-
新污染物(emerging contaminants, ECs)是指新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的污染物[1]. 主要包括但不限于药物及个人护理品、抗生素抗性基因、内分泌干扰物、消毒副产物、纳米材料以及包括多氯联苯、有机氯农药、多环芳烃和全氟化合物在内的持久性有机污染物. 这类化学物质稳定性高、亲水性强,它们可以在地下水、饮用水、地表水,甚至是污水处理厂的废水中检测到,其中大部分物质最终会进入并滞留在沿海水域,影响水产品的质量和安全,因其对水质环境的长期不良影响而受到科学界和公众的广泛关注[2 − 3]. 因此,迫切需要研究ECs在水生环境中的迁移转化过程机制. 为了调查和探究ECs在沿海水域的迁移转化并评估其生态环境风险,有必要提高对其降解过程的认识.
研究表明光化学降解是水体中有机污染物的主要转化途径[4 − 6],ECs的光化学降解包括直接、间接和自敏化光解3种方式[7]. 在直接光降解过程中,目标化合物对光子的吸收导致键断裂或重排以形成新的稳定产物;在自敏化光降解过程中,ECs吸收光子跃迁至激发态,同时将能量转移给基态3O2或H2O,产生活性氧自由基,进而引发自身降解;在间接光降解中,具有光活性的化合物吸收阳光,产生活性反应中间体(reactive intermediates,RIs),这些物质在ECs的光降解过程中起着重要作用[8 − 9]. 溶解有机物(dissolved organic matter, DOM)是一种具有优异光化学活性的天然光敏剂,在ECs的间接光解过程中发挥着重要作用:一方面DOM可以通过屏蔽阳光、清除RIs和淬灭目标污染物的激发态来减弱有机污染物的光降解;另一方面主要通过产生RIs促进光降解[10]. DOM在特定有机污染物光降解中的具体作用主要取决于DOM的类型、来源和组成[11 − 12]. 另外,环境因素如pH、光照强度等也会影响DOM的微观形态和光化学性质. 不同DOM的分子结构和特征性质存在内在差异,进而对ECs光降解表现出不同的作用.
然而,不同ECs在自然水体中的光降解行为并不一致,环境条件的动态变化也在影响该行为. 因此,研究DOM组分及环境因素对ECs在自然水体中的间接光降解作用,对预测其光化学命运至关重要,也将有助于更好地了解其他ECs的环境命运. 本文介绍了DOM诱导ECs间接光降解的降解途径和作用,讨论了DOM来源、类型、组分和其他环境条件对光降解效率的影响,以全面了解该行为机制.
新污染物在含溶解有机物水体中光降解行为研究进展
Research progress on photodegradation behavior of emerging pollutants in water containing dissolved organic matter
-
摘要: 新污染物(emerging contaminants,ECs)是一类稳定性高、亲水性强的环境污染物,其中大部分物质最终会进入并滞留在自然水域,因其对生态和人类健康的危害而受到广泛关注. 光化学降解是ECs在水体中的主要转化过程之一,包括直接光解、间接光解和自敏化光解. 溶解有机物(dissolved organic matter,DOM)作为水体中具有优异光化学性质的光敏剂,吸光后产生·OH、1O2、3DOM*等活性反应中间体,对ECs的间接光降解过程有着重要影响. 为探究ECs在水体中的迁移转化并评估其生态环境风险,有必要提高对其降解过程的认识. 鉴于此,文章在论述DOM环境光化学特性和过程的基础上,重点阐述了DOM类型、来源、荧光组分及环境因素对ECs光降解过程的影响. DOM对ECs间接光降解过程的影响主要包括促进作用和抑制作用. 促进作用主要表现在DOM产生的活性反应中间体与ECs反应,抑制作用主要包括光屏蔽作用和猝灭效应. DOM的作用效果与其类型、来源、组分及环境因素密切相关. 同时,文章就DOM对ECs光降解影响的研究工作进行展望,这将有助于更全面地了解ECs的光化学行为,对于评估ECs在自然水体中的环境归趋和生态风险具有重要意义.Abstract: Emerging contaminants (ECs) are a class of environmental pollutants with high stability and hydrophilicity, most of which eventually enter and remain in natural waters. They have received increasing attention for its harm to ecological and human health. Photochemical degradation is one of the main transformation processes of ECs in water, including direct photodegradation, indirect photodegradation and self-sensitized photodegradation. As a photosensitizer with excellent photochemical properties, dissolved organic matter (DOM) produces active reaction intermediates such as ·OH, 1O2, and 3DOM* after light absorption, which has an important influence on the indirect photodegradation process of ECs. In order to explore the migration and transformation of ECs in water and assess their ecological risks, it is necessary to improve the understanding of their degradation process. In view of this, on the basis of discussing the environmental photochemical characteristics and processes of DOM, this paper focused on the effects of types, sources, fluorescent components of DOM and environmental factors on the photodegradation process of ECs. Influence of DOM on the photodegradation process of ECs mainly includes promoting effect and inhibiting effect. The promoting effect is mainly manifested in the reaction of active reaction intermediates generated by DOM with ECs. However, the inhibition effect mainly includes light shielding effect and quenching effect. The effect of DOM on the photodegradation of ECs was closely related to type, source, composition and environmental factors of DOM. Meanwhile, the future research work on the effect of DOM on the photodegradation of ECs was prospected. This will contribute to a more comprehensive understanding of the photochemical behaviour of ECs, which is of importance for assessing the environmental fate and ecological risk of ECs in natural waters.
