-
随着我国食品行业的发展,食品生产过程中产生的废水排放量也与日俱增. 在2018年的时候,不同行业的废水排放总量是2045794万t,其中食品加工行业的废水排放量占据比例是8.46%,在排放量上位列第6位[1]. 食品加工行业废水普遍具有含盐、高有机质、高油等共同特征,污染物总体浓度较大. 曾有报道指出食品加工行业的废水含
SO2−4 浓度高达1.5%以上[2],其中所含的有机物含量也较高,COD范围在5000—13000 mg·L−1波动[3]. 目前,国内外对于高盐有机废水处理普遍的观点是:先对废水中的有机物进行有效去除,减少废水中的有机质,然后再对盐分进行回收,最终实现高盐有机废水的资源化利用[4-5].目前对高盐废水中高浓度有机物的去除办法主要有厌氧和好氧生物处理. 由于废水中含有高浓度的硫酸盐,在厌氧条件下会产生H2S或S2−等有毒有害物质对厌氧微生物有毒害作用[6— 7],故厌氧生物技术不适合处理高硫酸盐有机废水. 而传统的好氧工艺存在污泥浓度不高、微生物流失、处理负荷低的问题,不易于驯化耐盐嗜盐微生物. 好氧膜生物反应器(aerobic membrane bioreactor,MBR)技术相较于传统好氧工艺,可以很好的将污泥截留在系统中,提高系统微生物量,有效降解高盐废水中的有机物. 此外,在MBR中能将污泥停留时间(sludge retention time, SRT)和水力停留时间(hydraulic retention time, HRT)分开控制,更好的运行管理,近几年在高盐废水处理行业中受到普遍关注[8]. 目前MBR技术应用于高盐废水中有一定研究,如刘传伟[9]在利用MBR工艺处理含不同比例高盐废水时,生物系统去除有机物的耐盐浓度在17 g·L−1;当系统中盐度在22.75 g·L−1时,系统处理效果严重恶化,去除率下降到75%. 张哲等[10]采用MBR工艺处理含50%海水的污水,通过合理调整运行参数,如控制COD为700—800 mg·L−1,氨氮为80—100 mg·L−1,HRT为12 h,反应器内污泥浓度为7—8 g·L−1及好氧区DO为1—2 mg·L−1,取得了较好的污染物去除效果,COD和氨氮的平均去除率分别达到91.91%和91.44%. Hong等[11]对比研究了MBR和传统活性污泥法处理高盐水产养殖废水的有机物去除效率,发现当含盐量增加35 g·L−1时,MBR系统的COD去除率仍保持在96%以上,而传统活性污泥法却随着含盐量升高去除率不断下降,当升高至30 g·L−1时,去除率就已降至68%. 这说明在处理高盐废水时采用MBR工艺较传统活性污泥法具有更好的有机物去除效率,且能适应更高的盐度.
目前高盐废水的生物处理的研究发现,由于高浓度无机盐对微生物的毒害和抑制作用,高盐废水在生物处理过程中普遍存在处理负荷不高,去除效率不稳定等问题[9,11]. 为了探究MBR系统能否在高盐环境下建立稳定高效的去除污染物体系,本研究针对连云港某营养食品加工企业生产的两种SO42-浓度分别为1.6%和2.6%的废水,采用两套中试规模好氧膜生物反应器(MBR)进行处理. 通过对出水的COD、氨氮、TN以及TP等定期监测,研究不同SO42-浓度下两套装置的盐度驯化以及负荷提升时期的污染物降解规律,以期为MBR处理高盐高浓度有机废水提供理论基础和应用指导.
-
本研究采用MBR工艺,装置如图1所示. MBR主要由硝化池(O池)和膜池组成,两池的有效容积都为44 L,整套反应器的总有效容积为88 L. 在O池和膜池底部装有纳米吸盘曝气装置,曝气装置分别用空气流量计控制,用以保持池内的溶解氧在2—4 mg·L−1,同时可以使池内的污泥混合液充分混合,防止污泥沉底堆积.
膜池的硝化液通过蠕动泵控制回流至O池,以控制两池污泥浓度相同,防止膜池污泥经浓缩后浓度过高,影响两池的硝化性能. 污泥停留时间(sludge retention time,SRT)为44 d.
实验所用膜组件为聚偏氟乙烯(PVDF,江苏诺莱智慧水务装备有限公司)的中空纤维膜,有效膜面积为0.43 m2,过滤方式采用负压抽吸.
膜组件底部设有射流曝气装置,在提供溶解氧的同时可以冲刷膜表面,缓解膜污染. 反应器的进出水均采用蠕动泵控制,出水的抽停比为9 min:1 min,跨膜压差(transmembrane pressure,TMP)采用压力表测定,当TMP超过30 kPa时,对膜组件进行清洗.
-
本实验接种的污泥取自无锡市某餐厨废水处理厂的好氧生化污泥,所用废水为连云港某营养食品加工企业产生的废水,因生产工艺的不同,会产生不同
SO2−4 浓度的废水,故本实验采用两种SO42-浓度的废水进行实验研究. 其详细水质如表1所示.两股废水中原水有机物较高,而TN较低,使得C/N过高,在运行了25 d后,
SO2−4 浓度为1.6%的反应器,因有机物降解效率不佳,尝试通过调整进水C/N,控制C/N在25左右. 进水SO2−4 浓度为2.6%的反应器在运行了40 d后,添加尿素补充氮源同样控制C/N为25左右. 且其进水SO2−4 在第50 d有所降低,在2.2%—2.3%范围内波动. -
同时运行两组实验MBR装置,一组进水
SO2−4 浓度保持为1.6%,另一组初始进水SO2−4 浓度为2.6%,运行50 d后由于进水水质变化调整为2.3%. 有机负荷根据出水COD值来判断,若出水COD稳定于200 mg·L−1以下则提升负荷. 进水SO2−4 浓度为1.6%的MBR装置运行时期分两个时期,第一个时期为提盐驯化期(1—20 d),第二个时期为负荷提升期(21—110 d),其中负荷提升期又分为3个阶段(按COD 计算):0.6 kg·(m3·d)−1 (21—40 d),0.72 kg·(m3·d)−1 (41—80 d),1.0 kg·(m3·d)−1 (81—110 d). 因SO2−4 浓度为2.6%的MBR装置出水COD一直高于200 mg·L−1,故此套装置运行阶段分两个时期,分别为提盐驯化期(1—36 d)和负荷稳定期(37—110 d,其容积负荷一直稳定在0.5 kg·(m3·d)−1). 两反应器的运行参数如表2所示. 运行期间室内温度控制在25℃左右. -
COD采用重铬酸钾法测定,用硫酸汞掩蔽Cl−;氨氮、总氮、总磷采用国家环保总局规定的检测方法[12];SO42-浓度采用离子色谱仪测定;电导率采用雷磁DDBJ-350便携式电导率仪测定[13].
