-
全氟/多氟化合物(per- and polyfluoroalkyl substances, PFAS)具有热稳定性、化学稳定性、较高的表面活性和疏水疏油等优良特性,自20世纪50年代起被大量生产并广泛应用于多种工业和消费领域[1 − 3]. 传统长链PFAS(全氟碳链长度≥7)包括最具代表性的全氟辛烷磺酸(perfluorooctanesulfonate, PFOS)和全氟辛烷羧酸(perfluorooctanoic acid, PFOA)因具有持久性、生物蓄积性、难降解、生物毒性等特性而备受关注[4 − 8]. PFOA在2005年被美国环保局(US EPA)列为疑似致癌物质[9]. 2006年,US EPA和全球8家主要的氟化学品公司启动了“2010/2015 PFOA管理项目”,旨在2015年前消除PFOA的生产和排放;2013年,PFOA及其铵盐被列入欧盟化学品高风险物质候选清单;2019年,PFOA被列入《斯德哥尔摩公约》“持久性有机污染物”清单附录A[10 − 12]. 随着对PFOA生产和使用的限制,在市场需求的驱动下,开发安全、绿色替代品的研究迅速增加. 多种PFOA替代品(如短链PFAS、氢代多氟羧酸和全氟/多氟烷基醚羧酸)被开发并投入生产和使用[13 − 15]. 由于这些替代品在生产、使用和处理的整个周期中都可以释放到环境中[16],它们在环境中的浓度正呈上升趋势.
新型PFOA替代品——六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxide trimer acid, HFPO-TA)是一种多醚类全氟烷基醚羧酸(perfluoroalkyl ether carboxylic acids, PFECAs),具有与PFOA相似的结构,是在C—C键之间插入醚键(结构式见表1),替代PFOA在含氟聚合物高性能材料(如聚四氟乙烯和聚偏氟乙烯)生产中作为加工助剂[1, 17]. 2016年,HFPO-TA被中国工信部列入《国家鼓励的有毒有害原料(产品)替代品目录》[21]. HFPO-TA的生产使用在快速增长,其环境污染水平出现上升趋势. 环境中HFPO-TA能通过不同的途径进入生物体并沿食物链传递到高营养级,另外,生物体内长期积累的HFPO-TA会引发多种毒性.
本文从HFPO-TA的生产、用途和环境归趋、环境介质和生物体内的污染现状、生物毒性以及降解等方面进行综述,以期为进一步研究HFPO-TA的环境行为、生物富集与转化以及毒性效应机制提供参考依据,并对目前仍存在的问题和未来的关注方向进行总结和展望.
六氟环氧丙烷三聚体羧酸(HFPO-TA)污染现状和生物毒性研究进展
A review of contamination status and and biotoxicity of hexafluoropropylene oxide trimer acid (HFPO-TA)
-
摘要: 全氟/多氟化合物(per- and polyfluoroalkyl substances,PFAS)是一类具有优良表面活性和稳定性的有机化合物,广泛应用于工业和消费领域,全氟辛烷羧酸(perfluorooctanoic acid,PFOA)是具有代表性的一类PFAS. 由于具有持久性、生物蓄积性、长距离迁移和生物毒性,PFOA已被限制生产和使用. 六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxide trimer acid,HFPO-TA)是一类新型的PFOA替代品. HFPO-TA在全球范围内的环境介质中广泛存在,在一些介质中的浓度接近甚至高于PFOA. HFPO-TA能在生物体内蓄积并可产生生物毒性效应,由于其独特的化学结构和理化性质,HFPO-TA的生物积累潜能和生物毒性强于PFOA. 本文从HFPO-TA的生产、用途、环境归趋、环境介质和生物体内的污染现状、生物毒性和降解进行综述,并对未来研究趋势和发展方向进行展望,为研究HFPO-TA在生物体内富集与转化机制和毒理学评价提供参考依据.
-
关键词:
- 六氟环氧丙烷三聚体羧酸 /
- 多介质分布 /
- 生物富集 /
- 生物毒性 /
- 降解.