-
表 1 DOM对不同污染物光降解的影响
Table 1. Effects of DOM on photodegradation of different pollutants
污染物
PollutantsCAS号
CAS number主要光降解途径
Main photodegradation pathwaysDOM来源
DOM source促进/抑制作用
Promotion/
inhibitionDOM主要作用机制
Main mechanism of DOM参考文献
Reference氟乐灵 1582-09-8 直接光降解 SRHA/SRFA/SRNOM — — [44] 苯达松 25057-89-0 直接 湖水/稻田 — — [45] 二甲戊灵 40487-42-1 直接 湖水 — — [58] 敌草隆 330-54-1 间接 SRFA 促进 光致产生·OH [46] 雌三醇 50-27-1 间接 SRFA/SRNOM 促进 π-π相互作用 [47] 17-β雌二醇 50-28-2 间接 滇池底泥 促进 光致产生·OH,1O2,3DOM* [59] 三氯生 3380-34-5 间接 腐殖酸(购自日本) 促进 光致产生·OH,1O2,3DOM* [51] NLHA/NLFA 抑制 光屏蔽;动态猝灭 [54] 丙腈 107-12-0 间接 蒽醌-2-磺酸钠 促进 光致产生3DOM* [52] 丁吡吗啉 868390-90-3 间接 腐殖酸(购自中国天津) 促进 氢键、离子交换等
作用力[53] 阿特拉津 1912-24-9 间接 腐殖酸(购自中国上海) 抑制 竞争光吸收 [55] 17α-乙炔基雌二醇 57-63-6 间接 河水腐殖酸 促进 光致产生·OH [60] 河水富里酸 促进 光致产生3DOM* [60] 二苯甲酮-1 131-56-6 间接 海水DOM/SRFA/SRNOM 促进 光致产生·OH,
1O2,3DOM*[61] 二苯甲酮-3 131-57-7 间接 淡水DOM/海水DOM 促进 光致产生·OH,
1O2,3DOM*[4] 2-(2-羟基-5-苯甲基)苯并三唑 2440-22-4 间接 海水DOM 促进 光致产生3DOM* [12] 磺胺嘧啶 68-35-9 间接 SRHA/SRFA/SRNOM/JKHA 促进 光致产生3DOM* [3] 布洛芬 15687-27-1 间接 SRHA/SRFA/SRNOM/JKHA 促进 光致产生·OH,1O2 [62] 对乙酰氨基酚 103-90-2 间接 SRHA/SRFA/SRNOM/JKHA 促进 光致产生
·OH,1O2,3DOM*[63] 注:蒽醌-2-磺酸钠为DOM替代物,SRHA为苏万尼河腐殖酸,SRFA为苏万尼河富里酸,SRNOM为苏万尼河天然有机物,NLHA为Nordic湖腐植酸,NLFA为Nordic湖富里酸,JKHA为J&K科技有限公司腐殖酸,上述均为商品化DOM.
Note:anthraquinone-2-sulfonate is a DOM substitute, SRHA is Suwannee River humic acid, SRFA is Suwannee River fulvic acid, SRNOM is Suwannee River natural organic matter, NLHA is Nordic Lake humic acid, NLFA is Nordic Lake fulvic acid, JKHA is humic acid from J&K Scientific Ltd. All of the above are commercial DOM. -
[1] 周林军, 梁梦园, 范德玲, 等. 新污染物环境监测国际实践及启示[J]. 生态与农村环境学报, 2021, 37(12): 1532-1539. doi: 10.19741/j.issn.1673-4831.2021.0293 ZHOU L J, LIANG M Y, FAN D L, et al. International practices and enlightenment for environment monitoring of emerging pollutants[J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1532-1539(in Chinese). doi: 10.19741/j.issn.1673-4831.2021.0293
[2] SOLÁ-GUTIÉRREZ C, SCHRÖDER S, SAN-ROMÁN M F, et al. Critical review on the mechanistic photolytic and photocatalytic degradation of triclosan[J]. Journal of Environmental Management, 2020, 260: 110101. doi: 10.1016/j.jenvman.2020.110101 [3] BAI Y, ZHOU Y L, CHE X W, et al. Indirect photodegradation of sulfadiazine in the presence of DOM: Effects of DOM components and main seawater constituents[J]. Environmental Pollution, 2021, 268: 115689. doi: 10.1016/j.envpol.2020.115689 [4] LI Y J, QIAO X L, ZHOU C Z, et al. Photochemical transformation of sunscreen agent benzophenone-3 and its metabolite in surface freshwater and seawater[J]. Chemosphere, 2016, 153: 494-499. doi: 10.1016/j.chemosphere.2016.03.080 [5] BAO Y P, NIU J F. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors[J]. Chemosphere, 2015, 134: 550-556. doi: 10.1016/j.chemosphere.2014.12.016 [6] de LAURENTIIS E, MINELLA M, SARAKHA M, et al. Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: Reaction pathways and implications for surface waters[J]. Water Research, 2013, 47(15): 5943-5953. doi: 10.1016/j.watres.2013.07.017 [7] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学: 化学, 2010, 40(2): 124-135. doi: 10.1360/zb2010-40-2-124 GE L K, ZHANG S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics[J]. Scientia Sinica Chimica), 2010, 40(2): 124-135(in Chinese). doi: 10.1360/zb2010-40-2-124
[8] GE L K, ZHANG P, HALSALL C, et al. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: Kinetics, pathways, and comparisons with direct photolysis[J]. Water Research, 2019, 149: 243-250. doi: 10.1016/j.watres.2018.11.009 [9] AL HOUSARI F, VIONE D, CHIRON S, et al. Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes[J]. Photochemical & Photobiological Sciences, 2010, 9(1): 78-86. [10] WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science & Technology, 2011, 45(4): 1334-1340. [11] TIMKO S A, ROMERA-CASTILLO C, JAFFÉ R, et al. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 866-878. [12] CHEN X, WANG J Q, CHEN J W, et al. Photodegradation of 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P) in coastal seawaters: Important role of DOM[J]. Journal of Environmental Sciences (China), 2019, 85: 129-137. doi: 10.1016/j.jes.2019.05.017 [13] AIKEN G R, GILMOUR C C, KRABBENHOFT D P, et al. Dissolved organic matter in the Florida Everglades: Implications for ecosystem restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(sup1): 217-248. doi: 10.1080/10643389.2010.530934 [14] 刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响[J]. 环境科学与技术, 2017, 40(1): 85-94. LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants[J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