-
两个反应器的进出水
SO2−4 浓度变化如图2所示. 由于接种污泥为餐厨废水好氧生化污泥,初始两反应器内SO2−4 浓度较低. 随着反应器运行,出水SO2−4 浓度逐渐升高. 如图2(a)所示,进水SO2−4 浓度为1.6%的反应器在运行的第20 d,其出水的SO2−4 已达到1.7%,接近进水SO2−4 浓度,表明1.6%的系统提盐驯化阶段完成. 进水SO2−4 浓度为2.6%的反应器运行至第36 d,其出水SO2−4 从0.2%增加到2.7%1(图2(b)所示),接近进水SO2−4 浓度,从而完成了提盐驯化阶段. 由于HRT较长,两系统中上清液完全置换时间均较长,而2.6%系统进水SO2−4 浓度较高,系统置换期比1.6%系统多了16 d. 在进水SO2−4 浓度为2.6%的反应器运行至第51 d时,进水SO2−4 调整为约2.3%. 改变进水后,出水SO2−4 在逐渐降低,运行至93 d左右和进水相接近.此外,对两个反应器内的电导率也进行了监测,结果如图2所示. 在提盐驯化阶(0—20 d)进水
SO2−4 浓度为1.6%反应器的进水电导率一直保持在26.5 ms·cm−1左右,随着反应器的运行,出水的电导率不断上升,从初始的11.2 ms·cm−1逐渐上升至26.4 ms·cm−1 (图2c),随后在负荷提升期(20—110 d)一直稳定在26.5 ms·cm−1左右. 进水SO2−4 浓度为2.6%反应器的进水电导率约为38—41 ms·cm−1,出水的电导率由最初的12.3 ms·cm−1上升至40.3 ms·cm−1 (第36 d),进入负荷稳定期后其值稳定在40.5 ms·cm−1左右(第36—51 天). 在第51 天进水水质调整后,进水电导率在32—33 ms·cm−1之间. 反应器出水从电导率逐步下降,最终稳定在32 ms·cm−1左右. 可以看出,电导率的变化情况和出水SO2−4 浓度的变化规律相似. 从出水电导率和SO2−4 浓度的变化可以看出,1.6%的系统完成混合液中上清液的置换时间更短,其能更快完成提盐驯化. -
两反应器对COD的去除效果如图3所示,在提盐驯化阶段初期,两种盐浓度的出水COD均呈现下降趋势. 其中进水
SO2−4 浓度为1.6%(图3(a))的反应器进水COD约5500 mg·L−1左右,出水COD从初始的587 mg·L−1逐渐下降至第10 d的320 mg·L−1,去除率为94.18%. 进水SO2−4 浓度为2.6%的反应器(图3(b))进水COD在8000—8900 mg·L−1左右,出水COD从初始的537.6 mg·L−1下降至第19 天的260.8 mg·L−1,去除率为97.03%. 两反应器出水COD去除率在刚开始运行的初期均较高,可能是接种污泥中上清液的无机盐含量较低,在提盐驯化初期两系统内盐浓度均较低,此时微生物能很快适应环境,对有机物有较高的去除效率[14]. 随着反应器内盐度的提升,微生物活性受到影响,两反应器的出水COD逐渐升高. 在提盐驯化阶段中期(第11—13 天)1.6%的系统出水的COD从320 mg·L−1上升至361.6 mg·L−1,去除率下降至93.4%. 而2.6%的系统在提盐驯化阶段末期(第20—36 天),第36 天其出水COD升高至462.4 mg·L−1,去除率下降至94.7%. 两系统去除率的下降主要是由于系统内盐度的不断升高,微生物活性受到抑制,部分微生物无法适应高渗透压的环境,脱水死亡. 同时无机盐的增多,使得系统中溶解氧传递效率降低,微生物活性受到影响[15]. 随着系统的逐渐稳定,进水SO2−4 浓度为1.6%的反应器在提盐驯化阶段末期(第14—20 天)出水COD开始逐渐下降,到第20 天时COD下降至208.3 mg·L−1,去除率达到了96.2%. 说明通过低负荷的驯化方式,微生物能够逐渐适应高盐环境,反应器可以实现快速启动. 而2.6%系统COD一直升高且持续到提盐驯化阶段末期(第20—36 天),且仍有上升趋势. 说明在盐度更高的环境下,微生物受到的抑制影响更显著,需要更长的适应周期.在1.6%系统的负荷提升阶段(第21 天至第40 天),将负荷提升至0.6 kg·(m3·d)−1COD,出水COD开始逐渐上升,在第26 天上升至305.6 mg·L−1,去除率为94.4%. 第26 天开始,通过添加尿素调整系统进水的C/N在25,出水的COD不断下降,最终稳定在140 mg·L−1左右,平均去除率为97.5%. 在负荷提升阶段的第41 天至第80天,控制负荷在0.75 kg·(m3·d)−1COD,尽管在第61 天后,进水COD浓度有所提升,在7500—8000 mg·L−1范围波动,出水COD仍然稳定在150 mg·L−1以下,平均去除率在97.5%以上. 在负荷提升的第三阶段,进水负荷提高至1.0 kg·(m3·d)−1COD时,初期出水COD逐渐上升,最终出水COD稳定在175 mg·L−1左右,平均去除率在97.2%左右(第100—110 天). 随着负荷的提高,该盐度系统下的有机物去除率尽管有所下降,但仍保持较高的有机物去除水平. 说明系统微生物能逐渐适应高盐环境,保持稳定的有机物去除效率[16].
在进水
SO2−4 浓度为2.6%反应器中,经过36 d的提盐驯化后,COD去除效率仍未上升. 从负荷稳定阶段的第40 d起,投加尿素调整2.6%系统进水的C/N在25左右,出水的COD逐渐下降,在第50 天下降至377.6 mg·L−1,去除率为95.71%. 从第51 天后,进水水质有所变化,SO2−4 浓度在2.3%左右,进水COD在7500—8000 mg·L−1. 降低进水盐度的前几 天(51—55 d),反应器的出水COD值出现短暂的上升现象,最高达到了390.4 mg·L−1. 可能是由于进水盐度的变化,导致微生物环境的渗透压发生变化,从而使得微生物降解污染物性能受到影响,COD出现升高[7]. 接下来随着系统的逐渐稳定,在第78 天,出水COD降低至288 mg·L−1,去除率为96.3%. 最终出水COD在280—295 mg·L−1的范围波动,平均去除率为96.4%.从上面分析可知,相较于进水
SO2−4 浓度为2.6%的系统,进水SO2−4 浓度为1.6%的系统在较高负荷下也能对有机物进行去除,说明在较低盐度下,微生物具有更出色的有机物降解能力. 有研究表明,更高的盐度会抑制微生物相关功能基因的转录过程,从而影响碳水化合物的降解[17]. 侯飞飞等[18]研究发现,经过耐盐驯化后的污泥在较低盐浓度的变化对系统CODCr去除率影响不大;而进水氯化钠浓度较高时,系统CODCr去除率随着氯化钠浓度的升高而降低. -
两反应器的氨氮及总氮去除率变化如图4所示. 在启动初期,进水SO42-浓度为1.6%的反应器进水氨氮浓度在15—20 mg·L−1之间(图4(a)),在提盐驯化期(第1—20 天),其出水的氨氮由2.2 mg·L−1上升至3.11 mg·L−1,去除率由87.1%下降至81.4%. 而进水SO42-浓度为2.6%的反应器(图4(b))进水氨氮浓度为15—20 mg·L−1,其在提盐驯化期(第1—40天),由2.12 mg·L−1上升至6.21 mg·L−1,去除率由86.0%下降至67.6%. 启动初期两个系统的氨氮去除率均呈现下降趋势,其主要原因可能为:硝化细菌有较长的世代周期,在高盐环境下更容易受到抑制[19];另一方面较高的无机盐环境会使得污泥混合液的粘性增加,降低溶解氧的传递效率,不利于硝化细菌的增殖[20- 21]. 此外,运行初期2.6%系统进水的有机物浓度远远高于1.6%系统,高浓度有机物的存在会抑制自养型硝化细菌的生长,使得接种污泥中的硝化细菌受到严重抑制,这可能也是2.6%系统氨氮去除率更低的原因[22].
