改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸

余诗慧, 杨娇娇, 牛夕阳, 周娟. 改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸[J]. 环境化学, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
引用本文: 余诗慧, 杨娇娇, 牛夕阳, 周娟. 改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸[J]. 环境化学, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
YU Shihui, YANG Jiaojiao, NIU Xiyang, ZHOU Juan. Modified FeCo2O4 to activate PMS to degrade 2,4-dichlorophenoxyacetic acid in water[J]. Environmental Chemistry, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
Citation: YU Shihui, YANG Jiaojiao, NIU Xiyang, ZHOU Juan. Modified FeCo2O4 to activate PMS to degrade 2,4-dichlorophenoxyacetic acid in water[J]. Environmental Chemistry, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303

改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸

    通讯作者: Tel:18017868901, E-mail:jzhou@dhu.edu.cn
  • 基金项目:
    上海市自然科学基金(19ZR1400800)资助.

Modified FeCo2O4 to activate PMS to degrade 2,4-dichlorophenoxyacetic acid in water

    Corresponding author: ZHOU Juan, jzhou@dhu.edu.cn
  • Fund Project: Natural Science Foundation of Shanghai (19ZR1400800).
  • 摘要: 以离子液体为氮源、磷源和氟源,采用一步水热法将N、P、F的3种元素掺杂到FeCo2O4中合成了NPF-FeCo2O4催化剂,用于活化过一硫酸氢钾(PMS)降解水中2,4-二氯苯氧乙酸(2,4-D). 分别采用透射电子显微镜(TEM)、X射线光电子能谱(XPS)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)对催化剂进行表征. 实验结果表明,当催化剂投加量为0.1 g·L−1、PMS浓度为1 mmol·L−1时,反应30 min后2,4-D的去除率可达100%;初始pH值在3到9的范围内,体系对2,4-D的去除效果不受影响,水中低浓度的ClHCO3和腐殖酸对反应有轻微的抑制. 通过电子自旋共振波谱(EPR)测试结果显示,相较于FeCo2O4和NP-FeCo2O4催化剂,NPF-FeCo2O4/PMS体系能产生更多的∙OH、SO41O2. 淬灭试验结果显示SO4为2, 4-D降解过程中的主要活性氧物种.
  • 随着工业水平的不断进步,人类社会的发展对能源的需求量越来越高,但是化石燃料仍为主要的能源来源[1]. 到2040年,全球能源需求量将增长30%左右,表明CO2排放量将继续增长. 因此,有效利用CO2并开发新能源是本世纪面临的艰巨挑战. 通过直接利用可持续的太阳能,将CO2和H2O光催化还原为有用的太阳能燃料,是解决碳排放和能源短缺的一种极具前景的策略.

    水滑石 (LDH) 具有高比表面积、结构可调性、酸碱可调性、记忆效应、热稳定性、无毒、价格低廉、光稳定性等优点,受到研究者的广泛关注. 研究表明,LDH的表面羟基还可以与价带空穴反应生成羟基自由基 (HO•),这可作为关键的中间物种参与氧化过程[2-3]. 此外,含Ti的LDH具有丰富的Ti–O表面缺陷,这些缺陷可作为光生载流子的有效捕获位点,促进了电子和空穴的分离[4-6],进而提高Ti基水滑石 (Ti-LDH) 的光催化性能. 近几年来,ZnTi-LDH在光催化领域展现出令人瞩目的潜能,被广泛应用于光催化领域. 例如,Xia等[7]合成了具有良好晶体结构的Fe3O4/ZnTi-LDH、CeO2/ZnTi-LDH和SnO2/ZnTi-LDH等3种复合材料,并将它们用于光催化降解酸性红14 (AR14),展现出较高的高催化活性. 但是,ZnTi-LDH可见光活性偏低,仍需对其做进一步的改性.

    硫化处理是一种简单常用的改性方法,可对半导体的带隙宽度和电子和空穴的分离效率进行调控,有效的改善半导体的光催化性能. 例如,Du等[8]通过水热法合成了MoS2-CdS-TiO2催化剂用于光催化水分解. Zou等[9]采用湿法硫化制备了C/ZnS/ZnO空心球,用于光催化四环素的降解. 与C/ZnO相比,硫化后的C/ZnS/ZnO空心球光生电子和空穴的分离效率和可见光吸收性能显著提升. Ren等[10]以In金属有机框架作为前驱体制备了CdS/In2O3复合材料,其中CdS和In2O3纳米分子之间紧密相连形成异质结结构,促进了光生载流子的分离,进而提高其光催化水分解制氢效率. Yang等[11]采用水热法制备了核壳结构的In2S3/In2O3纳米材料,通过在In2O3进行硫化,可有效缩短其禁带宽度并提高其可见光利用率,进而有效提高其光催化水分解效率. 此外,硫化时间对催化剂的光催化活性也有较大的影响,当硫化30  min时,C/ZnS/ZnO样品在可见光下具有最佳的光降解活性. 但截至到目前为止,对LDH进行硫化处理后用于光催化H2O还原CO2的研究还未见报道.

    为此,本文首先通过水热法制备了ZnTi-LDH,然后利用Na2S溶液对其进行硫化处理,并借助XRD、SEM、TEM、UV-Vis以及电化学工作站等对其晶体结构、形貌、光电性能等进行表征,探究硫化时间对光催化CO2还原性能的影响.

    本文所用实验药品如表1所示.

    表 1  原料试剂一览表
    Table 1.  The list of materials and reagents
    试剂 Reagent规格 Specifications生产厂家 Manufacturer
    硝酸锌(Zn(NO3)2·6H2O)分析纯天津市大茂化学试剂厂
    硫化钠(Na2S·9H2O)分析纯天津市风船化学试剂科技有限公司
    尿素分析纯上海阿拉丁生化科技股份有限公司
    四氯化钛(TiCl4分析纯上海阿拉丁生化科技股份有限公司
    二氧化碳(CO2≥99.999%天津联博化工股份有限公司
    氩气(Ar)≥99.999%天津东祥特种气体有限公司
     | Show Table
    DownLoad: CSV

    采用水热法制备了ZnTi-LDH光催化剂,其步骤如下:将2.38 g Zn(NO3)2·6H2O和3.0 g尿素溶于70 mL去离子水中,随后将0.44 mL的TiCl4快速加入到上述混合溶液中,室温下剧烈搅拌30 min后将其置于100 mL水热釜中,在130 ℃下水热48 h. 最后,离心收集所得到的沉淀,去离子水洗涤4次后置于烘箱中50 ℃下干燥24 h.