[15] 杜超. 不同来源腐殖酸及其组分光致产生活性氧物种能力的研究[D]. 南京: 南京农业大学, 2019. DU C. The ability of photo-induced reactive oxygen species from different sources of humic acid and its components[D]. Nanjing: Nanjing Agricultural University, 2019(in Chinese).
[16] COBLE P G, GREEN S A, BLOUGH N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348(6300): 432-435. doi: 10.1038/348432a0 [17] KOWALCZUK P, DURAKO M J, YOUNG H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability[J]. Marine Chemistry, 2009, 113(3/4): 182-196. [18] ZHANG H F, ZHENG Y C, WANG X C, et al. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments[J]. Journal of Environmental Management, 2021, 294: 113041. doi: 10.1016/j.jenvman.2021.113041 [19] STEDMON C A, MARKAGER S. Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing[J]. Estuarine, Coastal and Shelf Science, 2003, 57(5/6): 973-979. [20] 任东, 陈芳, 蒲红玉, 等. 溶解有机质的光化学行为及其环境效应[J]. 生态与农村环境学报, 2019, 35(5): 563-572. doi: 10.19741/j.issn.1673-4831.2018.0319 REN D, CHEN F, PU H Y, et al. Photochemical behaviors and environmental effects of dissolved organic matter[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 563-572(in Chinese). doi: 10.19741/j.issn.1673-4831.2018.0319
[21] ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-2017. [22] MENG F G, HUANG G C, YANG X, et al. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers[J]. Water Research, 2013, 47(14): 5027-5039. doi: 10.1016/j.watres.2013.05.043 [23] DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities[J]. Water Research, 2019, 163: 114908. doi: 10.1016/j.watres.2019.114908 [24] ARTIFON V, ZANARDI-LAMARDO E, FILLMANN G. Aquatic organic matter: Classification and interaction with organic microcontaminants[J]. Science of the Total Environment, 2019, 649: 1620-1635. doi: 10.1016/j.scitotenv.2018.08.385 [25] CONNOLLY C T, CARDENAS M B, BURKART G A, et al. Groundwater as a major source of dissolved organic matter to Arctic coastal waters[J]. Nature Communications, 2020, 11: 1479. doi: 10.1038/s41467-020-15250-8 [26] HOSEN J D, ARMSTRONG A W, PALMER M A. Dissolved organic matter variations in coastal plain wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality[J]. Hydrological Processes, 2018, 32(11): 1664-1681. doi: 10.1002/hyp.11519 [27] MELENDEZ-PEREZ J J, MARTÍNEZ-MEJÍA M J, AWAN A T, et al. Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry[J]. Organic Geochemistry, 2016, 101: 99-107. doi: 10.1016/j.orggeochem.2016.08.005 [28] SONG N, JIANG H L. Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: Dual role of solar irradiation[J]. Water Research, 2020, 172: 115516. doi: 10.1016/j.watres.2020.115516 [29] 郭忠禹, 陈景文, 张思玉, 等. 天然水中溶解性有机质对有机微污染物光化学转化的影响[J]. 科学通报, 2020, 65(26): 2786-2803. doi: 10.1360/TB-2020-0791 GUO Z Y, CHEN J W, ZHANG S Y, et al. Effects of dissolved organic matter on photochemical transformation of organic micropollutants in natural waters[J]. Chinese Science Bulletin, 2020, 65(26): 2786-2803(in Chinese). doi: 10.1360/TB-2020-0791
[30] ZHANG D N, YAN S W, SONG W H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter[J]. Environmental Science & Technology, 2014, 48(21): 12645-12653. [31] CANONICA S, FREIBURGHAUS M. Electron-rich phenols for probing the photochemical reactivity of freshwaters[J]. Environmental Science & Technology, 2001, 35(4): 690-695. [32] BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin[J]. Water Research, 2017, 110: 170-179. doi: 10.1016/j.watres.2016.12.016 [33] ZHOU C Z, CHEN J W, XIE Q, et al. Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater[J]. Chemosphere, 2015, 138: 792-797. [34] 邰超, 李雁宾, 阴永光, 等. 天然水体中可溶性有机质的自由基光化学行为[J]. 化学进展, 2012, 24(7): 1388-1397. TAI C, LI Y B, YIN Y G, et al. Free radical photochemistry of dissolved organic matter in natural water[J]. Progress in Chemistry, 2012, 24(7): 1388-1397(in Chinese).