Abstract: Per- and polyfluoroalkyl substances (PFAS) are a class of organic compounds with excellent surface activity and stability, which are widely used in industrial and consumer fields. Perfluorooctanoic acid (PFOA) is a representative class of PFAS. Duo to its persistence, bioaccumulation, long-distance migration and biological toxicity, PFOA has been restricted in production and use. Hexafluoropropylene oxide trimer acid (HFPO-TA) is a novel alternative to PFOA. HFPO-TA is widely distributed in environmental around the word, and its concentration in some media is close to or even higher than PFOA. HFPO-TA can accumulate in organisms and lead to biological toxicity. Due to its unique chemical structure and physical and chemical properties, HFPO-TA has stronger bioaccumulation potential and biological toxicity than PFOA. In this paper, the production, use, environmental fate, the pollution status in environmental medium and organisms, biotoxicity and degradation of HFPO-TA are reviewed, and the future research trend and development direction are prospected, providing reference basis for the study of enrichment and transformation mechanism of HFPO-TA in organisms and toxicological evaluation. -
表 1 HFPO-TA和PFOA的分子式、结构式和物理化学性质
Table 1. Molecular formula, structural formula and physicochemical properties of HFPO-TA and PFOA
化学名称
Chemical name分子式
Molecular
formula水溶性/(g·L−1)
Water solubility[17]lg Kow lg Kpw pKa 化学结构式
StructureHFPO-TA 六氟环氧丙烷三聚体羧酸 C9HF17O4 100—200(25 ℃) 5.55[17] 3.85 -0.07[17] PFOA 全氟辛烷羧酸 C8HF15O2 >500(25 ℃) 4.81[18] 3.43 -0.50—4.20[19] 注:lg Kow表示辛醇-水分配系数;lg Kpw表示蛋白-水分配系数,lg Kpw是根据Debruyn和Gobas[20]提出的回归方程lg Kpw = 0.57× lg Kow + 0.69计算得到.
Note: lg Kow, octanol-water partition coefficient; lg Kpw, protein-water partition coefficient; lg Kpw is calculated according the regression equation lg Kpw = 0.57× lg Kow + 0.69 proposed by Debruyn and Gobas[20].表 2 HFPO-TA和PFOA在不同环境中的浓度水平
Table 2. Concentration levels of HFPO-TA and PFOA in different environments
采样点
Sampling pointHFPO-TA PFOA 参考文献
Reference地表水/(ng·L−1) 长江(重庆—上海段) <LOQ—1.29 3.48—36.5 [35] 黄河(甘肃、河南和山东段) <LOQ—0.74 0.15—4.92 [35] 珠江(广东段) <LOQ—9.20 0.40—52.8 [35] 辽河(辽宁段) 0.13—0.61 5.28—12.3 [35] 淮河(河南—安徽段) 0.28—0.61 4.24—9.06 [35] 巢湖 0.20—1.08 7.00—10.5 [35] 英国Thames River(Oxford, Landon) 0.05—0.21 5.56—11.7 [35] Rhine River(Germany-Netherlands) <LOQ—0.31 0.86—3.66 [35] 美国Delaware River(Trenton— Frederica) <LOQ—4.33 2.12—14.9 [35] 瑞典Mälaren Lake(Orebro, Stockholm) <LOQ—0.39 1.07—3.34 [35] 韩国Han River(Seoul) 0.16—0.58 1.84—4.53 [35] 山东小清河(上游、支流(东猪龙河,预备河)、下游) 3.99—68500 15.4—197000 [17] 南黄海(江苏省海岸线) 0.92—6.68 10.7—30.8 [31] 望虞河(常熟) (1.50) (36.0) [36] 