    称取200 mg制备的ZnTi-LDH样品,加入装有40 mL 0.1 mol·L−1 Na2S溶液的烧杯中,于60 ℃下分别硫化1 h、2 h和3 h后,得到所需样品. 将它们分别命名为ZnS/TiO2/S-1 h、ZnS/TiO2/S-2 h和ZnS/TiO2/S-3 h.

    在光催化活性评价过程中,将催化剂负载于陶瓷基板上,其制备方法如下:首先将硅溶胶与拟薄水铝石粉按3∶1 (体积 (mL)∶质量 (g)) 的配比在烧杯中均匀混合,然后将其倒入长、宽、高分别为5.0、2.5、0.5 cm的矩形模具中,在室温下干燥24 h后置于马弗炉中700 ℃下煅烧4 h.

    将50 mg催化剂样品在1 mL去离子水中超声分散1 h,然后用胶头滴管将所得悬浮液均匀滴于陶瓷基板表面,并在60 ℃下干燥2 h.

    采用Bruker公司 (德国) 生产的D8-Focus X射线衍射仪 (XRD) 对催化剂的物相组成和结构进行分析,测试条件为:石墨单色化的铜靶,Cu Kα射线辐射波长0.15418 nm,管电压40 kV,管电流40 mA,扫描速度8 °·min−1,扫描范围2θ=20°—80°.

    采用日立公司 (日本) 生产的加速电压为5 kV的S-4800 场发射扫描电子显微镜 (SEM) 测试催化剂的尺寸和表面形貌.

    采用电子公司 (日本) 生产的加速电压为300 kV 的JEM-2100F 场发射透射电子显微镜 (TEM)观察测量催化剂晶粒的形貌和晶格间距. 制备方法如下:将催化剂充分研磨后,称取适量粉末放于0.5 mL样品管中,加入无水乙醇,超声处理至样品分散均匀,随后用胶头滴管取少许悬浮液滴于超薄碳膜上,待其自然晾干.

    采用Perkin Elmer公司生产的紫外-可见分光光度计 (Lambda 750型) 对催化剂的吸光性能进行测试. 以BaSO4作为背景板,波长范围为200—800 nm.

    采用上海辰华公司生产的CHI-660型电化学工作站对催化剂的光电性能进行表征. 测试条件:三电极系统,电解质溶液为0.1 mol·L−1的Na2SO4,工作电极为涂覆催化剂样品的ITO玻璃,对电极为铂电极,参比电极为Ag/AgCl电极. 工作电极的制备如下:称取0.4 mg样品放于离心管中,向其中滴加0.2 mL乙醇、0.2 mL水和20 μL萘酚,超声处理至样品分散均匀,随后用胶头滴管将悬浮液滴涂在ITO玻璃上,室温下自然晾干.

    CO2光催化还原活性测试在总体积为300 mL的石英玻璃管循环体系中进行[12].

    图1所示,气体在进入反应体系之前需经净化,去除掉可能存在的微量CO,三通阀14接入管路3,经出气口15抽气进行检验. 当三通阀3和14接入管路01时为吹扫系统,接入管路01和02时为循环系统. 具体操作过程如下,将催化剂/陶瓷基板垂直放置在装有石英砂的石英反应器底部,通过CO2鼓泡将水带入反应器中参与反应. 光照之前,用CO2吹扫反应器1 h,去除反应器中的空气和催化剂表面可能吸附的有机物,随后将气路切换到循环系统,打开蠕动泵和氙灯,模拟光源采用装有AM 1.5 G滤光片的300 W氙灯 (PLS-SXE 300c氙灯) . 反应结束后,用注射器从13号取样口抽取0.1 mL气体,借助热导检测器进行气相色谱分析.

    图 1  反应装置示意图
    Figure 1.  Schematic diagram of experimental set-up for photocatalytic reduction of CO2
    1.CO2钢瓶;2.气体净化器;3,14.三通阀;4.二通阀;5.加热炉;6.鼓泡管;7.反应器;8.陶瓷片; 9.石英砂;10.通光孔;11.氙灯光源;12.蠕动泵;13,15.取样口
    1.CO2 cylinder; 2.Gas purifier; 3,14.Three-way valve; 4.Two-way valve; 5.The heating furnace ;6.Water bubbler; 7.Photoreactor; 8.Ceramic chip; 9.Quartz sand; 10.The optical aperture;11.Xenon lamp light source; 12.Peristaltic pump; 13,15.Sampling port

    借助XRD对未硫化和硫化的ZnTi-LDH的晶体结构进行表征,结果如图2所示. 从图2可观察到,归属于ZnTi-LDH (003)、(006)、(009)、(100)、(101)、(012)、(110) 和 (113) 晶面的尖锐特征衍射峰[13],表明合成了结晶度较高的ZnTi-LDH. 此外,还可观察到归属于锐钛矿相TiO2 (101)、(004) 和 (211) 晶面的衍射峰. 借助0.1 mol·L−1的Na2S 对ZnTi-LDH进行硫化处理后,ZnTi-LDH的特征峰消失,并可观察到归属于立方相ZnS (0010)、(110) 和 (1110) 晶面的特征峰.