[35] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species[J]. Chemistry - A European Journal, 2014, 20(34): 10590-10606. doi: 10.1002/chem.201400413 [36] JI Y F, ZENG C, FERRONATO C, et al. Nitrate-induced photodegradation of atenolol in aqueous solution: Kinetics, toxicity and degradation pathways[J]. Chemosphere, 2012, 88(5): 644-649. doi: 10.1016/j.chemosphere.2012.03.050 [37] ZHANG K, PARKER K M. Halogen radical oxidants in natural and engineered aquatic systems[J]. Environmental Science & Technology, 2018, 52(17): 9579-9594. [38] ZHANG H Q, XIE H B, CHEN J W, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: A quantum chemical study on cephradine[J]. Environmental Science & Technology, 2015, 49(3): 1552-1558. [39] LEAL J F, ESTEVES V I, SANTOS E B H. BDE-209: Kinetic studies and effect of humic substances on photodegradation in water[J]. Environmental Science & Technology, 2013, 47(24): 14010-14017. [40] REMUCAL C K. The role of indirect photochemical degradation in the environmental fate of pesticides: A review[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 628-653. [41] DABIĆ D, BABIĆ S, ŠKORIĆ I. The role of photodegradation in the environmental fate of hydroxychloroquine[J]. Chemosphere, 2019, 230: 268-277. doi: 10.1016/j.chemosphere.2019.05.032 [42] GARCÍA P E, QUEIMALIÑOS C, DIÉGUEZ M C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic systems: Influence of the dissolved organic matter pool[J]. Chemosphere, 2019, 217: 550-557. doi: 10.1016/j.chemosphere.2018.10.179 [43] CHIWA M, HIGASHI N, OTSUKI K, et al. Sources of hydroxyl radical in headwater streams from nitrogen-saturated forest[J]. Chemosphere, 2015, 119: 1386-1390. doi: 10.1016/j.chemosphere.2014.02.046 [44] ZENG T, ARNOLD W A. Pesticide photolysis in prairie potholes: Probing photosensitized processes[J]. Environmental Science & Technology, 2013, 47(13): 6735-6745. [45] CARENA L, FABBRI D, PASSANANTI M, et al. The role of direct photolysis in the photodegradation of the herbicide bentazone in natural surface waters[J]. Chemosphere, 2020, 246: 125705. doi: 10.1016/j.chemosphere.2019.125705 [46] GERECKE A C, CANONICA S, MÜLLER S R, et al. Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes[J]. Environmental Science & Technology, 2001, 35(19): 3915-3923. [47] BERTOLDI C, RODRIGUES A G, FERNANDES A N. Removal of endocrine disrupters in water under artificial light: The effect of organic matter[J]. Journal of Water Process Engineering, 2019, 27: 126-133. doi: 10.1016/j.jwpe.2018.11.016 [48] JIA C Z, WANG Y X, ZHANG C X, et al. Photocatalytic degradation of bisphenol A in aqueous suspensions of titanium dioxide[J]. Environmental Engineering Science, 2012, 29(7): 630-637. doi: 10.1089/ees.2011.0132 [49] LEE J H, ZHOU J L, LEE Y, et al. Changes in the sorption and rate of 17β-estradiol biodegradation by dissolved organic matter collected from different water sources[J]. Journal of Environmental Monitoring: JEM, 2012, 14(2): 543-551. doi: 10.1039/C1EM10690B [50] XUE S, SUN J J, LIU Y, et al. Effect of dissolved organic matter fractions on photodegradation of phenanthrene in ice[J]. Journal of Hazardous Materials, 2019, 361: 30-36. doi: 10.1016/j.jhazmat.2018.08.072 [51] OZAKI N, TANAKA T, KINDAICHI T, et al. Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation[J]. Environmental Technology & Innovation, 2021, 23: 101766. [52] CARENA L, MINELLA M, BARSOTTI F, et al. Phototransformation of the herbicide propanil in paddy field water[J]. Environmental Science & Technology, 2017, 51(5): 2695-2704. [53] 任文华, 肖玉梅, 黄金莉, 等. 丁吡吗啉在腐殖酸存在下的光降解[J]. 农药, 2020, 59(3): 193-196, 208. REN W H, XIAO Y M, HUANG J L, et al. The photolysis of pyrimorph on the effect of humic acid[J]. Agrochemicals, 2020, 59(3): 193-196, 208(in Chinese).
