-
自从抗生素被发现、生产和使用以来,全世界每年至少生产1×105—2×105 t抗生素[1],因其对病原微生物具有良好的抑制作用[2],抗生素被大量应用在医疗等许多方面[3]. 目前,抗生素种类和数量剧增,仅中国一年抗生素的用量就有1.62×105 t,产出达到2.48×105 t,进入环境的抗生素质量甚至超过了5 t[4],造成环境中抗生素被大量检出,如盐酸四环素在黄浦江的上游支流中被检测出,浓度达34.25—211.82 ng·L−1[5],在苏州市某一湖泊中也检测出,浓度达3.27—547 ng·L−1[6];在香港的维多利亚湾β-内酰胺类抗生素最高被检测出493 ng·L−1[7]. 进入环境中的抗生素不仅会对环境中微生物造成危害,也会影响植物根系的伸长,阻碍种子的发芽生长[8],甚至还会通过食物链等途径进入动物甚至人体,对动物及人类肠道菌群产生影响,更为严重还会导致人体产生抗药性和体重变化等其它危害[9].
环境中残留的抗生素不是以单个形式存在,常以混合物的形式存在,不同抗生素之间在环境中很可能会出现协同或拮抗作用[10],给生态环境及人体健康带来更大潜在的风险[11],如王桂祥等[12]发现,环境浓度下的恩诺沙星和磺胺甲恶唑的协同作用会使普通小球藻产生更强的氧化损伤. 因此,研究抗生素及其混合污染物的毒性作用具有重要的环境意义.
中药因对细菌和病毒等微生物产生良好的抑菌效果,而被大量使用[13],同时,也产生了大量药渣,其中含有黄酮、生物碱、多酚、萜类等成分[14]也随之进入环境中,抑制微生物的生长. 刘海席[15]研究发现,中药提取物盐酸小檗碱在1.47—23.44 mg·L−1浓度范围,对桃褐腐菌(Monilinnia fructioncola)的抑菌作用随浓度的升高而增强. 无论是进入环境还是在人体中的中药都很有可能会对环境中残留的或者通过食物链等途径进入生物体甚至人体的抗生素的抑菌作用产生影响,如氢青蒿素和氟康唑联合使用恢复了氟康唑对耐药性白色念珠菌的抑菌作用,并与氟康唑产生了较强的协同作用[16]. 因此,考察抗生素与中药联合抑菌作用具有重要的实际意义.
大肠杆菌(Escherichia coli, E. coli)常存在于人和动物肠道中,伴随粪便排出,在自然环境中广泛传播[17],和人体是互利共生的关系,多数不会给身体带来危害,反而可以抑制肠道致病菌和其他病原体的繁殖[18]. 因其具有生长速度快、培养方法简单等优点,也常被作为一种模式生物. 尹孝仁等[19]发现诺氟沙星和多粘菌素E对E. coli出现协同作用. 曾范利等[20]发现鱼腥草、黄芩和五倍子联用时,对E. coli抑菌效果为协同或加和作用. 这都说明E. coli作为指示生物来反映抗生素和中药抑菌效果的可行性. 抗生素与中药的联合抑菌效果虽已有前人进行研究[21],而定量评估其潜在的风险是关键,而目前大多数研究都缺乏对联合抑菌作用强度的定量表征.
此外,盐酸四环素作为世界上使用非常广泛的广谱抗生素,也是污水中检出最为频繁的抗生素之一[22];氨卡西林钠是作为β-内酰胺类的广谱抗生素,具有抗菌谱广、药效高和价格便宜等特点[23],在临床医疗上被广泛的使用. 虽然这两种抗生素降解速率都很快,但是由于使用量大、频率高,仍可能在环境中造成假持久性污染[24],对生态及人体造成威胁. 因此,本文选择β-内酰胺类抗生素(氨苄西林钠(ampicillin sodium,AMP))、四环素类抗生素(盐酸四环素(tetracycline hydrochloride,TET))和中药提取成分(盐酸小檗碱(berberine chloride hydrate,BCH))作为目标污染物,应用直接均分射线法(direct equipartition ray,EquRay)和均匀设计射线法(uniform design ray,UD-Ray)[25],分别设计了3种药物的3个二元(AMP-BCH、AMP-TET、TET-BCH)及1个三元混合物体系(AMP-BCH-TET);利用时间微板毒性分析法(time-dependent microplate toxicity analysis method,t-MTA)[26]测定并分析3种药物及其混合物体系对E. coli的时间、浓度和组分比依赖抑菌毒性;应用拟合归零法进一步对混合物组分间的相互作用类型及强度进行分析,并测定药物作用前后E. coli细胞的核酸溶出量和电镜扫描的细胞形态,以探讨可能的作用机理. 研究结果可为评价抗生素和中药的混合物毒性及环境生态风险等研究提供参考.