    图 2  硫化前后 ZnTi-LDH样品的XRD谱图
    Figure 2.  XRD patterns of ZnTi-LDH which was sulfated and unsulfated

    借助SEM和TEM对未硫化和硫化后的ZnTi-LDH的形貌、组成、尺寸大小等进行了研究,结果如图3所示. 由图3(a)中的SEM照片和图3(c)中的TEM照片可以看出,所合成的ZnTi-LDH具有由二维纳米薄片堆叠而成的片层结构. 借助Na2S对其进行硫化后,可观察到生成的ZnS/TiO2由纳米颗粒组成,且随着硫化时间的增加,纳米颗粒之间堆叠更加紧密(图3(d-f)). 这可能是由于硫化时间越长,生成的硫化物也越多,当硫化处理超过一定时间后,硫化物在相互作用下发生团聚或堆积. 为了进一步探究ZnS/TiO2的结构组成,借助高倍透射电镜 (HRTEM) 对其进一步探究. 从图3(g)可以清楚的观察到ZnS和TiO2的存在,其中晶格间距约为0.352 nm、0和0.239 nm的晶格条纹可分别归属于金红石相TiO2(101)面和ZnS(110)面. 此外,HRTEM图像还显示ZnS和TiO2之间存在紧密的界面接触,上述结果表明ZnTi-LDH硫化之后复合材料已成功制备.

    图 3  SEM照片(a) ZnTi-LDH, (c) ZnS/TiO2 /S-1h; TEM 照片(b) ZnTi-LDH, (d) ZnS/TiO2 /S-1h, (e) ZnS/TiO2 /S-2h, (f) ZnS/TiO2 /S-3h; HRTEM 照片(g) ZnS/TiO2 /S-1h
    Figure 3.  SEM images of (a) ZnTi-LDH and (b) ZnS/TiO2/S-1h; TEM images of (c) ZnS/TiO2 and (d) ZnS/TiO2/S-1h, (e) ZnS/TiO2/S-2h, (f) ZnS/TiO2/S-3h; HRTEM image of (g) ZnS/TiO2/S-1h

    图4(a)所示为未硫化和硫化的ZnTi-LDH紫外-可见漫反射光谱(UV-vis DRS). 从图4可看出,ZnTi-LDH样品只对波长小于400 nm处的光具有吸收带,这是由于在Zn原子、Ti原子及其配体形成的MO6八面体中发生了配体-金属之间的电荷转移 (LMCT)[14]. ZnTi-LDH经Na2S硫化后,其吸收带边明显发生了红移,在400—500 nm范围内产生了明显的光吸收,并且随着硫化时间的延长,ZnS/TiO2可见光吸收性能均逐渐增强. 这可归因于硫化后生成的ZnS和TiO2之间相互作用,减小了带隙宽度,降低了电子跃迁需要的能量,进而促进了配体-金属和金属-金属之间的电荷转移. 为了得到准确的禁带宽度,利用Kubelka-Munk公式[15]计算了未硫化和硫化的ZnTi-LDH的带隙宽度,(αhv2hv的关系曲线如图4 (b) 所示. 从图4(b)和表2可以看出,ZnTi-LDH及ZnS/TiO2/S-1 h、ZnS/TiO2/S-2 h和ZnS/TiO2/S-3 h样品的带隙宽度分别为3.42、3.38、3.35、3.32 eV,表明硫化处理得到的ZnS/TiO2样品的带隙变窄. 且硫化时间越长,带隙宽度越窄,因此催化剂样品的光吸收性能越好. 但同时带隙变窄可能对电子和空穴的分离产生不利影响. 因此,需要做进一步的研究,以寻求最为合适的硫化时间.

    图 4  硫化前后ZnTi-LDH样品的 (a) UV-vis DRS, (b) Kubelka-Munk函数变换图
    Figure 4.  (a) UV-vis DRS and (b) Photo energy plots transformed by Kubelka–Munk function of ZnTi-LDH which was sulfated and unsulfated
    表 2  未硫化和硫化处理的ZnTi-LDH的禁带宽度和导价带位置
    Table 2.  The band gap and the positions of the conduction band and valence band of ZnTi-LDH which was sulfated and unsulfated
    催化剂 Catalysts禁带宽度/eV Band gapEFB/(V vs. NHE)ECB/(V vs. NHE)EVB/(V vs. NHE)
    ZnTi-LDH3.42−0.25−0.452.97
    ZnS/TiO2/S-1h3.38−0.77−0.972.41
    ZnS/TiO2/S-2h3.35−0.71−0.912.44
    ZnS/TiO2/S-3h3.32−0.47−0.672.65
     | Show Table
    DownLoad: CSV

    采用电化学工作站对未硫化和硫化的ZnTi-LDH的光电化学性能做进一步的探究,结果如图5所示. 从瞬态光电流响应测试结果 (图5(a))可以发现,对ZnTi-LDH水滑石进行硫化处理后,光电流密度有所增加,这是由于硫化后带隙变窄,使得电子跃迁所需的能量降低,从而产生更多的光生电子和空穴. 但是,ZnTi-LDH在硫化1 h后具有最高的光电流密度,进一步增加硫化时间,光电流密度反而下降,这可归因于硫化时间变长后,带隙较窄,促进了光生电子和空穴的复合. 通过电化学阻抗谱图研究了未硫化和硫化处理的ZnTi-LDH与电解液之间的界面电荷转移电阻和分离效率,其结果如图5(b)所示. 由图5可知,ZnTi-LDH在未经硫化处理时,Nyquist曲线均呈现出较大曲率半径的圆弧,意味着较大的阻抗. 硫化处理后,圆弧的曲率半径有所降低,其中,ZnS/TiO2/S-1 h具有最小的阻抗,也即具备着最好的界面电荷传输速率与光生电子-空穴分离效率,这一结果与瞬态光电流响应结果相吻合.

    图 5  硫化前后ZnTi-LDH样品的光电流响应图(a)、电化学阻抗图(b)和莫特肖特基曲线(c)
    Figure 5.  (a) Photocurrent response, (b) EIS Nyquist and (c) Mott-Schottky plots of ZnTi-LDH which was sulfated and unsulfated

    为了进一步研究硫化对能带结构、载流子浓度和半导体类型的影响,利用Mott-Schottky曲线计算频率为10 kHz时的平带电势 (EFB) (式1).