在进水
SO2−4 浓度为1.6%的反应器负荷提升第一阶段(容积负荷为0.6 kgCOD·(m3·d)−1)初期(第21—26 天),氨氮的去除效果为80%. 考虑到可能是过高的C/N不利于硝化细菌的繁殖以及好氧体系的稳定,随后通过添加尿素控制进水系统C/N为25左右,氨氮保持在15—20 mg·L−1. 在负荷提升第一阶段的中期(第27—36天),出水氨氮值有所上升,上升至8.1mg·L−1,去除率下降至58%左右. 其原因可能是进水中投加了大量尿素,虽然大部分有机氮被微生物生长增殖做利用,但仍有一部分有机氮因氨化作用转化为氨态氮,使得体系内的氨氮有所增加,随后在硝化作用下,氨氮又呈现降低的趋势. 在负荷提升的第二阶段((容积负荷为0.72 kgCOD·(m3·d)−1)第41—80 天),反应器的出水氨氮进一步下降,最终稳定在1.5 mg·L−1左右(第68—80天). 尽管在第61天因进水COD浓度有所提升从而增加尿素投加量以继续控制C/N为25,使得第62—68 天内氨氮去除率稍有影响,然而经过稳定运行后氨氮去除率又恢复正常. 在负荷提升的第三阶段(第81—110 天),氨氮去除率仍保持在91%以上. 1.6%系统经过长期驯化,在高盐环境下能对氨氮进行有效去除,说明通过添加氮源调整合适的C/N,能有利于硝化细菌在高盐环境下的繁殖[23]. 2.6%系统的反应器在负荷稳定初期(第40 天)添加有机氮源使得C/N为25后,出水氨氮在第48 天上升至7.2 mg·L−1,去除率为61.3%. 随后氨氮又逐渐下降,但在负荷稳定期(第51 天),该反应器进水SO2−4 浓度下降至2.3%. 因体系内盐度的改变,短期内硝化细菌受到渗透压力的影响,出水氨氮第60天上升至5.2 mg·L−1,去除率为72.8%. 但是在负荷稳定中后期(第61—110 天),经过长期的驯化,出水氨氮逐步下降,最终稳定在3.5 mg·L−1以下,去除率在82%以上.从以上分析可以看出,同在C/N为25条件下,相较于2.6%的系统,1.6%系统的反应器对氨氮更高的去除率,说明通过耐盐驯化,系统中的硝化细菌能够适应高盐环境,发挥作用. 但是随着盐度的提升,硝化细菌会受到抑制,更高的盐度下,系统的硝化性能会下降[9]. 于德爽等[10, 24]开展了盐分对硝化反应的影响研究,结果表明,当进水无机盐浓度小于14 g·L−1,系统硝化反应未受影响,氨氮去除率稳定在95%以上,而继续提高进水含盐量至21 g·L−1时,氨氮去除率下降至91.1%
有研究表明[21],MBR体系因能有效截留系统中的微生物,同时能保持较高的污泥浓度,系统中会形成局部缺氧或厌氧的环境,为反硝化细菌的增殖创造条件. 因此MBR工艺能在集成式的反应装置中做到同步的硝化反硝化,进而达到去除TN的效果. 为了验证两套反应装置对TN是否有去除效果,对系统进出水的TN进行了跟踪监测. 两种进水
SO2−4 浓度反应器的总氮及去除率变化如图5所示,运行初期,两种进水SO2−4 浓度下的出水总氮均较低,但都呈上升趋势,去除率也一直降低. 如图5(a),在提盐驯化期(第1—20 天)进水SO2−4 浓度为1.6%的反应器进水总氮为20—25 mg·L−1,出水从10.3 mg·L−1上升至15.6 mg·L−1,去除率从56%下降至35.2%. 同样是在提盐驯化期(第1—36 天)进水SO2−4 浓度为2.6%的反应器进水总氮浓度为28—30 mg·L−1,出水总氮从14.3 mg·L−1上升至22.1 mg·L−1,去除率下降至32.2%. 两种进水SO2−4 浓度的反应器前期的总氮去除效率均很低. 其原因可能是过高的C/N不利于脱氮体系的建立,同时硝化细菌受到高浓度无机盐的影响,不能有效的将氨氮转化为硝态氮,使得反硝化作用受到影响[14].进水
SO2−4 浓度为1.6%反应器在负荷提升初期(第26天)为了控制进水C/N为25左右,进水中添加了尿素补充有机氮源,总氮在180—200 mg·L−1. 出水总氮在24—26 mg·L−1波动(第26—61天),其平均去除率在86%左右. 在负荷提升第二阶段中期(第61天)增加了尿素的投加量,TN在320—350 mg·L−1,出水TN有所上升,最终在35—40 mg·L−1内波动,其去除率在88%以上. 在负荷提升第三阶段初期(第81—88 d),出水TN小幅度上升至43.5 mg·L−1,最终稳定在35 mg·L−1左右(第89—110 天),平均去除率为89.5%.SO2−4 浓度为2.6%的反应器在提盐驯化结束后(第36天),其对总氮的去除效果仍较低. 在负荷稳定初期(第40天)补充了有机氮源,进水总氮控制在320—350 mg·L−1,其出水总氮不断上升,在负荷稳定期(第55天),上升至98.4 mg·L−1,去除率下降至68.8%. 随后经过稳定运行,2.6%系统的出水总氮浓度稳定在66.5 mg·L−1左右,平均去除率为80.7%.在本研究中,两套系统的进水有机物含量很高C/N严重失衡,为了建立稳定的好氧体系,同时在两套装置中添加尿素作为有机氮源,控制两系统的C/N为25左右,经过长期运行发现,两种进水
SO2−4 浓度的反应器对总氮均有一定的去除效率,但去除效果有所差异. 有研究表明,MBR系内TN的去除依赖于同步硝化反硝化的脱氮体系的建立,在本研究的装置中盐浓度和污泥浓度较高,溶解氧传递效率受到影响[25],反应器内存在局部缺氧的环境,再经过长期的稳定运行,建立了同步硝化反硝化的脱氮体系,对TN具有一定的去除效果. 研究发现1.6%系统具有很好的脱氮性能,总氮去除率能控制在89%以上,然而2.6%系统的出水总氮仍很高. 原因可能是:本研究中TN以有机氮为主,好氧体系中有机氮的去除依赖于微生物增殖代谢对氮源的利用,同时还有一部分有机氮因氨化作用转化为氨氮,最后通过硝化反硝化作用去除. 在2.6%系统内由于盐浓度较高,微生物增殖受到影响,同时由于硝化细菌对无机盐更加敏感,硝化作用受损,脱氮效率降低;此外溶解氧对MBR的脱氮性能有着重要影响,两系统的溶解氧虽然控制在相同范围,但2.6%系统的更高的无机盐使得系统中的溶解氧传递受到影响,从而影响系统的同步硝化反硝化的性能[26]. -
为了探究高盐环境下MBR装置能否有效去除水中的磷,对进出水的总磷进行了检测,图6所示为总磷去除效果变化情况. 如图6(a),1.6%系统的进水总磷较低,为13—15 mg·L−1. 其出水在提盐驯化初期(第1—13天)总磷上升从8.27 mg·L−1至10.1 mg·L−1,去除率从40.9%下降至25.7%左右. 进水
SO2−4 浓度为2.6%的反应器的进水总磷质量浓度较高(图5b),在18—20 mg·L−1左右,同样在提盐驯化初期(第1—22天),其出水总磷由3.75 mg·L−1逐渐升高至10.5 mg·L−1,去除率从79%下降到44.8%左右. 两种不同进水SO2−4 浓度的反应器在运行初期,出水总磷的含量均呈现升高现象,一方面可能是由于启动初期,体系内的无机盐浓度不断升高,部分微生物细胞裂解死亡,细胞内的磷逐渐释放而出;另一方面由于环境盐度的提升,系统中的聚磷菌受到一定抑制,致使出水总磷不断升高.但随着运行时间的延长,两系统的总磷去除率逐渐恢复正常. 1.6%系统的出水总磷在提盐驯化末期(第15 天)从9.5 mg·L−1开始降低,在负荷提升初期(第26 d)降低至7.9 mg·L−1,去除率为36.3%. 随后1.6%系统开始排泥,控制SRT为44 d,出水的总磷进一步下降,在第51天降低至2 mg·L−1以下,最终低于检测限. 2.6%系统的出水总磷在提盐驯化中期(第22 d)从10.2 mg·L−1开始逐渐降低,提盐驯化末期(第35天)时出水总磷降低至8.7 mg·L−1,去除率达到了72.4%. 第35天,2.6%系统开始排泥,同样控制SRT为44 d,而后出水的总磷进一步降低. 在负荷稳定期(第61天)出水总磷降低至2 mg·L−1以下,最终出水总磷低于检测限.
关于磷的去除目前有学者提出了多种理论,多数人认为:磷的去除依赖于微生物在厌氧/好氧的交替的环境下进行“厌氧释磷,好氧过量吸磷”. 但也有学者指出在单级好氧条件中,活性污泥中的聚磷菌能将环境中的磷酸盐存储于体内,通过“好氧吸磷”的作用将磷去除[27]. 例如,王东波[28]认为生物除磷的本质是强化活性污泥中聚磷微生物对磷的富集,并转化为体内的聚磷酸盐的作用. 在好氧+间歇缺氧条件下驯化出能对多聚物水解产生的能量进行利用增殖的聚磷菌,也能对磷起到很好的去除效果,其去除率能达90%以上. 还有人指出在生物除磷过程中胞外聚合物(extracellular polymeric substances, EPS)也会储存相当数量的磷,对水中的磷进行有效去除[29]. 例如,Long[30]研究表明,EPS的除磷量占系统除磷量的60%—62%,细菌细胞的除磷量占系统除磷量的30%—38%. 在本研究中一部分磷的去除可能依赖于微生物对高盐环境的逐渐适应,将磷用作自身增殖,同时产生大量的EPS储存了部分磷. 还有一部分磷的去除可能由于活性污泥经过驯化,繁殖出能在缺氧和好氧环境下利用多聚物进行增殖的聚磷微生物,对系统中的磷进行吸收,而系统排泥后将磷进一步去除[28].