抗生素与中药对大肠杆菌的联合抑菌作用及机理
Combined antibacterial action and mechanism of antibiotics and traditional Chinese medicine on Escherichia coli
-
摘要: 为研究抗生素和中药对环境及生物体中菌群的联合毒性作用,以2种常用抗生素氨苄西林钠(ampicillin sodium,AMP) 、盐酸四环素(tetracycline hydrochloride,TET)和1种中药提取物盐酸小檗碱 (berberine chloride hydrate,BCH)为目标污染物,以大肠杆菌(Escherichia coli,E. coli)为指示生物,分别应用直接均分射线法和均匀设计射线法设计3个二元(AMP-BCH、AMP-TET、BCH-TET)及1个三元混合物体系(AMP-TET-BCH),共20条射线,采用以96孔微板为实验载体的时间微板毒性分析法(time-dependent microplate toxicity analysis method,t-MTA)对3种药物及其混合物体系的毒性进行系统测定. 运用拟合归零法分析混合物毒性相互作用类型及强度,选取抑菌作用明显的代表性混合物射线进行暴露前后E. coli核酸溶出量以及电镜扫描分析. 结果表明,AMP、TET、BCH及其混合物体系对E. coli的浓度效应曲线为“S”型且时间和浓度依赖抑菌性明显,仅AMP具有明显的急性抑菌性二元混合物体系具有明显的组分比依赖性,而三元混合物体系无明显的组分比依赖性;暴露时间不同,3种药物及其混合物体系的抑菌毒性(半数效应浓度的负对数值(pEC50))也不同,整体上随暴露时间的增加而增加,在同一暴露时间二元和三元混合物体系的抑菌毒性大于单个药物,其中毒性最强为AMP-TET-R5(pEC50=6.25);混合物体系联合抑菌作用均为协同作用,其中协同作用强度最强也为AMP-TET-R5 (dCA=0.9849),且受时间、浓度和组分比影响;混合物体系可以通过破坏细胞形态和结构来抑制E. coli的生长,其中混合物体系的核酸溶出量整体高于单个药物的,且E. coli被作用后的细胞形态和结构的变化比单个药物作用后破坏的更为严重.Abstract: To investigate the combined toxic effects of antibiotics and Chinese herbal medicines on the microbial flora in the environment and organisms, two commonly used antibiotics, ampicillin sodium (AMP) and tetracycline hydrochloride (TET), and one Chinese herbal medicine extract, berberine chloride hydrate (BCH), were selected as target contaminants, and their three binary (AMP-BCH, AMP-TET, BCH-TET) and one ternary mixture (AMP-TET-BCH) systems were designed by using the direct equipartition ray and uniform design ray methods, respectively. The time-dependent microplate toxicity analysis method (t-MTA) with 96-well microplates was used to systematically determine the toxicity of the three drugs and the mixture system to Escherichia coli (E. coli). The return-to-zero fitting method was used to analyze the types and strengths of toxic interactions in the mixtures, and representative rays with significant toxicity interactions were chosen for the analysis of the nucleic acid content of E. coli before and after exposed to drugs, as well as scanning electron microscopy mechanistic experiments. The results showed that the concentration-effect curves of AMP, TET, BCH and their mixture systems on E.coli were "S" shaped with significant time- and concentration- dependent inhibition. Only AMP had a significant acute inhibition. The binary mixture system had a significant component-ratio dependence, while the ternary mixture system did not have. The inhibition toxicity (negative logarithm of the half-effect concentration (pEC50)) of the three drugs and their mixture systems differed and increased with increasing of exposure time. At the same exposure time, the inhibition toxicity of the binary and ternary mixture systems was stronger than that of the individual drugs, AMP-TET-R5 with pEC50 = 6.25 was the strongest toxicity. The inhibition of the mixture systems was all synergistic with the highest synergistic intensity in AMP-TET-R5 (dCA=0.9849), which was influenced by time, concentration and fraction. The mixture system could inhibit the growth of E. coli by disrupting cell morphology and structure. The nucleic acid dissolution of E. coli after exposed to the mixture systems was overall higher, and the changes in cell morphology and structure were more severely disrupted than those exposed to the individual drugs.