    1/C=2/εrε0eNdA2[EEFBkbT/e] (1)
    ENHE=EAg/AgCl+0.197 (2)
    EVB=ECB+Eg (3)

    其中,C为比容量,ε0是真空的介电常数,εr是半导体的介电常数,e是基本电荷,A是电极的有效面积,Nd是样品的电子载流子密度,E是外加电位,kb是玻尔兹曼常数,T是绝对温度. 图5(c)所示表明,未硫化和硫化处理的ZnTi-LDH的莫特肖特基曲线斜率均为正,表明ZnTi-LDH为n型半导体,且硫化并未改变其半导体类型. 借助公式(2)将电极电势转换为标准氢电极(NHE)电势,计算可得,ZnTi-LDH、ZnS/TiO2 /S-1 h、ZnS/TiO2 /S-2 h 和ZnS/TiO2 /S-3 h的EFB分别为−0.25、−0.77、−0.71、−0.47 eV.

    众所周知,n型半导体的导带电势 (ECB) 比其平带势 (EFB) 负0.1或0.2 V,在本文中,取−0.2 V来计算硫化前后ZnTi-LDH样品的ECB值,结合带隙值,通过公式(3)计算出它们的价带电势(EVB),所有计算结果列于表2. 由表2可知,硫化处理可以明显的提高导带底的电子能级,从而有利于提高光生电子的还原能力.

    在200 ℃、模拟太阳光照射下以H2O为还原剂测试了未硫化和硫化处理的ZnTi-LDH光催化还原CO2的性能,结果如图6所示. 从图6可看出,纯的ZnTi-LDH光催化CO2还原为CO的产率仅为5.70 μmol·(g·h)−1,具有较低的光催化活性. 硫化处理得到的ZnS/TiO2光催化性能得到很大的提升,且其活性随硫化时间呈规律性变化,其中,ZnS/TiO2/S-1 h的光催化CO产率最高,为25.35 μmol·(g·h)−1,是纯ZnTi-LDH的4.4倍. 此外,对其副产物H2进行了检测. 结果显示,ZnS/TiO2/S-1 h的氢气产率最高,为15.54 μmol·(g·h)−1,是纯ZnTi-LDH的1.5倍.

    图 6  硫化前后ZnTi-LDH样品的CO和H2的光催化产率
    Figure 6.  CO and H2 photocatalytic yield of of ZnTi-LDH which was sulfated and unsulfated

    为了进一步测试硫化处理的ZnTi-LDH的稳定性,以具有最高催化活性的ZnS/TiO2/S-1 h样品进行5次光催化稳定性测试,结果如图7所示. 图7结果显示,ZnS/TiO2/S-1 h在5次循环之后活性下降了18.2%,表明ZnS/TiO2/S-1 h具有相对较高的稳定性.

    图 7  ZnS/TiO2/S-1 h样品的稳定性测试
    Figure 7.  The stability test of ZnS/TiO2/S-1 h

    通过水热法制备了具有二维纳米片层结构的ZnTi-LDH,然后利用硫化钠溶液对其进行了硫化处理. 研究结果表明,硫化后的样品片层结构部分被破坏,形成了二维纳米片负载小颗粒的形貌,为光催化反应提供了更多的活性位点. 硫化后的样品,对可见光的吸收性能增强,光生载流子的分离效率提高,导带电子的还原能力增加. 活性测试结果证明,所有硫化后的样品的CO2还原活性均有所提升,而ZnS/TiO2/S-1 h样品具有最高的光催化活性,其CO和H2的产率分别为25.35 μmol·(g·h)−1和15.54 μmol·(g·h)−1,分别是ZnTi-LDH的4.4倍和1.5倍.

  • 图 1  不同催化剂的TEM图

    Figure 1.  TEM images of different catalysts

    图 2  NPF-FeCo2O4的傅里叶红外光谱图

    Figure 2.  FTIR spectra of NPF-FeCo2O4

    图 3  NPF-FeCo2O4的XPS谱图

    Figure 3.  XPS spectra of NPF-FeCo2O4

    图 4  不同催化剂对2,4-D去除效果

    Figure 4.  Removal effect of 2,4-D by different catalysts

    图 5  NPF-FeCo2O4/PMS体系的探究

    Figure 5.  Study on NPF-FeCo2O4/PMS system

    图 6  pH对NPF-FeCo2O4/PMS体系的影响

    Figure 6.  Effect of pH on NPF-FeCo2O4/PMS system

    图 7  不同阴离子和HA条件下2,4-D降解效率

    Figure 7.  Degradation efficiency of 2,4-D under different anions and HA

    图 8  催化剂的稳定性实验

    Figure 8.  Stability experiment of catalyst

    图 9  催化剂对不同污染物的去除效率

    Figure 9.  The removal efficiency of catalysts for different pollutants

    图 10  (a)不同体系中SO4和∙OH的检测,(b)不同体系中1O2的检测,(c)NPF-FeCo2O4/PMS体系的EPR谱图

    Figure 10.  Study on the mechanism of catalysis: (a) identification of SO4 and ∙OH in different system, (b) identification of 1O2 in different system, (c) EPR spectra of NPF-FeCo2O4/PMS system

    图 11  不同淬灭剂对2,4-D去除效果的影响

    Figure 11.  Effect of different quenchants on removal of 2,4-D

  • [1] 金党琴, 龚爱琴, 王元有, 等. 石墨烯-钙钛矿纳米复合材料分子印迹光电化学传感器的构建及测定蔬果中2, 4-D残留 [J]. 化学研究与应用, 2021, 33(8): 1433-1439.

    JIN D Q, GONG A Q, WANG Y Y, et al. Construction of Gr/CH3NH3PbI3 nanocomposite molecularly imprinted photoelectrochemical sensor and determination of 2, 4-D in vegetables and fruits [J]. Chemical Research and Application, 2021, 33(8): 1433-1439(in Chinese).

    [2] 徐爱东. 我国蔬菜中常用植物生长调节剂的毒性及残留问题研究进展 [J]. 中国蔬菜, 2009(8): 1-6.