-
pH对MBR体系中生物作用有着显著的影响,为了监测两反应器装置内微生物体系是否稳定,对反应装置的O池、MBR池和出水的pH进行了跟踪检测. 两反应器进水pH在3.8—4.2之间,接种污泥初始pH在8.2—8.3左右. 其中进水
SO2−4 浓度为1.6%的反应器在提盐驯化期(第0—20 天)由于进水的置换作用,O池、MBR池和出水的pH一直呈现下降的趋势,分别从8.22、8.28和8.12下降至7.54、7.55和7.6(图7(a)). 同样进水SO42-浓度为2.6%的反应器在提盐驯化期(第0—40天) 其O池、MBR池和出水的pH分别从8.3、8.28和8.18下降至7.19、7.45和7.32(图7(b)).在负荷提升期第一阶段(第21—40天),进水
SO2−4 浓度为1.6%的反应器O池、MBR池和出水的pH仍是在不断降低,在第40 d降低至6.85、6.88和7.19. 考虑到可能是由于进水低pH的冲击,进水量的增加使得体系内pH进一步下降,过低的pH环境不利于MBR体系建立硝化与反硝化作用相对稳定的动态平衡体系. 在负荷提升期第二阶段初期(第43天)调节该系统的进水pH为7.0—7.2,随后体系内的pH逐渐上升,最终O池pH、MBR和出水pH分别稳定在7.2—7.3、7.3—7.4和7.5左右.同样进水
SO2−4 浓度为2.6%的反应器O池、MBR池和出水的pH第47 d下降至6.9、7.13和7.06,随后开始调节该进水的pH为7.0—7.2左右,其体系内pH逐渐上升并趋于稳定,最终(第69—110天)分别稳定在7.2—7.3、 7.3—7.4和7.2—7.3. 有研究表表明,生物反应器的硝化作用会导致体系内的pH降低,需要补充进水碱度以维持生物系统的硝化性能. 当投加NaOH保持pH接近7.5时,系统的硝化作用会显著增强[31]. 本研究在运行中期通过补充两种SO2−4 浓度反应器的进水pH使得两系统的硝化处于稳定状态[32],最终达到良好的运行环境. -
(1)
SO2−4 浓度对MBR运行效果影响较大,盐度越高对微生物的抑制作用更明显,进水SO2−4 浓度为1.6%的系统比2.6%的能获得更高的有机负荷和COD去除率. 其中1.6%系统在容积负荷为1.0 kg·(m3·d)−1 COD的条件下,出水COD始终在200 mg·L−1以下,去除率高达97.7%,而进水SO2−4 浓度为2.6%的系统对有机物的降解受到明显抑制,在负荷为0.5 kg·(m3·d)−1COD的条件下,出水COD终在200 mg·L−1以上,去除率为96.4%.(2)通过耐盐驯化,系统中的硝化细菌能够适应高盐环境. 但是随着盐度的提升,硝化细菌会受到抑制,更高的盐度下,系统的硝化性能会下降.
(3)通过长时间的运行,两套MBR装置均建立了同步硝化反硝化的脱氮体系,对总氮具有一定的去除效率. 但由于硝化细菌对高盐环境的敏感性,在不同盐浓度下表现出不同的硝化性能,同时系统中的溶解氧传递受到无机盐浓度的影响,致使进水
SO2−4 浓度为1.6%系统总氮的去除率要优于进水SO2−4 浓度为2.6%系统.(4)体系内微生物能很快适应高盐环境利用磷进行增殖,同时还有一部分能在好氧或缺氧条件下利用多聚物水解进行增殖的聚磷菌,有效“吸磷”,两套MBR装置对总磷均能达到全部去除的效果.
MBR处理不同浓度高硫酸盐有机废水效能比较
Performance comparison of MBRs in treating organic wastewater with different concentrations of sulfate
-
摘要: 针对食品加工过程中产生的高
SO2−4 有机物废水,采用MBR工艺对其进行处理研究,分别考察了1.6%和2.6%SO2−4 浓度下反应器容积负荷和污染物去除情况. 经过110天的运行时间发现,进水SO2−4 浓度为1.6%的系统能获得更高的容积负荷和污染物去除效率,其最大容积负荷为1.0 kg·(m3·d)−1 COD, COD去除率为97.7%;而另一方面较高的无机盐环境进水SO2−4 浓度为2.6%SO2−4 系统下,获得的最大容积负荷仅为0.5 kg·(m3·d)−1 (按COD算),COD去除率为96.4%. 在2.6%SO2−4 浓度下,微生物受到的抑制更强,有机物降解效果低于1.6%SO2−4 的系统. 此外,氨氮的去除效果也受盐度的影响,1.6%SO2−4 系统的氨氮去除率可达91%以上,而2.6%SO2−4 系统的氨氮去除率在82%左右. 通过长时间的运行,两套MBR装置均建立了同步硝化反硝化的脱氮体系,对总氮具有一定的去除效率. 其中1.6%SO2−4 系统中总氮的去除率为89.5%,而2.6%SO2−4 系统中总氮的去除效率为80.7%. 两套反应器装置对总磷均能达到100%的去除效果. 综上,不同盐度对MBR体系容积负荷和有机物去除率具有显著影响. 相比于2.6%SO2−4 ,1.6%SO2−4 浓度条件下能获得更高的容积负荷和更好的污染物去除效果. 本研究可为MBR应用于高盐高浓度有机物废水的处理提供理论基础和实践指导.Abstract: The membrane bioreactor (MBR) was used to treat the organic wastewater with highSO2−4 produced in the food processing process, and the reactor volume load rate (VLR) and organic pollutant removal efficiency were compared with differentSO2−4 concentration at 1.6% and 2.6% respectively. the reactors operated for 110 d, and it was found that the reactor with influent of 1.6%SO2−4 could obtain higher VLR of 1.0 kg· (m3· d)−1 COD and better COD removal efficiency of 97.7%. However, for the influent of 2.6%SO2−4 , the maximum VLR and COD removal efficiency were only 0.5 kg· (m3· d)−1 COD and 96.4% respectively. With the concentration of 2.6%SO2−4 , the inhibition effect of the salinity on the microorganisms was stronger than that of 1.6%SO2−4 , thus the degradation efficiency of organic matter was lower at 2.6%SO2−4 . In addition, the removal efficiency of ammonia nitrogen was also affected by salinity, which was verified by the fact that ammonia nitrogen removal efficiencies were 91% and 82% at concentrations of 1.6%SO2−4 and 2.6%SO2−4 respectively. After a long-term operation period, two sets of MBR units had established simultaneous nitrification and denitrification systems. The removal efficiency of total nitrogen was 89.5% in 1.6%SO2−4 system, while that was 80.7% in 2.6%SO2−4 system. Moreover, 100% removal efficiencies for total phosphorus in two reactors were obtained. In conclusion, different salinity presented significant influence on the VLR and organic matter removal in the MBR system. Compared with the reactor of 2.6%SO2−4 , the reactor of 1.6%SO2−4 could obtain higher VLR and better pollutant removal efficiency. This study can provide theoretical basis and practical guidance for the application of MBR in the treatment of high-salt and high-concentration organic wastewater. -