-
表 1 3种药物的理化性质及其储备液浓度
Table 1. Physicochemical properties of the three drugs and their stock solution concentrations
名称
Name简称
Abbreviation分子式
Molecular formula分子量
Molecular weightCAS-RN 纯度
Purity储备液/(mol·L−1)
Stock solution氨苄西林钠
Ampicillin sodiumAMP C16H18N3NaO4S 371.380 69-52-3 ≥98% 3.45×10−3 盐酸四环素
Tetracycline hydrochlorideTET C22H25ClN2O8 480.900 64-75-5 ≥98% 1.04×10−3 盐酸小檗碱
Berberine chloride hydrateBCH C20H18ClNO4 371.814 141433-60-5 ≥97% 2.15×10−3 表 2 混合物体系各物质组分浓度比(pi)
Table 2. Concentration ratio of each substance component of the mixture system (pi)
AMP-BCH AMP-TET 射线Ray pAMP pBCH 射线Ray pAMP pTET R1 8.959×10−1 1.041×10−1 R1 9.187×10−1 8.127×10−2 R2 7.750×10−1 2.250×10−1 R2 8.189×10−1 1.811×10−1 R3 6.326×10−1 3.674×10−1 R3 6.933×10−1 3.067×10−1 R4 4.626×10−1 5.374×10−1 R4 5.306×10−1 4.694×10−1 R5 2.562×10−1 7.438×10−1 R5 3.114×10−1 6.886×10−1 TET-BCH AMP-BCH-TET 射线Ray pTET pBCH 射线Ray pAMP pBCH pTET R1 7.920×10−1 2.080×10−1 R1 2.546×10−1 2.831×10−1 4.623×10−1 R2 6.037×10−1 3.963×10−1 R2 3.724×10−1 4.709×10−1 1.567×10−1 R3 4.323×10−1 5.677×10−1 R3 5.388×10−1 8.558×10−2 3.757×10−1 R4 2.758×10−1 7.242×10−1 R4 5.909×10−1 2.326×10−1 4.314×10−1 R5 1.322×10−1 8.678×10−1 R5 4.943×10−1 2.871×10−1 2.186×10−1 表 3 3种药物的Weibull函数拟合结果及其统计量
Table 3. Fitting results of Weibull function for 3 drugs and their statistics
药物
Drug时间/h
Timeα β RMSE r EC50/(mol·L−1) pEC50 AMP 0.25 3.41 1.63 0.023 0.9683 ∞ 0.00 2 4.17 1.45 0.037 0.9831 7.44×10−4 3.13 4 5.26 1.68 0.060 0.9728 4.48×10−4 3.35 8 6.89 2.14 0.075 0.9696 4.07×10−4 3.39 12 7.42 2.39 0.124 0.9417 5.52×10−4 3.26 BCH 0.25 0.13 12 0.057 -0.8805 ∞ 0.00 2 0.14 0.92 0.036 0.5397 ∞ 0.00 4 8.04 2.87 0.074 0.8824 1.18×10−3 2.93 8 7.33 2.14 0.075 0.9697 2.53×10−4 3.60 12 7.46 2.24 0.108 0.9496 3.21×10−4 3.49 TET 0.25 0.01 0.73 0.017 0.5919 ∞ 0.00 2 2.95 0.95 0.067 0.9067 3.23×10−4 3.49 4 5.3 1.5 0.074 0.9519 1.67×10−4 3.78 8 8.74 2.46 0.109 0.9229 1.99×10−4 3.70 12 13.36 3.8 0.142 0.8863 2.44×10−4 3.61 -
[1] WISE R. Antimicrobial resistance: Priorities for action [J]. Journal of Antimicrobial Chemotherapy, 2002, 49(4): 585-586. doi: 10.1093/jac/49.4.585 [2] 杜实之. 环境中抗生素的残留、健康风险与治理技术综述 [J]. 环境科学与技术, 2021, 44(9): 37-48. DU S Z. Research progress on antibiotic pollution, health risks and treatment technology in environments [J]. Environmental Science & Technology, 2021, 44(9): 37-48(in Chinese).
[3] 江静, 周清时. 水环境中抗生素的污染现状与分析方法 [J]. 广州化工, 2021, 49(22): 20-21,24. JIANG J, ZHOU Q S. Pollution status and analysis method of antibiotics in water environment [J]. Guangzhou Chemical Industry, 2021, 49(22): 20-21,24(in Chinese).