    XU A D. Research advance in the toxicity and residue of plant growth regulator in vegetables in China [J]. China Vegetables, 2009(8): 1-6(in Chinese).

    [3] SUN C, BAIG S A, LOU Z M, et al. Electrocatalytic dechlorination of 2, 4-dichlorophenoxyacetic acid using nanosized titanium nitride doped palladium/nickel foam electrodes in aqueous solutions [J]. Applied Catalysis B:Environmental, 2014, 158/159: 38-47. doi: 10.1016/j.apcatb.2014.04.004
    [4] 杨梖, 刘颢, 俞映倞, 等. 高级氧化技术去除水体中抗性基因污染的研究进展 [J]. 环境化学, 2021, 40(4): 1263-1273.

    YANG B, LIU H, YU Y L, et al. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress [J]. Environmental Chemistry, 2021, 40(4): 1263-1273(in Chinese).

    [5] 刘萌, 胡莉敏, 张广山, 等. Co/Zn双金属氧化物活化过一硫酸盐降解双酚A的性能研究 [J]. 环境化学, 2018, 37(4): 753-760.

    LIU M, HU L M, ZHANG G S, et al. Activation of peroxymonosulfate by the Co/Zn bimetallic oxide for the degradation of bisphenol A [J]. Environmental Chemistry, 2018, 37(4): 753-760(in Chinese).

    [6] 韩爽, 肖鹏飞. 过硫酸盐活化技术在四环素类抗生素降解中的应用进展 [J]. 环境化学, 2021, 40(9): 2873-2883.

    HAN S, XIAO P F. Application progress of persulfate activation technology in degradation of tetracycline antibiotics [J]. Environmental Chemistry, 2021, 40(9): 2873-2883(in Chinese).

    [7] SUN J, GUO N K, SHAO Z Y, et al. Electrocatalysts: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant [J]. Advanced Energy Materials, 2018, 8(27): 1870121. doi: 10.1002/aenm.201870121
    [8] LOBO L S, KALAINATHAN S, KUMAR A R. Investigation of electrical studies of spinel FeCo2O4 synthesized by Sol-gel method [J]. Superlattices and Microstructures, 2015, 88: 116-126. doi: 10.1016/j.spmi.2015.09.010
    [9] SHAHEEN N, AADIL M, ZULFIQAR S, et al. Fabrication of different conductive matrix supported binary metal oxides for supercapacitors applications [J]. Ceramics International, 2021, 47(4): 5273-5285. doi: 10.1016/j.ceramint.2020.10.108
    [10] XU M J, LI J, YAN Y, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles [J]. Chemical Engineering Journal, 2019, 369: 403-413. doi: 10.1016/j.cej.2019.03.075
    [11] HU M Z, ZHU J Y, ZHOU W J. Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: Mechanistic insight into radical and nonradical evolution [J]. Environmental Pollution, 2021, 270: 116092. doi: 10.1016/j.envpol.2020.116092
    [12] YAN Y, XIA B Y, GE X M, et al. A flexible electrode based on iron phosphide nanotubes for overall water splitting [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2015, 21(50): 18062-18067.
    [13] WANG J L, WANG S Z. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants [J]. Chemical Engineering Journal, 2021, 411: 128392. doi: 10.1016/j.cej.2020.128392
    [14] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [15] ZHOU H Y, LAI L D, WAN Y J, et al. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine [J]. Chemical Engineering Journal, 2020, 384: 123264. doi: 10.1016/j.cej.2019.123264
    [16] MA W J, WANG N, FAN Y N, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate [J]. Chemical Engineering Journal, 2018, 336: 721-731. doi: 10.1016/j.cej.2017.11.164
    [17] FANG G D, DIONYSIOU D D, WANG Y, et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics [J]. Journal of Hazardous Materials, 2012, 227/228: 394-401. doi: 10.1016/j.jhazmat.2012.05.074
    [18] CUI X L, LIU X T, LIN C Y, et al. Activation of peroxymonosulfate using drinking water treatment residuals modified by hydrothermal treatment for imidacloprid degradation [J]. Chemosphere, 2020, 254: 126820. doi: 10.1016/j.chemosphere.2020.126820
    [19] ZHOU X Q, LUO M Y, XIE C Y, et al. Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: Distinguished Radical/Nonradical species and generation pathways [J]. Applied Catalysis B:Environmental, 2021, 282: 119605. doi: 10.1016/j.apcatb.2020.119605
    [20] LATIFOGLU A, GUROL M D. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes [J]. Water Research, 2003, 37(8): 1879-1889. doi: 10.1016/S0043-1354(02)00583-3
  • 加载中
图( 11)
计量
  • 文章访问数:  3478
  • HTML全文浏览数:  3478
  • PDF下载数:  127
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-13
  • 录用日期:  2022-03-11
  • 刊出日期:  2023-05-27
余诗慧, 杨娇娇, 牛夕阳, 周娟. 改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸[J]. 环境化学, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
引用本文: 余诗慧, 杨娇娇, 牛夕阳, 周娟. 改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸[J]. 环境化学, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
YU Shihui, YANG Jiaojiao, NIU Xiyang, ZHOU Juan. Modified FeCo2O4 to activate PMS to degrade 2,4-dichlorophenoxyacetic acid in water[J]. Environmental Chemistry, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303
Citation: YU Shihui, YANG Jiaojiao, NIU Xiyang, ZHOU Juan. Modified FeCo2O4 to activate PMS to degrade 2,4-dichlorophenoxyacetic acid in water[J]. Environmental Chemistry, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303

改性FeCo2O4活化PMS降解水中2,4-二氯苯氧乙酸

    通讯作者: Tel:18017868901, E-mail:jzhou@dhu.edu.cn
  • 东华大学环境科学与工程学院,上海,201620
基金项目:
上海市自然科学基金(19ZR1400800)资助.