清洁水和卫生设备供应不足是全球性最大的挑战之一,特别是在中低收入国家和地区[1]。据报道,世界上有21亿人不能或难以获得清洁安全的供水[2—3]。氯化和臭氧化是最为广泛使用的化学消毒方法[4—5]。它们能够有效地杀死有害微生物,但仍存在一些问题。例如,氯化处理会导致致癌消毒副产物(disinfection byproducts , DBPs)的形成,甚至会引发军团杆菌等耐氯病原体的生长,以及在处理后的水中产生不良的气味[6—7]。臭氧化同样会产生有害的DBPs,在大规模臭氧生产、储存和运输过程中还体现出急性毒性和腐蚀性特征[8—10]。相对来讲,煮沸是一种有效常用且不会产生DBPs的家庭水处理方法[11—12],但由于其需要大量额外供能而不适于大规模水消毒。此外,与煮沸相比,使用免费阳光的SODIS技术更加具有可持续性。根据光热催化材料的存在与否,将SODIS分为光热催化杀菌和紫外线杀菌。紫外线杀菌是利用UVC和UVB(200—280 nm)来破坏DNA,形成胸腺嘧啶二聚体来阻断繁殖并灭活微生物[11]。然而,紫外线在太阳光谱中占比极低(约4 %),导致对水的消毒效率低下,尤其是对病毒。早期研究表明,需要超过30 h的太阳光照射,才能灭活99.9%的噬菌体MS2[13]。相比之下,光热催化杀菌主要通过光热催化材料产生热量和活性氧物种(ROSs)来协同灭菌,更加具有广谱灭菌性,包括对VBNC(viable but non-culturable)细菌以及病毒都有高灭活效率[14—15]。优良的光热催化材料对紫外光、可见光甚至红外光都能产生响应,从而充分利用太阳能。因此,光热催化消毒法在实际水杀菌,特别是在终端(point of use,POU)水处理中展现出强大的应用潜力。
1. 光热催化杀菌纳米材料(Photothermal disinfection by nanostructures)
常用的光热材料包括(1)通过局域表面等离子体共振效应(SPR)来转换光热的纳米金属及其化合物,如金、银、铂、镍和铜等;(2)直接吸收光子热量的碳材料如炭黑,碳量子点、碳纳米管,石墨烯等;(3)具有红外响应光催化效应的半导体材料如窄隙半导体(CuS、黑磷))、重掺杂半导体(WO3–x、MoO3–x) 等。这些光热材料具有高消光系数ε和高光热转换效率η,能够有效吸收光辐射电磁波且不让其发散,并将其快速转换为热量,因此利于实现太阳能高效利用。
1.1 等离子体NPs(nanoparticles)
贵金属(如Au、Ag和Pt)是应用最广泛的等离子体纳米颗粒,表现出良好的光热催化杀菌性能。贵金属的光热活性在很大程度上取决于其形态、颗粒大小、颗粒间排列和周围环境[16—18]。以金纳米颗粒为例,虽然比表面积和活性位点数会随着颗粒的减小而增加,但较小的颗粒直径可能会使较多Au原子被覆盖,从而导致SPR(surface plasmonic resonance)强度下降。根据之前的研究,表现出最有效的光热催化杀菌效果的Au NPs的最佳直径为2—40 nm [16];但当Au颗粒被控制为粒径小于2 nm的Au团簇时,SPR几乎可以忽略[17]。在高温和近红外辐照下,Au NPs或Au纳米棒会形成较大的团聚体,导致比表面积减小和催化活性降低[18]。Au的形状也会显著影响其光热催化性能。Loeb等制备了Au纳米立方体(nanocubes,NCs)和纳米棒(nanorods,NRs),并比较了它们的光热催化杀菌性能[1]。Au NRs(25 μmol·L−1)能分别杀灭约5.6×106、5.5×106、1.61×106 CFU·mL−1的K-12大肠杆菌、MS2噬菌体和PR772噬菌体,而Au NCs在相同条件下对上述微生物率仅灭活约4.1×106、2.0×106、0.51×106 CFU·mL−1。结果表明,Au NRs在光热催化杀菌过程中表现出更高的潜力,而Au NRs具有高生物相容性和低细胞毒性。
考虑到纯贵金属纳米颗粒的光稳定性低、易在近红外辐射下聚集等缺点,随后设计和制备了贵金属基复合材料来解决上述问题。Zhao等制备了负载Au NRs的多隔室介孔二氧化硅NPs(mesoporous silica , MMSN@AuNR),发现其具有超高的光稳定性和优异的光热催化活性[19]。MMSN@AuNR能在808 nm近红外光照射下快速杀死细胞,并在11次照射启动/关闭的循环后保持高灭菌效率。MMSN@AuNR比纯Au NRs具有更高的稳定性,这主要是由于MMSN的保护能有效抑制Au NRs在近红外光下的团聚。
为降低材料成本,采用廉价的非贵金属如镍(Ni)和铜(Cu)作为替代等离子体材料。例如,He等开发了Ni-TiO2异质结构,并在该系统中观察到SPR介导的载流子转移[20]。在可见光照射下,Ni通过等离子体激发产生热电子和热空穴。然后热载流子从Ni转移到TiO2,占据氧空位,产生Ti3+,并固定在TiO2的表面氧上。Ni NRs负载的氧化石墨烯(Ni/RGO)表现出高效的光热转换,在氙灯(850 mW·cm−2)照射400 s内将水从25 ℃加热到50 ℃以上[21]。虽然贵金属纳米颗粒表现出了强光热转换能力,但其高成本限制了其大规模应用。因此,更经济的廉价金属或非贵金属光热催化剂在抗菌应用中受到关注。
1.2 碳NPs
宽而强的光吸收能力使碳纳米颗粒能够进行高效光热催化反应。碳纳米颗粒,如碳黑、碳纳米管、碳纤维和纳米氧化石墨烯等,具有完整的紫外-可见-近红外吸收,已被广泛开发并应用于杀菌[1]、产生蒸汽[22]和有机物聚合[23]。与金属基材料相比,碳纳米颗粒作为光热催化剂除了具有广谱吸收特性外,还具有成本低、光腐蚀少、无金属释出等优点。
碳黑优异的光热转换性能已被广泛报道。Han等证明了碳黑粉末及其纳米流体在200 nm到2500 nm的宽波长范围内表现出良好的吸收[24]。在光照射下,碳黑纳米流体的温度在42 min内从24.4 ℃上升到38.4 ℃,而纯水的温度仅上升到31.2 °C,表明了碳黑良好的光热转换能力。Loeb等人工作中[1]表明,在日光照射(AM 1.5G)时长分别为60 min和100 min的条件下,碳黑纳米颗粒对大肠杆菌几乎无杀灭效果,对噬菌体MS2有轻微杀灭效果。与纯碳黑和Au相比,其复合膜材料对噬菌体PR722的光热催化灭活作用增强。
碳纳米管(carbon Nanotubes = CNTs),由于其大表面积、优秀的光学性能(如高效光热转换和广谱吸收)和高光热导率,已成为一种很有前途的抗菌材料。将碳纳米管与等离子体材料复合已被证明是提高光热效率的有效策略。在模拟日光照射(AM 1.5)下,将等离子体Ni NPs嵌入N掺杂CNTs的表面温度在2 min内迅速上升至56.8 ℃,展现了有效的光热转换能力[25]。Ag修饰的多壁碳纳米管(MWCNTs)表现出更高的导热性和光热活性,在670 nm照射下实现了细胞的有效光热消融[26]。Sun等报道了一种Au纳米颗粒/羧基功能化的碳纳米管(AuNP/CNT-COOH)[27]具有优异的光热转换能力。在852 nm激光的照射下,这种碳纳米管基材料可以将水从约20 ℃加热至75 ℃。
氧化石墨烯纳米复合材料具有强烈的近红外光吸收、光催化活性和“纳米刀”效应,可实现有效光热催化杀菌。值得注意的是,纯氧化石墨烯表现出有限的光热转换效率,在近红外照射8 min后温度只有小幅升高[28]。因此,人们制造了不同的氧化石墨烯基复合材料,并将其应用于水消毒。氨基化的氧化石墨烯(GO-NH2)纳米片可以通过静电引力轻易吸附细菌细胞,并表现出显著增强的光热催化抗菌性能[29]。如图1,在白光照射(159 mW·cm−2)下,GO-NH2浓度为0.10 mg·mL−1和0.25 mg·mL−1时,水的温度分别从20.5 ℃快速上升至55.5 ℃和81.4 ℃。GO-NH2纳米片对金黄色葡萄球菌和大肠杆菌的光热催化抗菌活性分别提高了16倍和32倍。此外,通过扫描电镜观察发现GO-NH2纳米片的锐利边缘所产生的“纳米刀”效应在细菌失活中起着关键作用。
图 1 (a) 在光照射下不同GO-NH2的升温曲线;(b) GO-NH2作用 2min前后金黄色葡萄球菌和大肠杆菌的图像;(c)不同浓度的GO-NH2对金黄色葡萄球菌和大肠杆菌的灭活[29]Figure 1. (a) Heating curves of GO-NH2 with different catalyst concentrations irradiated by white light (159 mW·cm-2). (b) SEM images of (A, B) S. aureus and (C, D) E. coli before and after interaction with GO-NH2 for 2 min. (c) Growth inhibition of S. aureus and E. coli after the photothermal treatment by GO-NH2.1.3 缺陷型光催化剂