海河(天津、北京) 0.004—3.83 0.28—21.2 [37] 鄱阳湖 0.46—3.40(0.95) 1.80—17.0(6.50) [32] 太湖(2016年) 0.12—34.8(0.38) 3.15—44.5(18.0) [36] 太湖(2019年) (0.30) (21.0) [36] 太湖(2021年) (1.72) (28.2) [36] 德胜河(常州段)(枯水期) (0.08) (10.0) [38] 德胜河(常州段)(丰水期) (0.32) (6.30) [38] 长江(常州段)(枯水期) (0.07) (9.40) [38] 长江(常州段)(丰水期) (0.39) (6.70) [38] 沉积物/(pg·g -1 dw(干重))和悬浮物/(pg·L−1) 南黄海沉积物(江苏省海岸线) 7.57—113 91.7—1826 [31] 鄱阳湖沉积物 11.0—480(200) 7.10—70.0(31.0) [32] 鄱阳湖悬浮物 120—1200(410) 11.0—1100(99.0) [32] 污水处理厂和工业园区地表水/(ng·L−1) 常熟氟工业区WWTP出水 360(中值) 19232(中值) [36] 常熟氟工业区地表水 (3.31) (533) [36] 地下水和饮用水/(ng·L−1) 黄土高坡地下水 (0.31) 0.41—99.9(6.42) [33] 常熟地下水 0.07—38.0(2.15) 0.25—566(93.3) [30] 桓台地下水 3.89—462 24.8—462 [39] 桓台村庄自来水 n.d. —81.2 n.d. —198 [25] 常州公共供水系统(冬季) n.d. —(0.21) (8.30)—(9.60) [38] 常州公共供水系统(夏季) (0.44)—(0.52) (7.10)—(7.50) [38] 土壤和室内外灰尘/(ng·g−1) 常熟表层土壤 0.02—0.06(0.02) 0.34—5.30(1.56) [30] 桓台县FIP附近土壤 53.7—2910 22.8—185 [39] 杭州垃圾填埋场附近土壤 <LOQ (0.80) [40] 桓台县室外灰尘 189—4250 24.6—459 [39] 桓台县室内灰尘 112—21723(4014) 20.2—1503(421) [25] 注:n.d.表示未检出,LOQ表示定量限,括号里的数字表示平均值.
Note: n.d., not detected; LOQ, limit of quantitation; the figures in brackets mean the average value.表 3 HFPO-TA和PFOA在生物体内分布
Table 3. Distribution of HFPO-TA and PFOA in organism
生物
OrganismHFPO-TA PFOA 参考文献
Reference小清河 鲤鱼血/(ng·mL−1)(中值) 1510 2190 [17] 鲤鱼肝/(ng·g−1 ww (湿重))(中值) 587 449 [17] 鲤鱼肉/(ng·g−1 ww(湿重))(中值) 118 73.6 [17] 山东桓台 雄黑斑蛙肾/(ng·g−1 ww(湿重)) (59.3) (43.6) [18] 雄黑斑蛙肝/(ng·g−1 ww(湿重)) (13.4) (5.95) [18] 雄黑斑蛙睾丸/(ng·g−1 ww(湿重)) (3.24) (2.54) [18] 雄黑斑蛙皮肤/(ng·g−1 ww(湿重)) (6.10) (2.47) [18] 雄黑斑蛙肺/(ng·g−1 ww(湿重)) (3.93) (1.74) [18] 雄黑斑蛙心/(ng·g−1 ww(湿重)) (7.39) (2.30) [18] 雄黑斑蛙胃/(ng·g−1 ww(湿重)) (1.96) (0.94) [18] 雄黑斑蛙肠/(ng·g−1 ww(湿重)) (0.93) (0.63) [18] 雄黑斑蛙肉/(ng·g−1 ww(湿重)) (1.76) (1.06) [18] 雄黑斑蛙残体/(ng·g−1 ww(湿重)) (1.08) (1.06) [18] 小麦/(ng·g−1 dw(干重)) 2.81—5.37(3.71) 3.99—56.8(35.1) [25] 玉米/(ng·g−1 dw(干重)) 0.39—1.09(0.68) 0.31—4.56(1.59) [25] 蔬菜/(ng·g−1 dw(干重)) n.d. —341(45.1) 3.44—768(130) [25] 牛奶/(ng·g−1 dw(干重)) 0.74—10.9(2.47) n.d. —2.74(0.86) [25] 鸡蛋/(ng·g−1 dw(干重)) 0.11—2014(390) 0.30—1316(305) [25] 海产品/(ng·g−1 dw(干重)) n.d. —4.63(1.14) 0.42—87.7(16.8) [25] 小清河河口 浮游生物/(ng·g−1 dw(干重)) 13.6—62.4(34.6) 64.3—165(97.5) [10] 双壳类/(ng·g−1 dw(干重)) 0.84—13.7(9.14) 52.7—682(339) [10] 甲壳类/(ng·g−1 dw(干重)) 20.9—138(72.2) 136—171(148) [10] 腹足类/(ng·g−1 dw(干重)) 2.62—3.62(3.16) 44.7—47.7(46.0) [10] 鱼类/(ng·g−1 dw(干重)) 11.9—188(67.4) 23.5—319(138) [10] 北京 健康女性卵泡液/(ng·mL−1) n.d. —0.36 1.15—596 [55] 山东桓台 居民血清/(ng·mL−1)(中值)(2016年) 2.93 126 [17] 居民血清/(ng·mL−1)(中值)(2019—2020年) 1.93 172 [56] 居民尿液/(ng·mL−1) 0.75—194(22.7) 0.19—34.2(7.30) [25] 居民头发/(ng·g−1) n.d. —52.1(14.7) 18.3—1390(277) [25] 注:n.d.表示未检出,括号里的数字表示平均值.