摘要: 以离子液体为氮源、磷源和氟源,采用一步水热法将N、P、F的3种元素掺杂到FeCo2O4中合成了NPF-FeCo2O4催化剂,用于活化过一硫酸氢钾(PMS)降解水中2,4-二氯苯氧乙酸(2,4-D). 分别采用透射电子显微镜(TEM)、X射线光电子能谱(XPS)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)对催化剂进行表征. 实验结果表明,当催化剂投加量为0.1 g·L−1、PMS浓度为1 mmol·L−1时,反应30 min后2,4-D的去除率可达100%;初始pH值在3到9的范围内,体系对2,4-D的去除效果不受影响,水中低浓度的ClHCO3和腐殖酸对反应有轻微的抑制. 通过电子自旋共振波谱(EPR)测试结果显示,相较于FeCo2O4和NP-FeCo2O4催化剂,NPF-FeCo2O4/PMS体系能产生更多的∙OH、SO41O2. 淬灭试验结果显示SO4为2, 4-D降解过程中的主要活性氧物种.

English Abstract

  • 2,4-二氯苯氧乙酸(2,4-D)是一种含有苯氧乙酸基团的选择性除草剂,由于其具有廉价易得、高选择性等优点广泛用于去除农业和林业中的阔叶杂草[1]. 但是由于其具有急性神经毒性和慢性毒性,对皮肤和眼睛有刺激作用;慢性毒性表现为对血液、肝、肾的毒性及抑制某些酶的活力,抑制某些蛋白质的合成[2]. 并且其在环境中难以降解、具有生物累积性,会对人体和自然环境造成潜在危害.

    因此2,4-D及其衍生物被世界卫生组织(WHO)定义为中度毒物,并且规定饮用水当中的2,4-D浓度不得超过100 mg·L−1 [3],因此探究高效安全的技术去除环境中残留的2,4-D是十分必要的.

    高级氧化技术是一种使用强氧化物质与水中溶解性污染物反应的方法,目前高级氧化技术主要包括芬顿法和类芬顿法、臭氧类高级氧化法、光催化氧化技术、电化学氧化技术和基于硫酸根自由基(SO4)的新型高级氧化技术等[4].

    由于传统的芬顿技术存在Fe2+利用率低、反应pH要求严格、易产生二次污染等缺点,基于硫酸根自由基的高级氧化技术能够解决传统芬顿技术的诸多问题[5]. 氧化剂过一硫酸盐(PMS)具有不对称结构,更容易被活化产生更多的活性物质,同时其标准氧化电位0=2.5—3.1V,高于常用氧化剂的氧化性,在反应中pH适用范围更广并且硫酸根自由基比羟基自由基稳定时间更长[6],因此基于硫酸根自由基的高级氧化技术成为近年来处理有机污染物的研究热点.

    本文采用一步水热法合成了NPF-FeCo2O4催化剂,该催化剂能够高效活化PMS产生硫酸根自由基降解2,4-D. 此外,分别采用了TEM、XPS等对材料进行表征分析,同时研究了不同pH、不同阴离子等条件下对2,4-D的去除效率,最后通过淬灭试验和EPR测试对反应机理进行探究.

    • 2,4-二氯苯氧乙酸(2,4-D)、2,4-二氯苯酚(2,4-DCP)、活性红、磺胺甲恶唑(SMX)、过硫酸氢钾(PMS)、六水合硝酸钴(Co(NO32·6H2O)、九水合硝酸铁(Fe(NO33·9H2O)、柠檬酸钾、尿素、聚丙烯酰胺(PAM)、1-丁基-3-甲基咪唑磷酸二丁酯盐、1-丁基-3-甲基咪唑六氟磷酸盐、L-组氨酸、对苯醌、无水乙醇、甲醇、叔丁醇,试验用水为去离子水.

    • NPF三掺杂的FeCo2O4由一步水热法合成[7]. 首先,将0.45 g 1-丁基-3-甲基咪唑六氟磷酸盐溶解在含有0.6549 g CO(NO32·6H2O,0.4539 g Fe(NO33·9H2O,2.064 g柠檬酸钾,0.6 g尿素,0.525 g PAM的60 mL去离子水中,充分搅拌后将得到的混合物转移至100 mL高压釜,在200 ℃下保持24 h,冷却至室温后,用蒸馏水和乙醇洗涤产物,最终在真空条件下80 ℃干燥12 h,得到N、P、F三掺杂的催化剂NPF-FeCo2O4,简称NPF-FCO,用同样的方法制作了不加离子液体和加1-丁基-3-甲基咪唑磷酸二丁酯盐作为杂原子掺杂剂的催化剂FeCo2O4和NP-FeCo2O4,分别简称FCO和NP-FCO.

    • 通过透射电子显微镜(TEM,JEM-2100,日本JEOL公司)对 NPF-FeCo2O4催化剂进行形貌表征,通过X射线光电子能谱仪(美国ThermoFischer,ESCALAB Xi+)对催化剂的元素组成以及价态进行分析,通过X射线衍射仪(日本理学rigaku Ultima IV)对催化剂反应前后晶型变化进行测试,采用傅立叶红外光谱(赛默飞IN10)确定样品中的官能团,通过电子自旋共振波谱仪(Bruker EMXPLUS)测定体系中产生的自由基.

    • 在室温条件下,取100 mL的浓度为0.1 mmol·L−1的2,4-D溶液于150 mL的烧杯中,加入一定量的催化剂,磁力搅拌30 min,加入一定量的PMS启动反应. 在一定时间间隔取样,取样时通过0.45 μm滤膜过滤,并提前加入100 μL甲醇淬灭样品中剩余的自由基.

      采用配有285 nm紫外检测器的高效液相色谱仪(Thermofisher,Ultimate 3000)测定2,4-D的浓度,流动相种类及比例为水(含有0.5%的乙酸):甲醇 = 40:60,检测波长为 285 nm,流速为 1 mL·min−1.

    • 图1(a)为不掺杂离子液体的FeCo2O4 TEM图像,可以看出原始的FeCo2O4 催化剂呈现出均匀的球形形态. 图1(b)−(c)表示随着离子液体的掺杂,催化剂的平均尺寸逐渐减小,并且NP-FeCo2O4和NPF-FeCo2O4催化剂开始形成表面粗糙的不规则球形. 表明在水热过程中离子液体的掺杂影响了FeCo2O4的形态和尺寸. 图1(d)为循环5次使用后的NPF-FeCo2O4催化剂,可以看出经过5次循环后催化剂仍然呈现较规则的圆球状.