在光催化剂中制造缺陷结构(也称为空位),通过空位可以缩小能带隙、促进电荷转移和/或引起局部SPR效应,从而可以使宽带隙半导体产生近红外光诱导的光热催化性能。例如,被广泛报道的存在氧缺陷的WO3-x [30],In2O3-x [31—32]、ZrO2-x [33]和MoO3-x [34—35]等光催化剂,不仅在可见光到近红外光区域表现出可调谐的光吸收,而且可以通过调控颗粒尺寸和氧缺陷的比例[36]来进一步增强其光热催化性能。然而,吸附在空位上的O2和H2O会导致氧缺陷光催化剂被氧化,故存在化学不稳定性。构建缺陷型复合材料被认为是提高稳定性和光催化活性的有效策略[37]。例如,Zhang等通过一锅水热法制备了WO3-x/C纳米片[30],其中氧空位和碳涂层的存在显著延长了可见到红外光区域的光吸收带。除了提高光催化性能外,碳涂层还促进了电荷载流子的分离,从而提高了光热催化效率。在Zhao等[38]的另一项研究中,半金属Bi与有氧缺陷的BiO1-xI结合,形成Bi/BiO1-xI复合材料,具有光热协同催化消毒能力。Bi和氧空位不仅在600—1400 nm范围内引起了表面等离子体效应,而且还显著增加了光生电子和空穴的生成量。机理研究表明,活性物种(1O2、h+和·O2−)与热协同作用可有效灭活细菌。
1.4 窄带隙光催化剂
窄带隙半导体,如磷系催化剂、MoS2、Bi2S3和CuS等,表现出很强的近红外吸收,也有有用作光热催化剂的潜力。磷是一种地球富含的非金属元素,有3种同素异形体,即红、黑、白磷。其中红磷(red Phosphorus ,RP)和黑磷(black Phosphorus,BP)可作为光催化剂或光热催化剂来实现光催化和/或光热消毒。BP和RP都是无毒的,具有生物相容性,但RP比BP更具成本效益[39]。Zhang等评估了在不同照射波长下Ti-RP/GO薄膜的光热灭菌效果[40]。在模拟日光照射下,Ti-RP/GO膜在20 min内迅速灭活99.9%金黄色葡萄球菌和大肠杆菌(1×107 CFU·mL−1)。Li等将BP纳米片作为POU末端水消毒系统中的光热催化剂[41]。在该体系中,壳聚糖水凝胶与黑色BP纳米片逐层叠加形成了三明治式过滤器。基于BP纳米片的过滤器表现出优异的近红外光驱动的光热特性,能够实现高杀菌温度(> 140 ℃),导致粘附的枯草芽孢杆菌和大肠杆菌完全失活。其他含硫半导体如MoS2织物的表面温度迅速上升到77 ℃左右,并伴随着ROS例如·O2−的产生。结果表明,MoS2织物对革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌(细胞密度= 1×106 CFU·mL−1)均有有效的灭活效果,3 h内的抑菌效率分别为58%和60%左右。这些窄带隙半导体不仅可以作为光热剂直接灭活细菌,还可以作为释放热敏性药物的载体进行间接抗菌处理。
1.5 MOFs(Metal organic Frameworks)
MOFs是一类新兴的多孔固体催化剂,含有与有机配体配位的金属离子/团簇。它们作为抗菌材料时主要是利用生物毒性金属离子的释放[42]。此外,MOFs通常具有较宽的带隙,例如,MOF-5的带隙为3.4 eV [43-44], ZIF-8为3.87 eV[45],使得它们不适合宽光谱响应和光热转换。然而,考虑到金属离子或有机配体的合理调节赋予了MOFs在分子水平上的高设计性,MOFs展示出用于抗菌处理的光热催化剂的潜力。Wang等发现通过在空气中200 ℃下对ZIF-8 NPs进行简单的热处理,会改变ZIF-8中配体结构 (例如, 生成了—N=C=O键),进而造成ZIF-8 MOF的光吸收从紫外到可见和近红外区域的显著延长[45]。此研究证明了宽带隙MOFs作为光热催化剂的可行性。此外,一些MOFs,比如PCN-224(Eg= 1.81 eV)[46],IRMOF-M2a(Eg= 1.5 eV)[43],和Sr-MOF(Eg= 2.3 eV)[43],表现出窄带隙和宽光谱吸收的性质,也可以用于光热催化剂。Wu等通过将Cu2+引入卟啉环的核心,开发了一种Cu掺杂的PCN-224 MOF [47],能够高效光热催化灭菌。一方面,掺杂的Cu2+促进了载流子的转移,从而促进了ROSs的生成,例如1O2等的生成。另一方面,由于d-d跃迁,Cu2+在660 nm处表现出了额外的吸光,并增强了光热转换。由于协同作用,在660 nm光照射(0.4 W·cm−2)下20 min内,Cu掺杂的PCN-224对金黄色葡萄球菌的抗菌效果达到99.71%。表1为近几年报道的光热催化剂及其细菌杀菌性能。
表 1 最近报道的纳米结构的光热细菌失活性能的比较Table 1. Comparison of the photothermal bacterial inactivation by the recently reported nanostructures催化剂Catalysts 辐照(强度)Irradiation(intensity) 催化剂浓度/(mg·mL−1)Catalyst concentration 光热杀菌性能Photothermal disinfection performance 参考文献References Au纳米棒 模拟日光 4.93×10−3 100 min内,分别灭活5.6-lg CFU·mL−1、5.5-lg CFU·mL−1和1.6-lg CFU·mL−1 左右的大肠杆菌K-12、MS2噬菌体和PR772噬菌体 [1] Ni/rGO 808 nm 激光(2 W·cm−2) 0.025 8 min内,对2×106 CFU·mL−1的大肠杆菌和枯草芽孢杆菌分别达到99.6%和99.5%的灭活率 [28] GO-NH2 白光(0.159 W·cm−2) 0.032 10 min内,对107 CFU·mL−1大肠杆菌和金黄色葡萄球菌的灭活率超过90% [29] RP 模拟日光(0.2 W·cm−2) 0.2 20 min内,对5×106 CFU·mL−1金黄色葡萄球菌的灭活率达到99.98% [39] Ti-RP/GO 模拟日光(0.2 W·cm−2) N.A. 15 min内,对107 CFU·mL−1的大肠杆菌的灭活率达到99.91% [40] WO3-x/C 带有700 nm截止滤光片的氙灯(0.2 W·cm−2) 1 40 min内,灭活了1.2×107 CFU·mL−1的大肠杆菌 [30] 碳化ZIF-8 808 nm 激光(3 W·cm−2) 0.16 10 min内,对107 CFU·mL−1的金黄色葡萄球菌的灭活率达到80%左右 [43] PB-PCN-224 600 nm LED(0.3 W·cm−2) 1 15 min内,对1×107 CFU·mL−1的金黄色葡萄球菌的灭活率达到99.84% [47] 2. 光热催化杀菌机制(Photothermal disinfection mechanism)
2.1 高温和ROSs对微生物的攻击
如前所述,在光照射下,光热催化材料会通过光热转换产生局部高温和/或通过光催化和热催化生成ROSs进行协同作用, 如图2 [14]。在光热催化材料界面会形成局部热场而升温至约50 ℃以上[48-49]。光热催化材料表面的高温会导致蛋白质变性,导致微生物一旦接触到材料表面就会迅速失活。局部热场会扩散到周围环境,导致体相及水溶液温度升高。当细菌暴露于亚沸温度溶液(55—60 ℃)时,细胞膜上的蛋白质和脂质将被破坏[50]。随后,酶、核酸和其他胞内成分随着照射时间的延长而失活,这与巴氏杀菌相似。同时,生成的ROSs攻击细胞会诱导微生物产生氧化应激以致生理系统紊乱,进而导致细胞膜破裂、胞内成分(如蛋白质、核酸、K+等)的泄漏氧化以及细胞的最终死亡。
图 2 Ag/MnO2光热催化杀菌机理图[14]Figure 2. Scheme of photothermalcatalytic inactivation over Ag/MnO2.2.2 细菌细胞的破坏和表征技术
(1)细胞膜的损伤
细菌细胞膜主要由脂质、蛋白质和少量碳水化合物组成。它是细菌抵御外界攻击和环境变化的第一层保护层。在光照射下暴露于光热催化剂时,细胞膜的脂质双分子层会受到热和ROSs的攻击。ROSs与细胞膜不饱和脂肪酸之间的反应引发了随后的链式反应,导致脂质过氧化。ROSs和脂质过氧化产物都会对细菌细胞造成损伤。用MDA检测试剂盒测定细胞膜氧化情况。此外,与底物运输、特异性识别和呼吸相关的膜蛋白对细菌代谢至关重要[19]。在光热处理中,ROSs和局域热场会引起胞内氨基酸氧化和蛋白质变性。如果目标病原微生物是病毒(如MS2),ROSs和局域热场则会破坏蛋白质衣壳并导致抗原性降低[51]。
光热催化杀菌可通过两条途径增加细胞膜的渗透性:①通过脂质过氧化破坏细胞膜的微观结构和降低细胞膜的流动性;②通过ROSs和局域热场灭活在细胞呼吸和跨膜运输中起重要作用的膜蛋白和ATP酶[52]。首先,细菌膜通透性的增加可以破坏钠钾(Na+-K+)泵,导致K+离子等小分子的释放。因此,释放的K+的量被用于测量细胞膜渗透性的变化。此外,利用邻硝基苯-β-D-吡楠半乳糖苷(ONPG)结合比色法可以测定细胞质膜的穿透性[14]。8-苯胺基-1-萘磺酸(ANS) 会与外膜结合发出荧光,也可用于检测外膜的通透性。
此外,利用扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM)观察细菌细胞膜的完整性和形态变化。在光热催化处理之前,大肠杆菌和金黄色葡萄球菌保持光滑的表面和完整的微观结构。在光热系统中照射10 min后,细胞膜发生严重变形和皱缩,出现凸出和凹坑的变形。光热催化处理10 min后,在细胞膜上观察到一些孔洞。透射电镜提供了细菌样品的高分辨率成像,并显示了细胞膜和胞内成分的变化:在光热催化处理下大肠杆菌细胞膜的功能紊乱并受损,导致细胞质分离和胞内组分渗漏[53].