Note: n.d., not detected; the figures in brackets mean the average value. -
[1] ZHANG C H, McELROY A C, LIBERATORE H K, et al. Stability of per- and polyfluoroalkyl substances in solvents relevant to environmental and toxicological analysis[J]. Environmental Science & Technology, 2022, 56(10): 6103-6112. [2] KIRKWOOD K I, FLEMING J, NGUYEN H, et al. Utilizing pine needles to temporally and spatially profile per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science & Technology, 2022, 56(6): 3441-3451. [3] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [4] WANG Z Y, DeWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 2017, 51(5): 2508-2518. [5] GOBELIUS L, HEDLUND J, DÜRIG W, et al. Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: Implications for environmental quality standards and drinking water guidelines[J]. Environmental Science & Technology, 2018, 52(7): 4340-4349. [6] MARTIN J W, SMITHWICK M M, BRAUNE B M, et al. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic[J]. Environmental Science & Technology, 2004, 38(2): 373-380. [7] LAM N H, CHO C R, KANNAN K, et al. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles[J]. Journal of Hazardous Materials, 2017, 323: 116-127. doi: 10.1016/j.jhazmat.2016.04.010 [8] KANNAN K, TAO L, SINCLAIR E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a great lakes food chain[J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566. doi: 10.1007/s00244-004-0133-x [9] STEENLAND K, FLETCHER T, SAVITZ D A. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA)[J]. Environmental Health Perspectives, 2010, 118(8): 1100-1108. doi: 10.1289/ehp.0901827 [10] LI Y N, YAO J Z, ZHANG J, et al. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web[J]. Environmental Science & Technology, 2022, 56(10): 6046-6055. [11] SHENG N, PAN Y T, GUO Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), a novel perfluorooctanoic acid (PFOA) alternative, on mice[J]. Environmental Science & Technology, 2018, 52(14): 8005-8015. [12] SONG X W, VESTERGREN R, SHI Y L, et al. Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China[J]. Environmental Science & Technology, 2018, 52(17): 9694-9703. [13] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 2013, 60: 242-248. doi: 10.1016/j.envint.2013.08.021 [14] STRYNAR M, DAGNINO S, McMAHEN R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS)[J]. Environmental Science & Technology, 2015, 49(19): 11622-11630. [15] GEBBINK W A, van ASSELDONK L, van LEEUWEN S P J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands[J]. Environmental Science & Technology, 2017, 51(19): 11057-11065. [16] EVICH M G, DAVIS M J B, McCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): eabg9065. doi: 10.1126/science.abg9065 [17] PAN Y T, ZHANG H X, CUI Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern[J]. Environmental Science & Technology, 2017, 51(17): 9553-9560. [18] CUI Q Q, PAN Y T, ZHANG H X, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus)[J]. Environmental Science & Technology, 2018, 52(3): 982-990. [19] GOSS K U. The pKa values of PFOA and other highly fluorinated carboxylic acids[J]. Environmental Science & Technology, 2008, 42(2): 456-458. [20] DEBRUYN A M H, GOBAS F A P C. The sorptive capacity of animal protein[J]. Environmental Toxicology and Chemistry, 2007, 26(9): 1803-1808. doi: 10.1897/07-016R.1 [21] 中华人民共和国工业和信息化部. 《国家鼓励的有毒有害原料(产品)替代品目录(2016年版)》 [EB/OL]. 2016-12-27. CHINESE MINISTRY OF INDUSTRY AND INFORMATION TECHNOLOGY. List of toxic and hazardous raw materials (products) substitutes encouraged by the state[EB/OL]. 2016-12-27.