    • 为了确定金属和氧之间的键合状态以及样品中的官能团,对NPF-FeCo2O4催化剂进行了傅里叶红外光谱表征. 如图2所示,傅里叶红外光谱证明材料中存在尖晶石结构. 红外光谱在400—700 cm−1区域的两个吸收带对应于尖晶石FeCo2O4结构. 500 cm−1附近的吸收峰对应尖晶石结构四面体体系中金属-氧键的伸缩振动,即Fe—O. 600—700 cm−1间的吸收峰对应于八面体系统中金属键的拉伸[8],1610 cm−1和3400 cm−1处的拉伸和弯曲模式是羟基(OH)引起的[9].

    • 图3所示,从拟合的XPS光谱图可以看出,合成的催化剂含有Co、Fe、O、C、N、P和F元素. 位于781.3 eV和783.5 eV的峰属于Co 2p3/2,797.4 eV处的峰属于Co 2p1/2,同时也产生了787.7 eV和803.0 eV的卫星峰. 结合能为781.3 eV和783.5 eV的峰说明Co2+氧化物物种的存在,而797.4 eV的峰属于Co3+氧化物种[10]. 715.7 eV和724.2 eV的峰分别属于Fe3+的2p3/2和2p1/2,表明存在Fe3+阳离子,712.1 eV的峰属于Fe2+的2p3/2[11].

      由NPF-FeCo2O4的O1s谱图可以看出有3个峰,530.7 eV的峰值属于晶格氧(O1),结合能为 532.3 eV的峰属于表面羟基(O2),531.3 eV处的峰对应于氧空位(O3[7]. 可以看出,相较于FeCo2O4和NP-FeCo2O4,NPF-FeCo2O4催化剂的氧空位含量最高,而表面羟基含量最低. 相较于NP-FeCo2O4,NPF-FeCo2O4在P 2p谱图中出现了在133.1 eV处的P—O3(氧空位缺陷)新峰[12],表明N/P/F的共掺杂能够通过表面羟基的损失将氧空位结合到NPF-FeCo2O4中. 同时,在N 1s谱图中,相较于NP-FeCo2O4催化剂,NPF-FeCo2O4出现了峰值为398.4 eV的吡啶N,Co—N的含量高于NP-FeCo2O4,在Fe的2p谱图中,Fe3+/Fe2+的相对面积比随着掺杂元素的增加在逐渐增加,表明Co—N和Fe—N物种的形成能够促进Co/Fe向N原子的电荷转移[11].

      因此,由XPS图可以得出,加入含有N、P、F元素的离子液体,能够增加Fe3+/Fe2+氧化还原对、催化剂的氧空位和Co—N、Fe—N、P—O、吡啶N等表面活性位点,他们之间的相互作用有利于提高催化剂的催化性能[7].

    • 分别对Mn、Fe、Co的3种过渡金属采用同样的方法合成了不同的催化剂,通过催化PMS降解2,4-D的效率来判断催化活性.

      图4所示,在相同条件下,FeCo2O4作为催化剂活化PMS降解2,4-D的效果最好,30 min内去除率能达到90%,但是不能完全降解2,4-D. 因此选择FeCo2O4进行后续的改性研究,如图4(b)中,改性后的NPF-FeCo2O4催化剂在20 min内活化PMS对2,4-D的去除率可达到100%,表明离子液体的加入能够提高FeCo2O4催化性能.

      图5(a)所示,研究了不同体系下2,4-D的降解效率. 在2,4-D浓度为0.1 mmol·L−1,催化剂的投加量为0.1 g·L−1,PMS浓度为1 mmol·L−1的反应条件下,单独加入PMS时,2,4-D几乎不降解. 表明PMS的自分解性差. 同时,在没有PMS的情况下,NPF-FeCo2O4对2,4-D的吸附作用也可以忽略不计. 相比之下,当反应体系达到吸附饱和后加入PMS,20 min内2,4-D的降解率可达到100%. 而由图5(b)NPF-FeCo2O4/PMS体系中2,4-D的浓度和PMS浓度变化对比可知,在该体系中,PMS浓度的变化与2,4-D的降解趋势高度吻合,结果表明NPF-FeCo2O4可有效活化PMS产生活性氧物种促进2,4-D的降解.

    • 在2,4-D浓度为0.1 mmol·L−1,催化剂的投加量为0.1 g·L−1,PMS浓度为1 mmol·L−1的反应条件下,考察初始pH对2,4-D降解效率的影响,由于常用的缓冲盐如PO34HCO3会淬灭自由基从而抑制污染物的降解[13-15],因此,未使用缓冲盐来控制溶液pH. 如图6(a)所示,在反应前测得0.1 mmol·L−1浓度的2,4-D初始pH 3.82,当pH值在3—9之间时,反应20 min内2,4-D的去除率均能达到100%,但是当反应的初始pH11时,2,4-D的去除率只有15%. 进一步考察在不同初始pH的反应体系过程中pH的变化,如图6(b)所示,可以看出初始pH值在3—9之间的反应体系在投加PMS之后体系中的pH会骤降到3左右,而当初始pH11时,添加PMS后反应体系的pH只有轻微的下降,体系依然处于碱性条件. 图7(c)为NPF-FeCo2O4的Zeta电位,催化剂的零点电荷位于pH=3左右,因此当反应体系为碱性时,催化剂表面所带负电荷增多,导致催化剂与氧化剂之间的静电斥力增强,较强的静电斥力抑制了PMS的活化从而降低了2,4-D的降解效率.