(2)胞内成份的释放和氧化
在破坏细胞膜的形态和改变其通透性后,进一步检测胞内组分在ROSs和热攻击下的变化,以更好地了解杀菌机制。细胞膜通透性的增加和破坏使ROSs得以加速通过。荧光探针法可用于检测细胞内ROS水平,其中2',7'-二氯二氢荧光素二乙酸酯是检测·OH和H2O2的常用荧光探针。羟苯基荧光素(HPF)和二氢乙啶(HE)也可分别作为·OH和·O2−的荧光探针[54—55]。
通过谷胱甘肽(GSH)、超氧化物酶(SOD)、过氧化氢酶(CAT)以及ATP的量可以分析细菌受到攻击时的自卫能力。GSH不仅是H2O2和·O2−的清除剂,而且还能产生分解ROSs的酶[56-57]。此外,GSH能稳定酶活性,维持细胞内氧化平衡,阻止血红蛋白被氧化。SOD则通过与·O2−特异性反应而参与细菌的自卫系统。CAT在H2O2的防御系统中起着重要作用。用对应的检测试剂盒通过分光光度法测定SOD、CAT、GSH的含量。基本能量载体ATP的合成与细胞代谢活性直接相关。ATP含量用ATP检测试剂盒监测,通过测量636 nm处的吸光度来定量分析[58]。值得注意的是,在光热催化杀菌初期,细胞会产生更多的GSH、SOD和CAT来保护自己免受氧化,并且合成上述抗氧化物质需要更多的能量,ATP水平呈上升趋势。但是,随着处理时间的延长,ROSs和局域热场的持续攻击会使细菌代谢紊乱。最终所有的抗氧化物质和ATP都会被分解。
细菌包膜的破坏也导致细胞内成分的释放,如K+、核酸和蛋白质等。释放的蛋白质可以通过二喹啉甲酸(BCA)法监测,因为蛋白质的肽键结构可以在碱性条件下将Cu2+转换为Cu+,然后BCA可以与Cu+反应形成紫色化合物, 可以通过分光光度计在562 nm处定量分析。然后利用2D电泳进行定性分析可深入了解蛋白质的释放和氧化,还可以用分光光度计测定释放的核酸浓度,有关DNA/RNA的特征吸收峰位于260 nm附近[40]。进一步采用三维荧光激发-发射矩阵技术,通过分析溶解有机物的变化来研究生物分子的破坏。此外,利用单细胞的傅立叶变换红外吸收光谱和拉曼显微光谱还可以分析细胞内成分结构的演化[51-53]。
(3)核酸的损伤
为了更好地理解ROS和局域热场对细菌核酸的损伤,进行了DNA琼脂糖凝胶电泳和转录组分析。前者是用Ezup柱式细菌基因组DNA抽提试剂盒提取染色体DNA,然后用DNA琼脂糖凝胶电泳验证。此外,转录组学研究中的样品制备和数据分析也比电泳法复杂。一般情况下,提取总RNA、片段化处理mRNA、合成cDNA、末端修复、添加单核苷酸后,选择样品进行琼脂糖凝胶电泳、PCR扩增,然后定量定性分析[54]。通过这种方法可以确定参与各种正常生理活动(如代谢活动、氧化应激反应和细胞呼吸过程等)的基因表达的变化,为细菌失活机制提供了更深入的见解[54-55]。总有机碳(TOC)的测定也可以表示细菌矿化程度[56]。
3. 展望(Perspectives)
本文总结了光热催化消毒的研究进展,显示出了实际应用的巨大潜力。然而,光热催化消毒技术仍面临挑战,需要采取进一步的策略来降低成本,提高效率。为了实现光热催化剂的实际应用,较高的材料和运行成本在一定程度上限制了大规模的光热应用。使用低成本和可持续的材料,如生物质碳,非贵金属等离子体NPs和丰富的自然资源(例如,矿物),更适于大规模水消毒处理。虽然可以利用各种方法来分析光热催化灭菌,但对光热催化过程中生物分子变化的深入认识还有待进一步评价。此外,由于天然水或污水中TOC和浊度高、各种微生物的共存、pH值不理想等原因,其杀菌效果是完全不同的;需要进一步设计和优化光热反应器如采用间歇式和连续流式反应器。总之,光热催化法有望成为环境修复(包括但不限于水消毒)的一种有效策略。
-
表 1 不同
系统进水水质SO2−4 Table 1. The influent quality of
systemSO2−4 第1 天—第25 天Day 1 — Day 25 第26 天—第60 天Day 26 — Day 60 第61 天—第110 天Day 61 — Day 110 1.6% 系统SO2−4 pH 3.8—4.2 3.8—4.2 3.8—4.2 硫酸根/% 1.6—1.7 1.7—1.8 1.7—1.8 COD/(mg·L−1) 5400—5600 5400—5600 7500—8100 TDS/(g·L−1) 27—30 27—30 27—30 电导率/(ms·cm−1) 25—30 28—30 28—30 TN/(mg·L−1) 20—25 180—200 320—350 TP/(mg·L−1) 5—10 8—10 8—10 氨氮/(mg·L−1) 15—20 15—20 15—20 Ca/(mg·L−1) 25—35 25—35 25—35 Mg/(mg·L−1) 5—15 5—15 5—15 Fe/(mg·L−1) 0.1—0.6 0.1—0.6 0.1—0.6 pH 3.7—3.9 3.5—4.1 3.6—4.2 2.6% SO2−4 硫酸根/(mg·L−1) 2.6—2.8 2.6—2.8 2.2—2.3 COD/(mg·L−1) 8000—8900 7000—7800 7500—8000 TDS/(g·L−1) 42—45 45—55 50—54 电导率/(ms·cm−1) 38—40 38—40 38—40 TN/(mg·L−1) 28—30 320—350 320—350 TP/(mg·L−1) 10—15 10—15 15—20 氨氮/(mg·L−1) 15—20 15—20 15—20 Ca/(mg·L−1) 35—45 35—45 35—45 Mg/(mg·L−1) 10—20 10—20 10—20 Fe/(mg·L−1) 0.2—0.8 0.2—0.8 0.2—0.8 表 2 MBR反应器运行策略
Table 2. Operating strategy of MBR reactor
浓度SO2−4 concentrationSO2−4 阶段 Stage 天数/d Days 容积负荷/(kg·(m3·d)−1)VLR HRT/d SRT/d 1.6% 提盐驯化阶 1—20 0.5 10 不排泥 负荷提升阶段Ⅰ 21—40 0.6 8.5 44 负荷提升阶段Ⅱ 41—80 0.72 8.5—10.2 44 负荷提升阶段Ⅲ 81—110 1.0 7 44 2.6% 提盐驯化阶段 1—36 0.5 16 不排泥 负荷稳定阶段 37—110 0.5 16—22 44 注:进水 浓度为1.6%的反应器在负荷提升阶段Ⅰ内(第26 天)开始排泥,控制SRT为44 d;1.6%系统在负荷提升阶段Ⅱ和2.6%系统的负荷稳定阶段进水COD有所变化,HRT作了相应调整. Note: The reactor with influent of 1.6%SO2−4 discharged sludge at the 26th day in stage I of VLR improvement, with SRT controlled at 44 days; As the influent COD concentration changed from stage Ⅱ of VLR improvement in 1.6% system and the VLR stabilizing stage in 2.6% system, the HRT was adjusted accordingly.SO2−4 -
[1] 陆爱军. 农副食品加工行业废水污染现状及对策研究 [J]. 资源节约与环保, 2021(3): 92-93. LU A J. Study on the present situation and countermeasures of wastewater pollution in agricultural and sideline food processing industry [J]. Resources Economization & Environmental Protection 2021(3): 92-93(in Chinese).
[2] 杨重. 硫酸盐废水的资源化回收及功能菌群解析 [D]. 大连: 大连理工大学, 2021. YANG C. Resource recovery from sulfate wastewater and analysis of functional microbial community [D]. Dalian: Dalian University of Technology, 2021(in Chinese).
[3] 张磊, 赵婷婷, 何虎. 食品加工废水处理技术研究进展 [J]. 水处理技术, 2018, 44(12): 7-13. doi: 10.16796/j.cnki.1000-3770.2018.12.002 ZHANG L, ZHAO T T, HE H. Research progress of food industry wastewater treatment technology [J]. Technology of Water Treatment, 2018, 44(12): 7-13(in Chinese). doi: 10.16796/j.cnki.1000-3770.2018.12.002
[4] 李丹丹, 韩建秋. 高盐废水生态处理技术研究进展及展望 [J]. 应用技术学报, 2018, 18(4): 340-345. doi: 10.3969/j.issn.2096-3424.2018.04.009 LI D D, HAN J Q. Research progress and prospects of high-salt wastewater ecological treatment technology [J]. Journal of Applied Technology, 2018, 18(4): 340-345(in Chinese). doi: 10.3969/j.issn.2096-3424.2018.04.009
[5] 刘展, 郭瑞亚, 李娜, 等. 高含盐废水资源化利用技术的研究进展 [J]. 应用化工, 2020, 49(10): 2657-2661. doi: 10.3969/j.issn.1671-3206.2020.10.055 LIU Z, GUO R Y, LI N, et al. Development of resource utilization technology for highly saline wastewater [J]. Applied Chemical Industry, 2020, 49(10): 2657-2661(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.10.055
[6] 陈燚. 高pH值对含硫酸盐有机废水厌氧处理系统的影响研究 [D]. 徐州: 中国矿业大学, 2019. CHEN Y. Effect of pH on the anaerobic treatment of sulfate organic wastewater [D]. XUzhou: China University of Mining and Technology, 2019(in Chinese).