[4] 张东伟. 湖北典型湖库水体中抗生素残留现状及沉积物抗性基因污染特征研究[D]. 十堰: 湖北医药学院, 2022: 10-11. ZHANG D W. Research on the status of antibiotic residues in typical lakes and reservoirs in Hubei and the pollution characteristics of sediment resistance genes[D]. Shiyan: Hubei University of Medicine, 2022: 10-11 (in Chinese)
[5] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China [J]. Chemosphere, 2014, 95: 604-612. doi: 10.1016/j.chemosphere.2013.09.119 [6] 杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估 [J]. 生态环境学报, 2019, 28(2): 359-368. YANG J, WANG H X, WU Y F, et al. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou city [J]. Ecology and Environmental Sciences, 2019, 28(2): 359-368(in Chinese).
[7] BINH MINH T, LEUNG H W, LOI I H, et al. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour [J]. Marine Pollution Bulletin, 2009, 58(7): 1052-1062. doi: 10.1016/j.marpolbul.2009.02.004 [8] 李经纬, 刘小燕, 王美欢, 等. 抗生素在水环境中的分布及其毒性效应研究进展 [J]. 广州化工, 2016, 44(17): 10-13. doi: 10.3969/j.issn.1001-9677.2016.17.004 LI J W, LIU X Y, WANG M H, et al. Research progress on distribution and toxicity effects of antibiotics in water environment [J]. Guangzhou Chemical Industry, 2016, 44(17): 10-13(in Chinese). doi: 10.3969/j.issn.1001-9677.2016.17.004
[9] KEERTHISINGHE T P, WANG F, WANG M J, et al. Long-term exposure to TET increases body weight of juvenile zebrafish as indicated in host metabolism and gut microbiome [J]. Environment International, 2020, 139: 105705. doi: 10.1016/j.envint.2020.105705 [10] 葛会林, 罗金辉, 智霞, 等. 环境中的抗生素与毒物兴奋效应综述 [J]. 热带作物学报, 2015, 36(9): 1719-1725. GE H L, LUO J H, ZHI X, et al. A review on hormesis and antibiotics in the environment [J]. Chinese Journal of Tropical Crops, 2015, 36(9): 1719-1725(in Chinese).
[11] YUAN J L, NI M, LIU M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China [J]. Marine Pollution Bulletin, 2019, 138: 376-384. doi: 10.1016/j.marpolbul.2018.11.037 [12] 王桂祥, 张琼, 匡少平, 等. 环境浓度下的混合抗生素对普通小球藻的联合毒性 [J]. 生态毒理学报, 2019, 14(2): 122-128. WANG G X, ZHANG Q, KUANG S P, et al. The joint toxicity of mixed antibiotics on Chlorella vulgaris at normal environmental concentration [J]. Asian Journal of Ecotoxicology, 2019, 14(2): 122-128(in Chinese).
[13] 瞿礼萍, 唐健元, 张磊, 等. 我国中药注册分类的历史演变、现状与问题 [J]. 中国中药杂志, 2022, 47(2): 562-568. doi: 10.19540/j.cnki.cjcmm.20210817.601 QU L P, TANG J Y, ZHANG L, et al. Category of Chinese medicine registration: Historical evolution, current status, and problems [J]. China Journal of Chinese Materia Medica, 2022, 47(2): 562-568(in Chinese). doi: 10.19540/j.cnki.cjcmm.20210817.601
[14] 张相鑫, 陈进超, 孙佳静. 中药药渣作为畜禽饲料或饲料添加剂的研究进展 [J]. 饲料工业, 2017, 38(22): 57-60. ZHANG X X, CHEN J C, SUN J J. Research progress of Chinese medicine residues as animal feed or feed additives [J]. Feed Industry, 2017, 38(22): 57-60(in Chinese).