[22] 钱力波, 黄美薇, 苏兆本, 等. 六氟环氧丙烷三聚体羧酸(HFPO-TA)环境和生态毒性研究进展[J]. 有机氟工业, 2021(4): 31-38. QIAN L B, HUANG M W, SU Z B, et al. Research progress in environmental and ecological toxicity of hexafluoropropene oxide trimer carboxylic acid(HFPO-TA)[J]. Organo-Fluorine Industry, 2021(4): 31-38 (in Chinese).
[23] OGINO K, MURAKAMI H, ISHIKAWA N, et al. Synthesis of fluorinated surfactants containing hexafluoropropene oxide as a hydrophobic group and properties of the solutions[J]. Journal of Japan Oil Chemists’ Society, 1983, 32(2): 96-101. doi: 10.5650/jos1956.32.96 [24] 王汉利, 李秀芬, 石慧. 无PFOA的含氟表面活性剂对PVDF树脂合成的影响[J]. 涂料技术与文摘, 2015, 36(11): 9-12. WANG H L, LI X F, SHI H. Influence of PFOA-free fluoro-containing surfactant on synthesis of PVDF resin[J]. Coatings Technology & Abstracts, 2015, 36(11): 9-12 (in Chinese).
[25] FENG X M, CHEN X, YANG Y, et al. External and internal human exposure to PFOA and HFPOs around a mega fluorochemical industrial park, China: Differences and implications[J]. Environment International, 2021, 157: 106824. doi: 10.1016/j.envint.2021.106824 [26] 陆雯, 张冰冰, 朱鹰, 等. PFOA替代品研究及其在氟橡胶中的应用[J]. 有机氟工业, 2011(2): 20-23. LU W, ZHANG B B, ZHU Y, et al. Study on the PFOA substitute and its application in the polymerization of fluoroelastomer[J]. Organo- Fluorine Industry, 2011(2): 20-23 (in Chinese).
[27] RICE P A, COOPER J, KOH-FALLET S E, et al. Comparative analysis of the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS[J]. Toxicology and Applied Pharmacology, 2021, 422: 115531. doi: 10.1016/j.taap.2021.115531 [28] SIANESI D, ZAMBONI V, FONTANELLI R, et al. Perfluoropolyethers: Their physical properties and behaviour at high and low temperatures[J]. Wear, 1971, 18(2): 85-100. doi: 10.1016/0043-1648(71)90158-X [29] JONES W R, SHOGRIN B A, JANSEN M J. Research on liquid lubricants for space mechanisms[J]. Journal of Synthetic Lubrication, 2000, 17(2): 109-122. doi: 10.1002/jsl.3000170203 [30] LIU Z Y, XU C, JOHNSON A C, et al. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China[J]. Science of the Total Environment, 2022, 827: 154413. doi: 10.1016/j.scitotenv.2022.154413 [31] FENG X M, YE M Q, LI Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea[J]. Journal of Hazardous Materials, 2020, 389: 122124. doi: 10.1016/j.jhazmat.2020.122124 [32] TANG A P, ZHANG X H, LI R F, et al. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China[J]. Chemosphere, 2022, 295: 133855. doi: 10.1016/j.chemosphere.2022.133855 [33] ZHOU J, LI S J, LIANG X X, et al. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China[J]. Journal of Hazardous Materials, 2021, 404: 124134. doi: 10.1016/j.jhazmat.2020.124134 [34] CHEN H, YAO Y M, ZHAO Z, et al. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China[J]. Environmental Science & Technology, 2018, 52(15): 8263-8271. [35] PAN Y T, ZHANG H X, CUI Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14): 7621-7629. [36] YAO J Z, SHENG N, GUO Y, et al. Nontargeted identification and temporal trends of per- and polyfluoroalkyl substances in a fluorochemical industrial zone and adjacent Taihu Lake[J]. Environmental Science & Technology, 2022, 56(12): 7986-7996. [37] LI Y, FENG X M, ZHOU J, et al. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River Basin in China using receptor models and isomeric fingerprints[J]. Water Research, 2020, 168: 115145. doi: 10.1016/j.watres.2019.115145 [38] QU Y X, JIANG X S, CAGNETTA G, et al. Poly- and perfluoroalkyl substances in a drinking water treatment plant in the Yangtze River Delta of China: Temporal trend, removal and human health risk[J]. Science of the Total Environment, 2019, 696: 133949. doi: 10.1016/j.scitotenv.2019.133949 [39] 冯雪敏. 典型环境中新型全氟/多氟化合物的污染特征及人体内外暴露研究[D]. 天津: 南开大学, 2021: 61-105. FENG X M. Pollution characteristics and human external and internal exposure of novel per-/poly-fluoroalkyl substances in typical environment[D]. Tianjin: Nankai University, 2021: 61-105. (in Chinese)