[54] 郑晓冬, 乔显亮, 肖杰, 等. 水中溶解性有机质对三氯生光解的影响[J]. 环境科学与技术, 2013, 36(10): 182-185. ZHENG X D, QIAO X L, XIAO J, et al. Photolysis of TCS by DOM in water[J]. Environmental Science & Technology, 2013, 36(10): 182-185(in Chinese).
[55] 刘师宇, 向武, 黄碧捷, 等. 腐殖酸和β-环糊精对阿特拉津光降解的影响[J]. 环境科学与技术, 2017, 40(7): 93-96. LIU S Y, XIANG W, HUANG B J, et al. Effects of humic acids and β-cyclodextrins on photodegradation of atrazine[J]. Environmental Science & Technology, 2017, 40(7): 93-96(in Chinese).
[56] DIMOU A D, SAKKAS V A, ALBANIS T A. Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: Kinetics and photoproduct analysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 473-480. doi: 10.1016/j.jphotochem.2004.02.001 [57] TIAN Y J, ZOU J R, FENG L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs[J]. Water Research, 2019, 149: 35-41. doi: 10.1016/j.watres.2018.10.076 [58] MANSOUR M, FEICHT E A, BEHECHTI A, et al. Experimental approaches to studying the photostability of selected pesticides in water and soil[J]. Chemosphere, 1997, 35(1/2): 39-50. [59] 任东, 杨小霞, 马晓冬, 等. DOM结构特征及其对17β-雌二醇光降解的影响[J]. 中国环境科学, 2015, 35(5): 1375-1383. doi: 10.3969/j.issn.1000-6923.2015.05.012 REN D, YANG X X, MA X D, et al. Structural characteristics of DOM and its effects on the photodegradation of 17β-estradiol[J]. China Environmental Science, 2015, 35(5): 1375-1383(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.05.012
[60] REN D, CHEN F, REN Z G, et al. Different response of 17α-ethinylestradiol photodegradation induced by aquatic humic and fulvic acids to typical water matrixes[J]. Process Safety and Environmental Protection, 2019, 121: 367-373. doi: 10.1016/j.psep.2018.11.018 [61] WANG J Q, CHEN J W, QIAO X L, et al. Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2, 4-Dihydroxybenzophenone[J]. Water Research, 2019, 151: 280-287. doi: 10.1016/j.watres.2018.12.045 [62] 白莹, 崔正国, 苏荣国, 等. 水体中布洛芬的间接光降解作用机理研究[J]. 中国环境科学, 2019, 39(7): 2831-2837. doi: 10.3969/j.issn.1000-6923.2019.07.017 BAI Y, CUI Z G, SU R G, et al. The indirect photodegradation mechanism of ibuprofen in simulated seawater[J]. China Environmental Science, 2019, 39(7): 2831-2837(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.07.017
[63] BAI Y, CUI Z G, SU R G, et al. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters[J]. Chemosphere, 2018, 205: 108-117. doi: 10.1016/j.chemosphere.2018.04.087 [64] POWELL H K J, FENTON E. Size fractionation of humic substances: Effect on protonation and metal binding properties[J]. Analytica Chimica Acta, 1996, 334(1/2): 27-38. [65] KOIVULA N, HÄNNINEN K. Concentrations of monosaccharides in humic substances in the early stages of humification[J]. Chemosphere, 2001, 44(2): 271-279. doi: 10.1016/S0045-6535(00)00167-3 [66] 傅平青, 刘丛强, 吴丰昌. 水环境中腐殖质金属离子键合作用研究进展[J]. 生态学杂志, 2004, 23(6): 143-148. doi: 10.13292/j.1000-4890.2004.0217 FU P Q, LIU C Q, WU F C. Binding of metal-ions with humic substances in aquatic environments: A review[J]. Chinese Journal of Ecology, 2004, 23(6): 143-148(in Chinese). doi: 10.13292/j.1000-4890.2004.0217
[67] 李会杰. 腐殖酸和富里酸的提取与表征研究[D]. 武汉: 华中科技大学, 2012. LI H J. Study on extraction and characterization of HA and FA[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese). [68] 郝港利, 邓文博, 刘文娟. 芦芽山阔叶林土壤中腐殖酸和富里酸的提取与表征研究[J].山西大学学报(自然科学版),2023(4):961-968. HAO G L, DENG W B, LIU W J. Study on isolation and characterization of soil humic acid and fulvic acid in broadleaf forest from Luya mountain[J]. Journal of Shanxi University (Natural Science Edition), 2023(4):961-968.