[15] 刘海席. 盐酸小檗碱防治桃褐腐菌—剂型制备及耐药性研究[D]. 北京: 北京化工大学, 2010: 25-26. LIU H X. Control of peach brown rot with berberine-preparation of dosage forms and assay for drug resistance[D]. Beijing: Beijing University of Chemical Technology, 2010: 25-26. (in Chinese)
[16] LI H, CHEN H S, SHI W N, et al. A novel use for an old drug: Resistance reversal in Candida albicans by combining dihydroartemisinin with fluconazole [J]. Future Microbiology, 2021, 16: 461-469. doi: 10.2217/fmb-2020-0148 [17] JANG J, HUR H G, SADOWSKY M J, et al. Environmental Escherichia coli: Ecology and public health implications-a review [J]. Journal of Applied Microbiology, 2017, 123(3): 570-581. doi: 10.1111/jam.13468 [18] 高珊, 张楠, 敬海明, 等. 秀丽隐杆线虫毒性研究实验室生物安全风险评估及控制 [J]. 毒理学杂志, 2015, 29(2): 148-152. GAO S, ZHANG N, JING H M, et al. Biological safety risk assessment and control of Caenorhabditis elegans toxicity research laboratory [J]. Journal of Toxicology, 2015, 29(2): 148-152(in Chinese).
[19] 尹孝仁, 朴胜春, 姜成哲, 等. 诺氟沙星和几种抗生素的联合应用效果的研究 [J]. 延边农学院学报, 1995, 17(3): 133-138. YIN X R, PIAO S C, JIANG C Z, et al. Synergistic effects of norfloxacin in combination with other antibacterial [J]. Journal of Agricultural Science Yanbian University, 1995, 17(3): 133-138(in Chinese).
[20] 曾范利, 吴胜奎, 孙江洋, 等. 5种中药对大肠杆菌的抑菌作用 [J]. 经济动物学报, 2018, 22(3): 172-176. ZENG F L, WU S K, SUN J Y, et al. Combined antibacterial effect of five traditional medicines against Escherichia coli [J]. Journal of Economic Animal, 2018, 22(3): 172-176(in Chinese).
[21] LI J M, FENG S S, LIU X, et al. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria [J]. Frontiers in Pharmacology, 2022, 13: 837907. doi: 10.3389/fphar.2022.837907 [22] 王盈盈, 余静, 曾红杰, 等. 磁性吸附剂CeO2/MZFS去除水中盐酸四环素 [J]. 环境科学学报, 2020, 40(9): 3250-3258. WANG Y Y, YU J, ZENG H J, et al. Adsorption of tetracycline hydrochloride by magnetic adsorbent CeO2/MZFS [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3250-3258(in Chinese).
[23] 顾桂秋. 氨苄西林钠生产新工艺及产品澄清度研究[D]. 天津: 天津大学, 2003. GU G Q. A study on the new manufacturing technology of ampicillin sodium and the clarity of the production[D]. Tianjin: Tianjin University, 2003 (in Chinese).
[24] GAO W, LI Y L, XIE W M, et al. Photocatalytic degradation of oxytetracycline using zeolite imidazole framework-8 (ZIF-8) as an effective catalyst [J]. Nano, 2022, 17(6): 2250042. doi: 10.1142/S1793292022500424 [25] LIU S S, XIAO Q F, ZHANG J, et al. Uniform design ray in the assessment of combined toxicities of multi-component mixtures [J]. Science Bulletin, 2016, 61(1): 52-58. doi: 10.1007/s11434-015-0925-6 [26] ZHANG J, LIU S S, YU Z Y, et al. The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp.-Q67 [J]. Journal of Hazardous Materials, 2013, 258/259: 70-76. doi: 10.1016/j.jhazmat.2013.02.057 [27] ZHANG J, LIU S S, LIU H L. Effect of ionic liquid on the toxicity of pesticide to Vibrio-qinghaiensis sp.-Q67 [J]. Journal of Hazardous Materials, 2009, 170(2/3): 920-927. [28] 骆纵纵, 张瑾, 周娜娜, 等. 3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用 [J]. 生态毒理学报, 2022, 17(2): 189-199. LUO Z Z, ZHANG J, ZHOU N N, et al. Establishment of time-dependent microplate toxicity analysis method for combined antibacterial effects of three penicillin antibiotics to Escherichia coli [J]. Asian Journal of Ecotoxicology, 2022, 17(2): 189-199(in Chinese).