    • 在实际水体中,无机阴离子能够通过改变pH、捕获自由基、抑制PMS分解等途径来影响污染物的降解[16]. 因此选取了水体中常见的几种无机阴离子(ClNO3HCO3)来研究对体系中2,4-D降解效率的影响. 如图7(a)−(d)所示,加入不同浓度梯度的HCO3和Cl对2,4-D的去除率有明显的抑制作用,这是因为Cl能够与溶液中的∙OH和SO4发生弱反应生成氧化还原电位较低的氯自由基Cl∙[17],而碳酸氢盐具有淬灭效应,能与溶液中的∙OH和SO4反应生成氧化能力较弱的碳酸氢盐自由基CO3,从而抑制了2,4-D的降解效率[18]. 而加入不同浓度的NO3对2,4-D的降解效率没有明显影响,说明体系中NO3的存在不会对自由基产生捕获作用,表明体系对NO3具有较强的抗性.

      水中的天然有机物 (NOM) 是一种普遍存在的含有羧基和酚羟基的物质. NOM 可以通过淬灭溶液中的自由基来抑制底物降解,并阻断催化剂表面的活性位点[19]. 如图8(d)所示,5 mg腐殖酸(HA)的加入使2,4-D的去除率下降到87%,这是因为HA作为一种有机物,与2,4-D存在着竞争∙OH和SO4的关系,因此导致了2,4-D降解效率的降低[20].

    • 为了验证NPF-FeCo2O4催化剂的可重复使用性,进行了5个循环的实验. 如图8(a)所示,在循环反应中催化剂活性逐渐降低,在第5次反应中2,4-D的去除率为68%. 采用原子发射光谱测定了反应30 min溶液中的金属离子析出量,如图8(b)所示,在反应30 min后的溶液里检测到Co离子析出量为15 mg·L−1,Fe离子析出量为0.5 mg·L−1. 进一步测量浸出的金属离子对反应体系中降解2,4-D的贡献,如图8(c)所示,在NPF-FeCo2O4/PMS体系中反应15 min后2,4-D降解率即高于99%,而溶液中Co离子的贡献仅为40%,表明溶液中2,4-D的去除主要是催化剂NPF-FeCo2O4的作用. 对比了反应5次前后NPF-FeCo2O4催化剂的XRD图,如图8(d)所示,催化剂反应前后的特征峰强度有轻微的减小,催化剂的形态结构有所消耗,表明反应过程中Co离子的浸出和催化剂结构的消耗损失是催化剂失活的原因.

      为了探究NPF-FeCo2O4/PMS体系对不同污染物的去除效率,选择了2,4-二氯苯氧乙酸(2,4-D),磺胺甲恶唑(SMX)、2,4-二氯苯酚(2,4-DCP)和活性红为代表的不同官能团污染物. 如图9所示,在反应30 min后,对4种污染物的去除率均能达到100%. 表明 NPF-FeCo2O4/PMS体系对不同种类污染物降解的广泛适用性.

    • 应用EPR技术原位捕获反应体系中产生的活性氧物种,使用DMPO作为∙OH、SO4O2的捕获剂,TEMPO作为1O2的捕获剂,探究了体系中产生的自由基种类. 如图10所示,单独PMS时,没有出现特征峰信号,而在3个体系中都能观察到DMPO-·OH 加合物和 DMPO-SO4加合物的的特征峰,表明在3个体系中都产生了∙OH、SO41O2,但是可以明显看出NPF-FeCo2O4/PMS体系的信号最强,FeCo2O4/PMS体系的信号最弱. 由NPF-FeCo2O4/PMS体系的EPR测试图中的特征峰可以看出NPF-FeCo2O4/PMS体系产生了∙OH、SO41O2O2.

      为了进一步确定NPF-FeCo2O4/PMS体系中主要的活性氧物种,进行了自由基淬灭实验. 如图10所示,分别选择了甲醇、叔丁醇、L-组氨酸、对苯醌作为自由基淬灭剂. 其中,甲醇能够同时淬灭反应体系中的∙OH和SO4∙-,叔丁醇则用于淬灭体系中的∙OH,对苯醌和L-组氨酸能够有效的淬灭体系中的O21O2. 如图11所示,50 mmol·L−1的甲醇使2,4-D的去除率降到19%,0.1 mmol·L−1的L-组氨酸使2,4-D的去除率降到80%. 而对苯醌和叔丁醇对反应体系没有明显的抑制. 因此,淬灭试验和EPR结果共同证实,SO4∙-是NPF-FeCo2O4/PMS体系中降解2,4-D的主要活性氧物种.

    • (1)通过简便的一步水热法利用离子液体合成了N、P、F 3种元素掺杂的NPF-FeCo2O4催化剂,该催化剂能够高效活化PMS去除水中的2,4-D. 在催化剂投加量为0.1 g·L−1,2,4-D浓度为0.1 mmol·L−1,PMS投加量为0.3 g·L−1时,30 min内体系能去除100%的2,4-D.

      (2)相较于未掺杂离子液体的FeCo2O4和只掺杂了N、P两种元素的NP/ FeCo2O4催化剂,掺杂了N、P、F的3种元素使得催化剂能够有更多氧空位、Co—N、Fe—N、P—O和吡啶N等表面活性位点,从而提高了催化性能.

      (3)NPF-FeCo2O4/PMS体系可在pH值为3—9的范围内对2,4-D有高效的去除效果,同时该体系对不同官能团的污染物都能达到一定的去除率,水中低浓度的阴离子Cl-、HCO3-和腐殖酸对反应有轻微的抑制,通过EPR测试和淬灭试验共同结果可以得知NPF-FeCo2O4/PMS体系中SO4∙-是降解2,4-D的主要活性氧物种.

      (4)本文为双金属催化剂在活化PMS降解水中有机污染物的应用提供了参考,但是在实际处理中还应考虑到Co离子的浸出问题. 今后的研究重点,需提高催化剂中金属Co的利用率如制备成单原子催化剂等,可显著减少催化剂中金属Co的含量,同时保持较高的催化效率. 另外,还可将Co基催化剂与碳材料结合,利用碳基材料稳定金属纳米颗粒,减少金属离子浸出对环境造成的潜在危害.

    参考文献 (20)

返回顶部

目录

/

返回文章
返回