[7] 孔殿超, 赵明, 张强, 等. 废水中硫酸盐含量对有机物生化降解的影响研究 [J]. 广西节能, 2021(2): 30-32. doi: 10.3969/j.issn.1004-1230.2021.02.018 KONG D C, ZHAO M, ZHANG Q, et al. Effect of Sulfate Content in Wastewater on Biodegradation of Organic Compounds [J]. Guangxi Energy Conservation, 2021(2): 30-32(in Chinese). doi: 10.3969/j.issn.1004-1230.2021.02.018
[8] 曹美玲, 李海, 刘佛财, 等. 高盐有机废水的处理与研究进展 [J]. 有色金属科学与工程, 2019, 10(3): 92-98. CAO M L, LI H, LIU F C, et al. Recent development in the treatment process for high salt organic wastewater [J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 92-98(in Chinese).
[9] 刘传伟. 高盐废水生物处理的研究 [D]; 合肥: 合肥工业大学, 2012. LIU C W. Research on the biological treatmeat of high salinity wasteater [D]; Hefei: Hefei University of Technology, 2012(in Chinese).
[10] 张哲, 于德爽, 张业静. MBR工艺处理高盐度废水试验 [J]. 环境工程, 2009, 27(5): 22-24. ZHANG Z, YU D S, ZHANG Y J. Experiment on the treatment of wastewater containing high salt by mbr process [J]. Environmental Engineering, 2009, 27(5): 22-24(in Chinese).
[11] HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community [J]. Desalination, 2013, 316: 23-30. doi: 10.1016/j.desal.2013.01.015 [12] 国家环保局本书编委会. 水和废水监测分析方法 [M]. 水和废水监测分析方法, 1989. Editorial Board of the State Environmental Protection Agency. Monitoring and Analysis Methods of Water and Wastewater [M]. Monitoring and Analysis Methods of Water and Wastewater, 1989(in Chinese).
[13] 肖小兰, 亓金鹏, 刘皓, 等. AOA-MBR处理高盐榨菜废水厌氧膜生物反应器出水的效能 [J]. 环境工程学报, 2021, 15(9): 3057-3066. doi: 10.12030/j.cjee.202105095 XIAO X L, QI J P, LIU H, et al. Operation performance of an AOA-MBR treating the effluent from an anaerobic membrane bioreactor dealing with high-salt mustard tuber wastewater [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3057-3066(in Chinese). doi: 10.12030/j.cjee.202105095
[14] LUO L, ZHOU W W, YUAN Y, et al. Effects of salinity shock on simultaneous nitrification and denitrification by a membrane bioreactor: Performance, sludge activity, and functional microflora [J]. Science of the Total Environment, 2021, 801: 149748. doi: 10.1016/j.scitotenv.2021.149748 [15] 周颖. 纯氧曝气条件下活性污泥有机物降解及耐盐性研究 [D]. 南京: 南京师范大学, 2017. ZHOU Y. Degradation and salt tolerance of activated sludge under pure oxygen aeration [D]. Nanjing: Nanjing Normal University, 2017(in Chinese).
[16] HE H J, CHEN Y J, LI X, et al. Influence of salinity on microorganisms in activated sludge processes: A review [J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527. [17] WANG J F, LIU Q J, WU B, et al. Effect of salinity on mature wastewater treatment biofilm microbial community assembly and metabolite characteristics [J]. Science of the Total Environment, 2020, 711: 134437. doi: 10.1016/j.scitotenv.2019.134437 [18] 侯飞飞. MABR去除高盐废水中COD和氨氮的基础研究 [D]. 天津: 天津大学, 2013. HOU F F. Basic research of COD and ammonia nitrogen removals in high salinity wastewater by MABR [D]. Tianjin: Tianjin University, 2013(in Chinese).
[19] 简陈生. 高盐氨氮废水MBR处理效能及微生物特性研究 [D]. 赣州: 江西理工大学, 2016. JIAN C S. Study on MBR treatment efficiency and microbial characteristics of high salt ammonia nitrogen wastewater [D]. Ganzhou: Jiangxi University of Science and Technology, 2016(in Chinese).
[20] 陈杰云, 余薇薇, 杜邦昊, 等. HRT对多级A/O+悬浮填料组合工艺脱氮除磷的影响 [J]. 中国给水排水, 2017, 33(09): 31-34. doi: 10.19853/j.zgjsps.1000-4602.2017.09.006 CHEN J Y, YU W W, DU B H, et al. Effect of hydraulic retention time on nitrogen and phosphorus removal in multistage A/O + suspended carrier combined process [J]. China Water & Wastewater, 2017, 33(09): 31-34(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2017.09.006
[21] 李绍峰, 崔崇威, 黄君礼, 等. DO和HRT对MBR同步硝化反硝化影响研究 [J]. 哈尔滨工业大学学报, 2007, 39(6): 887-890. doi: 10.3321/j.issn:0367-6234.2007.06.012 LI S F, CUI C W, HUANG J L, et al. Influence of DO and HRT on simultaneous nitrification and denitrification in MBR [J]. Journal of Harbin Institute of Technology, 2007, 39(6): 887-890(in Chinese). doi: 10.3321/j.issn:0367-6234.2007.06.012
[22] 叶芳凝, 石先阳. 盐度对MBR处理高氨氮废水的运行及微生物群落影响研究 [J]. 膜科学与技术, 2018, 38(05): 77-83. doi: 10.16159/j.cnki.issn1007-8924.2018.05.011 YE F N, SHI X Y. Study on the effect of salinity on the operation and microbial community of MBR for treatment of high ammonia nitrogen wastewater [J]. Membrane Science and Technology, 2018, 38(05): 77-83(in Chinese). doi: 10.16159/j.cnki.issn1007-8924.2018.05.011
[23] SHI X B, LI J, WANG X C, et al. Effect of the gradual increase of Na2SO4 on performance and microbial diversity of aerobic granular sludge [J]. Journal of Environmental Management, 2021, 292: 112696. doi: 10.1016/j.jenvman.2021.112696 [24] 于德爽, 李津, 陆婕. MBR工艺处理含盐污水的试验研究 [J]. 中国给水排水, 2008, 24(3): 5-8. doi: 10.3321/j.issn:1000-4602.2008.03.002 YU D S, LI J, LU J. Experimental study on treatment of wastewater containing salt by MBR process [J]. China Water & Wastewater, 2008, 24(3): 5-8(in Chinese). doi: 10.3321/j.issn:1000-4602.2008.03.002
[25] OU D, LI H, LI W, et al. Salt-tolerance aerobic granular sludge: Formation and microbial community characteristics [J]. Bioresource Technology, 2018, 249: 132-138. doi: 10.1016/j.biortech.2017.07.154 [26] LAY W C L, LIU Y, FANE A G. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review [J]. Water Research, 2010, 44(1): 21-40. doi: 10.1016/j.watres.2009.09.026 [27] 杨帆. 单级好氧除磷工艺与A/O除磷工艺的对比研究 [D]. 长沙: 湖南大学, 2012. YANG F. Comparison study on phosphorus removal between single-stage oxic process and anaerobic/aerobic process [D]; Changsha: Hunan University, 2012(in Chinese).
[28] CHEN H B, WANG D B, LI X M et al. Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime [J]. Biochemical Engineering Journal, 2013, 77: 147-153. doi: 10.1016/j.bej.2013.06.005 [29] CLOETE T E, OOSTHUIZEN D J. The role of extracellular exopolymers in the removal of phosphorus from activated sludge [J]. Water Research, 2001, 35(15): 3595-3598. doi: 10.1016/S0043-1354(01)00093-8 [30] LONG X, FANG Z, TANG R, et al. Roles of extracellular polymer substances in biological dephosphorization [J]. Acta Scientiae Circumstantiae, 2012, 32(4): 784-789. [31] SHANAHAN J W, SEMMENS M J. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis [J]. Water Research, 2015, 74: 10-22. doi: 10.1016/j.watres.2014.12.055 [32] YURTSEVER A, ÇıNAR Ö, SAHINKAYA E. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors [J]. Journal of Membrane Science, 2016, 511: 228-237. doi: 10.1016/j.memsci.2016.03.044 期刊类型引用(1)
1. 王昭阳,柴伟贺,王伟伟,左浩,李广伟,李德民,孙弘. 西南地区某污水处理厂BBR工艺小试及其与高级氧化工艺联用可行性分析. 化工安全与环境. 2024(11): 57-61 . 百度学术
其他类型引用(2)
-