[29] ZHANG J, TAO M T, SONG C C, et al. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp.-Q67 induced by a key component [J]. RSC Advances, 2020, 10(21): 12365-12372. doi: 10.1039/D0RA00915F [30] HUANG P, WANG Y, LIU S S, et al. SAHmap: Synergistic-antagonistic heatmap to evaluate the combined synergistic effect of mixtures of three pesticides on multiple endpoints of Caenorhabditis elegans [J]. Environmental Pollution, 2022, 315: 120378. doi: 10.1016/j.envpol.2022.120378 [31] 刘树深, 张瑾, 张亚辉, 等. APTox: 化学混合物毒性评估与预测 [J]. 化学学报, 2012, 70(14): 1511-1517. doi: 10.6023/A12050175 LIU S S, ZHANG J, ZHANG Y H et al. APTox: Assessment and prediction on toxicity of chemical mixtures [J]. Acta Chimica Sinica, 2012, 70(14): 1511-1517(in Chinese). doi: 10.6023/A12050175
[32] 刘树深. 化学混合物毒性评估与预测方法[M]. 北京: 科学出版社, 2017: 57-68. LIU S S. Assessment and prediction of toxicity of chemical mixtures[M]. Beijing: Science Press, 2017: 57-68(in Chinese).
[33] CHEN C Z, COOPER S L. Interactions between dendrimer biocides and bacterial membranes [J]. Biomaterials, 2002, 23(16): 3359-3368. doi: 10.1016/S0142-9612(02)00036-4 [34] 姬曼, 金良韵, 赵君朋. 一种游离细胞扫描电镜的样品制备方法 [J]. 电子显微学报, 2019, 38(1): 72-74. JI M, JIN L Y, ZHAO J P. A sample preparation technique for scanning electron microscope of free cell [J]. Journal of Chinese Electron Microscopy Society, 2019, 38(1): 72-74(in Chinese).
[35] 于海燕. 生物基两亲分子的性质研究及在药物控释中的应用[D]. 东营: 中国石油大学(华东), 2016. YU H Y. Characterization of biological amphiphilic molecules and its application in controlled release[D]. Dongying: China University of Petroleum (Huadong), 2016. (in Chinese)
[36] 马娟, 周猛, 俞小军, 等. 抗生素在污水生物脱氮除磷中的抑制效应 [J]. 中国抗生素杂志, 2019, 44(2): 179-185. MA J, ZHOU M, YU X J, et al. Inhibitory effects of antibiotics on biological nitrogen and phosphorus removal in wastewater treatment [J]. Chinese Journal of Antibiotics, 2019, 44(2): 179-185(in Chinese).
[37] 易玉玲, 宋瑱, 雍江堰, 等. 盐酸小檗碱对白色念珠菌菌态转换的影响研究 [J]. 微生物学杂志, 2019, 39(3): 51-57. YI Y L, SONG Z, YONG J Y, et al. Study of berberine hydrochloride on yeast-to-hyphae conversion of Candida albicans [J]. Journal of Microbiology, 2019, 39(3): 51-57(in Chinese).
[38] LEE S Y, KIM K B W R, LIM S I, et al. Antibacterial mechanism of Myagropsis myagroides extract on Listeria monocytogenes [J]. Food Control, 2014, 42: 23-28. doi: 10.1016/j.foodcont.2014.01.030 [39] 刘焕奇, 张友民, 潘宗海, 等. 掌控累加、协同、拮抗是关键: 家畜临床常用药物及其配伍禁忌 [J]. 中国动物保健, 2008, 10(5): 93-98. LIU H Q, ZHANG Y M, PAN Z H, et al. Control of cumulative, synergistic and antagonistic is the key——commonly used drugs and their contraindications in livestock clinical practice [J]. China Animal Health, 2008, 10(5): 93-98(in Chinese).
[40] 景春娥, 李萍, 杜欣军, 等. 盐酸小檗碱对体外阪崎克罗诺杆菌生物膜的抑制作用 [J]. 食品研究与开发, 2016, 37(17): 134-138. doi: 10.3969/j.issn.1005-6521.2016.17.033 JING C E, LI P, DU X J, et al. In vitro activity of berberine hydrochloride against Cronobacter sakazakii biofilms [J]. Food Research and Development, 2016, 37(17): 134-138(in Chinese). doi: 10.3969/j.issn.1005-6521.2016.17.033
[41] 汤淼, 曾鸿鹄, 王大力, 等. 四环素对费氏弧菌产生生毒物兴奋效应(Hormesis)的时间关系和机制 [J]. 环境化学, 2015, 34(11): 1981-1987. doi: 10.7524/j.issn.0254-6108.2015.11.2015051403 TANG M, ZENG H H, WANG D L, et al. Time dependence and mechanism of tetracycline Hormesis effects to Vibrio fischeri [J]. Environmental Chemistry, 2015, 34(11): 1981-1987(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015051403