgjsps.1000-4602.2014.09.023 LU J L, LIU S H, ZHANG M J, et al. Influence of MLSS on mixed liquor characteristics and membrane fouling in membrane bioreactor [J]. China Water & Wastewater, 2014, 30(9): 92-95(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2014.09.023
[24] 陈莉佳, 关永年, 庞维海. 平板膜生物反应器用于工业区污水处理厂尾水深度处理中试研究[J]. 给水排水, 2014, 50(S1): 274-277. CHEN L J, GUAN Y N, PANG W H. Pilot study on advanced treatment of tail water of sewage treatment plant in industrial area by flat membrane bioreactor[J]. Water & Wastewater Engineering, 2014, 50(Sup 1): 274-277 (in Chinese).
[25] 王浩宇. 一体式厌氧膜生物反应器在生活污水处理中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. WANG H Y. The application of submerged anaerobic membrane bioreactor treating domestic wastewater[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
[26] YUAN Y, ZHOU Z, JIANG J, et al. Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment [J]. Bioresource Technology, 2021, 320: 124419. doi: 10.1016/j.biortech.2020.124419 [27] LUO W H, HAI F I, KANG J G, et al. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: Implications on the development of high retention membrane bioreactors [J]. Bioresource Technology, 2015, 177: 274-281. doi: 10.1016/j.biortech.2014.11.084 [28] HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community [J]. Desalination, 2013, 316: 23-30. doi: 10.1016/j.desal.2013.01.015 [29] Di BELLA G, Di TRAPANI D, TORREGROSSA M, et al. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling behaviour [J]. Bioresource Technology, 2013, 147: 614-618. doi: 10.1016/j.biortech.2013.08.025 [30] NG K K, LIN C F, LATEEF S K, et al. The effect of soluble microbial products on membrane fouling in a fixed carrier biological system [J]. Separation and Purification Technology, 2010, 72(1): 98-104. doi: 10.1016/j.seppur.2010.01.011 [31] GAO D W, FU Y, REN N Q. Tracing biofouling to the structure of the microbial community and its metabolic products: A study of the three-stage MBR process [J]. Water Research, 2013, 47(17): 6680-6690. doi: 10.1016/j.watres.2013.09.007 [32] WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future [J]. Journal of Membrane Science, 2016, 504: 113-132. doi: 10.1016/j.memsci.2016.01.010 [33] TANG J L, PU Y H, ZENG T, et al. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties [J]. Bioresource Technology, 2022, 345: 126470. doi: 10.1016/j.biortech.2021.126470 [34] WANG X, ZHANG B, SHEN Z Q, et al. The EPS characteristics of sludge in an aerobic granule membrane bioreactor [J]. Bioresource Technology, 2010, 101(21): 8046-8050. doi: 10.1016/j.biortech.2010.05.074 [35] PATSIOS S I, KARABELAS A J. An investigation of the long-term filtration performance of a membrane bioreactor (MBR): The role of specific organic fractions [J]. Journal of Membrane Science, 2011, 372(1/2): 102-115. [36] CORSINO S F, CAPODICI M, Di PIPPO F, et al. Comparison between kinetics of autochthonous marine bacteria in activated sludge and granular sludge systems at different salinity and SRTs [J]. Water Research, 2019, 148: 425-437. doi: 10.1016/j.watres.2018.10.086 [37] 逄超. 厌氧反应器构型对膜污染的影响及作用机制研究[D]. 合肥: 合肥工业大学, 2019. PANG C. Comparative study of membrane fouling and formation mechanism on different anaerobic reactor configuration[D]. Hefei: Hefei University of Technology, 2019 (in Chinese).
[38] SHEN L G, LEI Q, CHEN J R, et al. Membrane fouling in a submerged membrane bioreactor: Impacts of floc size [J]. Chemical Engineering Journal, 2015, 269: 328-334. doi: 10.1016/j.cej.2015.02.002 [39] LIM A L, BAI R B. Membrane fouling and cleaning in microfiltration of activated sludge wastewater [J]. Journal of Membrane Science, 2003, 216(1/2): 279-290. [40] 孟凡刚. 膜生物反应器膜污染行为的识别与表征[D]. 大连: 大连理工大学, 2007. MENG F G. Identification and characterization of fouling behavior in submerged membrane bioreactors[D]. Dalian: Dalian University of Technology, 2007 (in Chinese).
[41] TIAN Y, CHEN L, ZHANG S, et al. A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors [J]. Chemical Engineering Journal, 2011, 168(3): 1093-1102. doi: 10.1016/j.cej.2011.01.090 [42] RESOSUDARMO A, YE Y, LE-CLECH P, et al. Analysis of UF membrane fouling mechanisms caused by organic interactions in seawater [J]. Water Research, 2013, 47(2): 911-921. doi: 10.1016/j.watres.2012.11.024