[69] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents[J]. Environmental Science & Technology, 2010, 44(7): 2400-2405. [70] THESE A, WINKLER M, THOMAS C, et al. Determination of molecular formulas and structural regularities of low molecular weight fulvic acids by size-exclusion chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2004, 18(16): 1777-1786. doi: 10.1002/rcm.1550 [71] 杜超, 程德义, 代静玉, 等. 不同来源溶解性有机质在光辐射下产生活性氧基团能力的差异[J]. 环境科学学报, 2019, 39(7): 2279-2287. doi: 10.13671/j.hjkxxb.2019.0094 DU C, CHENG D Y, DAI J Y, et al. Differences in the ability of dissolved organic matter from different sources to produce reactive oxygen species under light irradiation[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2279-2287(in Chinese). doi: 10.13671/j.hjkxxb.2019.0094
[72] FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176: 210-217. doi: 10.1016/j.biortech.2014.11.032 [73] del VECCHIO R, BLOUGH N V. On the origin of the optical properties of humic substances[J]. Environmental Science & Technology, 2004, 38(14): 3885-3891. [74] NEBBIOSO A, PICCOLO A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid[J]. Analytica Chimica Acta, 2012, 720: 77-90. doi: 10.1016/j.aca.2012.01.027 [75] MINELLA M, ROMEO F, VIONE D, et al. Low to negligible photoactivity of lake-water matter in the size range from 0.1 to 5 μm[J]. Chemosphere, 2011, 83(11): 1480-1485. doi: 10.1016/j.chemosphere.2011.02.093 [76] MINELLA M, MERLO M P, MAURINO V, et al. Transformation of 2, 4, 6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures[J]. Chemosphere, 2013, 90(2): 306-311. doi: 10.1016/j.chemosphere.2012.07.013 [77] YUAN C Y, CHAKRABORTY M, CANONICA S, et al. Isoproturon reappearance after photosensitized degradation in the presence of triplet ketones or fulvic acids[J]. Environmental Science & Technology, 2016, 50(22): 12250-12257. [78] JANSSEN E M L, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan[J]. Environmental Science & Technology, 2014, 48(9): 4916-4924. [79] WENK J, AESCHBACHER M, SANDER M, et al. Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet-induced contaminant transformation[J]. Environmental Science & Technology, 2015, 49(14): 8541-8549. [80] 郑国航, 邢明飞, 郝智能, 等. 固相萃取法分离富集环境水体中溶解性有机质的研究进展[J]. 环境化学, 2021, 40(8): 2288-2298. doi: 10.7524/j.issn.0254-6108.2021022403 ZHENG G H, XING M F, HAO Z N, et al. Isolation and concentration of dissolved organic matter by using solid phase extraction method in environmental waters[J]. Environmental Chemistry, 2021, 40(8): 2288-2298(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022403
[81] 王杰琼. 近岸海水中溶解性有机质对有机微污染物光降解行为的影响[D]. 大连: 大连理工大学, 2019. WANG J Q. Effects of dissolved organic matter extracted from coastal seawaters on photodegradation behavior of organic micropollutants[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
[82] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties[J]. Environmental Science. Processes & Impacts, 2016, 18(11): 1381-1399. [83] HERBECK L S, UNGER D, WU Y, et al. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China[J]. Continental Shelf Research, 2013, 57: 92-104. doi: 10.1016/j.csr.2012.05.006 [84] WANG J Q, CHEN J W, QIAO X L, et al. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters[J]. Water Research, 2018, 144: 365-372. doi: 10.1016/j.watres.2018.07.043 [85] 郭忠禹. 海水溶解性有机质对磺胺氯哒嗪光降解的影响[D]. 大连: 大连理工大学, 2020. GUO Z Y. Photodegradation of sulfachloropyridazine in presence of seawater dissolved organic matter[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
[86] HELMS J R, STUBBINS A, PERDUE E M, et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence[J]. Marine Chemistry, 2013, 155: 81-91. doi: 10.1016/j.marchem.2013.05.015 [87] del VECCHIO R, BLOUGH N V. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling[J]. Marine Chemistry, 2002, 78(4): 231-253. doi: 10.1016/S0304-4203(02)00036-1 [88] SINGH S, D'SA E J, SWENSON E M. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)[J]. Science of the Total Environment, 2010, 408(16): 3211-3222. doi: 10.1016/j.scitotenv.2010.03.044 [89] YANG L, ZHANG J, YANG G P. Mixing behavior, biological and photolytic degradation of dissolved organic matter in the East China Sea and the Yellow Sea[J]. Science of the Total Environment, 2021, 762: 143164. doi: 10.1016/j.scitotenv.2020.143164 [90] BAI Y, SU R G, YAO Q Z, et al. Characterization of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the Yellow Sea using excitation-emission matrix spectroscopy (EEMs) and parallel factor analysis (PARAFAC)[J]. Estuaries and Coasts, 2017, 40(5): 1325-1345. doi: 10.1007/s12237-017-0221-6 [91] 纪美辰, 李思佳, 常明, 等. 二龙湖表层水体有色溶解有机物的光学特性及来源[J]. 环境科学研究, 2020, 33(8): 1821-1829. JI M C, LI S J, CHANG M, et al. Photometric characteristics and sources of colored dissolved organic matter in surface water from erlong lake[J]. Research of Environmental Sciences, 2020, 33(8): 1821-1829(in Chinese).
[92] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 [93] NIU X Z, LIU C, GUTIERREZ L, et al. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter[J]. Water Research, 2014, 66: 140-148. doi: 10.1016/j.watres.2014.08.017 [94] BARSOTTI F, GHIGO G, VIONE D. Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315: 87-93. doi: 10.1016/j.jphotochem.2015.09.012 [95] PENG N, WANG K F, LIU G G, et al. Quantifying interactions between propranolol and dissolved organic matter (DOM) from different sources using fluorescence spectroscopy[J]. Environmental Science and Pollution Research International, 2014, 21(7): 5217-5226. doi: 10.1007/s11356-013-2436-9 [96] BATISTA A P S, TEIXEIRA A C S C, COOPER W J, et al. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine[J]. Water Research, 2016, 93: 20-29. doi: 10.1016/j.watres.2015.11.036 [97] CAVANI L, HALLADJA S, TER HALLE A, et al. Relationship between photosensitizing and emission properties of peat humic acid fractions obtained by tangential ultrafiltration[J]. Environmental Science & Technology, 2009, 43(12): 4348-4354. [98] ZHOU H X, LIAN L S, YAN S W, et al. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents[J]. Water Research, 2017, 112: 120-128. doi: 10.1016/j.watres.2017.01.048 [99] LIU Y Z, SUN H W, ZHANG L Q, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes[J]. Process Safety and Environmental Protection, 2017, 112: 335-341. doi: 10.1016/j.psep.2017.08.044 [100] PENG N, WANG K F, LIAO P P, et al. Dual roles of fulvic acid on the photodegradation of propranolol under different light-source irradiation[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 052050. doi: 10.1088/1755-1315/199/5/052050 [101] 刘砚弘, 李威, 韩建刚. Fe(Ⅲ)对不同来源溶解性有机质的光化学活性的影响[J]. 农业环境科学学报, 2019, 38(11): 2563-2572. doi: 10.11654/jaes.2019-0411 LIU Y H, LI W, HAN J G. Effect of Fe(Ⅲ)on the photochemical activity of dissolved organic matter from different sources[J]. Journal of Agro-Environment Science, 2019, 38(11): 2563-2572(in Chinese). doi: 10.11654/jaes.2019-0411
[102] ZHAO Q, FANG Q, LIU H Y, et al. Halide-specific enhancement of photodegradation for sulfadiazine in estuarine waters: Roles of halogen radicals and main water constituents[J]. Water Research, 2019, 160: 209-216. doi: 10.1016/j.watres.2019.05.061 [103] PINTO M I, SALGADO R, COTTRELL B A, et al. Influence of dissolved organic matter on the photodegradation and volatilization kinetics of chlorpyrifos in coastal waters[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310: 189-196. doi: 10.1016/j.jphotochem.2015.05.024 [104] HOU Z C, FANG Q, LIU H Y, et al. Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters: Roles of triplet-excited dissolved organic matter and halogen radicals[J]. Environmental Pollution, 2021, 276: 116692. doi: 10.1016/j.envpol.2021.116692 [105] LI Y J, QIAO X L, ZHANG Y N, et al. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates[J]. Water Research, 2016, 102: 405-412. doi: 10.1016/j.watres.2016.06.054 [106] ZHANG X, WU F, WU X W, et al. Photodegradation of acetaminophen in TiO2 suspended solution[J]. Journal of Hazardous Materials, 2008, 157(2/3): 300-307. [107] JIN X, XU H Z, QIU S S, et al. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 224-231. doi: 10.1016/j.jphotochem.2016.08.032 [108] BAENA-NOGUERAS R M, GONZÁLEZ-MAZO E, LARA-MARTÍN P A. Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation[J]. Science of the Total Environment, 2017, 590/591: 643-654. doi: 10.1016/j.scitotenv.2017.03.015 [109] 于莉莉, 钟晔, 孙福红, 等. pH值对滇池水体溶解性有机质(DOM)光降解作用的影响[J]. 光谱学与光谱分析, 2019, 39(8): 2533-2539. YU L L, ZHONG Y, SUN F H, et al. Effects of pH values on the photo-degradation of dissolved organic matter (DOM) from Dianchi Lake[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2533-2539(in Chinese).
[110] PACE M L, RECHE I, COLE J J, et al. pH change induces shifts in the size and light absorption of dissolved organic matter[J]. Biogeochemistry, 2012, 108(1/2/3): 109-118. [111] ZHANG Y N, ZHAO J C, ZHOU Y J, et al. Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters[J]. Environmental Science. Processes & Impacts, 2019, 21(1): 155-162. [112] CHU C J, SHAO M Y, WANG X. Dissolved biochar promoted photodegradation of tetracycline in aqueous environment[J]. E3S Web of Conferences, 2021, 251: 02055. [113] GAO Y, YAN M Q, KORSHIN G V. Effects of ionic strength on the chromophores of dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(10): 5905-5912. [114] PAN Y H, GARG S, WAITE T D, et al. Copper inhibition of triplet-induced reactions involving natural organic matter[J]. Environmental Science & Technology, 2018, 52(5): 2742-2750. [115] PAN Y H, RUAN X X, GARG S, et al. Copper inhibition of triplet-sensitized phototransformation of phenolic and amine contaminants[J]. Environmental Science & Technology, 2020, 54(16): 9980-9989. [116] RORABACHER D B. Electron transfer by copper centers[J]. Chemical Reviews, 2004, 104(2): 651-698. doi: 10.1021/cr020630e [117] CIEŚLA P, KOCOT P, MYTYCH P, et al. Homogeneous photocatalysis by transition metal complexes in the environment[J]. Journal of Molecular Catalysis A: Chemical, 2004, 224(1/2): 17-33. [118] WANG L, ZHANG C B, WU F, et al. Determination of hydroxyl radicals from photolysis of Fe(III)-pyruvate complexes in homogeneous aqueous solution[J]. Reaction Kinetics and Catalysis Letters, 2006, 89(1): 183-192. doi: 10.1007/s11144-006-0101-8 [119] LIU H, ZHAO H M, QUAN X, et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science & Technology, 2009, 43(20): 7712-7717. [120] 庄晓虹, 喻婷, 胡桂娟, 等. 铁离子、铜离子及腐殖酸对壬基酚光降解的影响[J]. 辽宁大学学报(自然科学版), 2017, 44(1): 75-80. doi: 10.16197/j.cnki.lnunse.2017.01.015 ZHUANG X H, YU T, HU G J, et al. Effect of iron ions, copper ions and humic acid on nonylphenol's photodegradation[J]. Journal of Liaoning University (Natural Sciences Edition), 2017, 44(1): 75-80(in Chinese). doi: 10.16197/j.cnki.lnunse.2017.01.015
[121] WANG L, ZHANG C, MESTANKOVA H, et al. Photoinduced degradation of 2, 4-dichlorophenol in water: Influence of various Fe(Ⅲ) carboxylates[J]. Photochemical & Photobiological Sciences, 2009, 8(7): 1059-1065. [122] 王丽苹. Fe0/H2O2类芬顿法对污泥脱水性能的改善及机理分析[D]. 广州: 华南理工大学, 2018. WANG L P. Improvement of waste activated sludge dewaterability by Fe~0/H2O2 Fenton-like process and its mechanism analysis[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
[123] 丁世敏, 涂建峰, 崔小平, 等. 类-Fenton体系对水中17β-雌二醇的光降解[J]. 环境污染治理技术与设备, 2005(7): 29-32. DING S M, TU J F, CUI X P, et al. Light induced degradation of 17β-estradiol in Fenton-like system[J]. Techniques and Equipment for Environmental Pollution Control, 2005(7): 29-32(in Chinese).
[124] 石陶然, 张远, 于涛, 等. 滇池沉积物不同分子量溶解性有机质分布及其与Cu和Pb的相互作用[J]. 环境科学研究, 2013, 26(2): 137-144. SHI T R, ZHANG Y, YU T, et al. Distribution of different molecular weight fractions of dissolved organic matters and their complexation with Cu and Pb in the sediment from Dianchi Lake, China[J]. Research of Environmental Sciences, 2013, 26(2): 137-144(in Chinese).
[125] WAN D, SHARMA V K, LIU L, et al. Mechanistic insight into the effect of metal ions on photogeneration of reactive species from dissolved organic matter[J]. Environmental Science & Technology, 2019, 53(10): 5778-5786. [126] LIU H Y, ZHANG Z Y, TU Y N, et al. Dual roles of Cu2+ complexation with dissolved organic matter on the photodegradation of trace organic pollutants: Triplet- and OH-induced reactions[J]. Science of the Total Environment, 2022, 815: 152934. doi: 10.1016/j.scitotenv.2022.152934 [127] OGAWA K, GUO F Q, SCHANZE K S. Phosphorescence quenching of a platinum acetylide polymer by transition metal ions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207(1): 79-85. doi: 10.1016/j.jphotochem.2009.04.013