[40] XU C, SONG X, LIU Z Y, et al. Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China[J]. Science of the Total Environment, 2021, 776: 145731. doi: 10.1016/j.scitotenv.2021.145731 [41] LEE H J, KIM K Y, HAMM S Y, et al. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea[J]. Science of the Total Environment, 2019, 659: 168-176. doi: 10.1016/j.scitotenv.2018.12.258 [42] XIAO J, WANG L Q, DENG L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau[J]. Science of the Total Environment, 2019, 650: 2004-2012. doi: 10.1016/j.scitotenv.2018.09.322 [43] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19): 7954-7961. [44] DOMINGO J L, ERICSON-JOGSTEN I, PERELLó G, et al. Human exposure to perfluorinated compounds in Catalonia, Spain: Contribution of drinking water and fish and shellfish[J]. Journal of Agricultural and Food Chemistry, 2012, 60(17): 4408-4415. doi: 10.1021/jf300355c [45] INGELIDO A M, ABBALLE A, GEMMA S, et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto Region, Italy[J]. Environment International, 2018, 110: 149-159. doi: 10.1016/j.envint.2017.10.026 [46] APPLEMAN T D, HIGGINS C P, QUIÑONES O, et al. Treatment of poly- and perfluoroalkyl substances in U. S. full-scale water treatment systems[J]. Water Research, 2014, 51: 246-255. doi: 10.1016/j.watres.2013.10.067 [47] LI Y N, LI J F, ZHANG L F, et al. Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks[J]. Environment International, 2019, 123: 87-95. doi: 10.1016/j.envint.2018.11.036 [48] LU Z B, SONG L N, ZHAO Z, et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of Eastern China[J]. Chemosphere, 2015, 119: 820-827. doi: 10.1016/j.chemosphere.2014.08.045 [49] PAN C G, LIU Y S, YING G G. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk[J]. Water Research, 2016, 106: 562-570. doi: 10.1016/j.watres.2016.10.045 [50] GE H, YAMAZAKI E, YAMASHITA N, et al. Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian cities[J]. Environmental Science: Processes & Impacts, 2017, 19(4): 549-560. [51] 何鹏飞, 张鸿, 李静, 等. 深圳市大气中全氟化合物的残留特征[J]. 环境科学, 2016, 37(4): 1240-1247. doi: 10.13227/j.hjkx.2016.04.007 HE P F, ZHANG H, LI J, et al. Residue characteristics of perfluorinated compounds in the atmosphere of Shenzhen[J]. Environmental Science, 2016, 37: 1240-1247 (in Chinese). doi: 10.13227/j.hjkx.2016.04.007
[52] 崔毓莹, 牛夏梦, 唐佳伟, 等. 北京市典型垃圾填埋场渗滤液中PFASs污染水平研究[J]. 环境化学, 2019, 38(9): 2038-2046. doi: 10.7524/j.issn.0254-6108.2018120601 CUI Y Y, NIU X M, TANG J W, et al. Distribution and pollution level of PFASs in leachate from typical refuse landfills in Beijing[J]. Environmental Chemistry, 2019, 38(9): 2038-2046 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018120601
[53] LIU Z Y, XU C, JOHNSON A C, et al. Source apportionment and crop bioaccumulation of perfluoroalkyl acids and novel alternatives in an industrial-intensive region with fluorochemical production, China: Health implications for human exposure[J]. Journal of Hazardous Materials, 2022, 423: 127019. doi: 10.1016/j.jhazmat.2021.127019 [54] GEBBINK W A, van LEEUWEN S P J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands[J]. Environment International, 2020, 137: 105583. doi: 10.1016/j.envint.2020.105583 [55] KANG Q Y, GAO F M, ZHANG X H, et al. Nontargeted identification of per- and polyfluoroalkyl substances in human follicular fluid and their blood-follicle transfer[J]. Environment International, 2020, 139: 105686. doi: 10.1016/j.envint.2020.105686 [56] YAO J Z, PAN Y T, SHENG N, et al. Novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs): Occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in China[J]. Environmental Science & Technology, 2020, 54(21): 13389-13398. [57] INOUE Y, HASHIZUME N, YAKATA N, et al. Unique physicochemical properties of perfluorinated compounds and their bioconcentration in common carpCyprinus carpio L[J]. Archives of Environmental Contamination and Toxicology, 2012, 62(4): 672-680. doi: 10.1007/s00244-011-9730-7 [58] LIU M L, DONG F F, YI S J, et al. Probing mechanisms for the tissue-specific distribution and biotransformation of perfluoroalkyl phosphinic acids in common carp (Cyprinus carpio)[J]. Environmental Science & Technology, 2020, 54(8): 4932-4941. [59] CHEN F F, GONG Z Y, KELLY B C. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and-phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates[J]. Science of the Total Environment, 2016, 568: 33-41. doi: 10.1016/j.scitotenv.2016.05.215 [60] CHEN M, GUO T T, HE K Y, et al. Biotransformation and bioconcentration of 6: 2 and 8: 2 polyfluoroalkyl phosphate diesters in common carp (Cyprinus carpio): Underestimated ecological risks[J]. Science of the Total Environment, 2019, 656: 201-208. doi: 10.1016/j.scitotenv.2018.11.297 [61] SUN S J, WANG J S, YAO J Z, et al. Transcriptome analysis of 3D primary mouse liver spheroids shows that long-term exposure to hexafluoropropylene oxide trimer acid disrupts hepatic bile acid metabolism[J]. Science of the Total Environment, 2022, 812: 151509. doi: 10.1016/j.scitotenv.2021.151509 [62] XIN Y, REN X M, WAN B, et al. Comparative in vitro and in vivo evaluation of the estrogenic effect of hexafluoropropylene oxide homologues [J]. Environmental Science & Technology, 2019, 53(14): 8371-8380. [63] PENG B X, LI F F, MORTIMER M, et al. Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier[J]. Science of the Total Environment, 2022, 846: 157313. doi: 10.1016/j.scitotenv.2022.157313 [64] PAN Y F, QIN H, ZHENG L, et al. Disturbance in transcriptomic profile, proliferation and multipotency in human mesenchymal stem cells caused by hexafluoropropylene oxides[J]. Environmental Pollution, 2022, 292: 118483. doi: 10.1016/j.envpol.2021.118483 [65] SHENG N, CUI R N, WANG J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein[J]. Archives of Toxicology, 2018, 92(1): 359-369. doi: 10.1007/s00204-017-2055-1 [66] HAGENAARS A, KNAPEN D, MEYER I J, et al. Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio)[J]. Aquatic Toxicology, 2008, 88(3): 155-163. doi: 10.1016/j.aquatox.2008.04.002 [67] QUIST E M, FILGO A J, CUMMINGS C A, et al. Hepatic mitochondrial alteration in CD-1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)[J]. Toxicologic Pathology, 2015, 43(4): 546-557. doi: 10.1177/0192623314551841 [68] YI S J, CHEN P Y, YANG L P, et al. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: Implication of structural specificity[J]. Environment International, 2019, 133: 105262. doi: 10.1016/j.envint.2019.105262 [69] LI K, GAO P, XIANG P, et al. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks[J]. Environment International, 2017, 99: 43-54. doi: 10.1016/j.envint.2016.11.014 [70] XIE X X, ZHOU J F, HU L T, et al. Oral exposure to a hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts mitochondrial function and biogenesis in mice[J]. Journal of Hazardous Materials, 2022, 430: 128376. doi: 10.1016/j.jhazmat.2022.128376 [71] LIANG S X, LIANG G Q, ZHANG Y, et al. Profiling biotoxicities of hexafluoropropylene oxide trimer acid with human embryonic stem cell-based assays[J]. Journal of Environmental Sciences, 2022, 116: 34-42. doi: 10.1016/j.jes.2021.08.012 [72] LI C H, REN X M, GUO L H. Adipogenic activity of oligomeric hexafluoropropylene oxide (perfluorooctanoic acid alternative) through peroxisome proliferator-activated receptor γ pathway[J]. Environmental Science & Technology, 2019, 53(6): 3287-3295. [73] HU L T, SUN L, ZHOU J F, et al. Impact of a hexafluoropropylene oxide trimer acid (HFPO-TA) exposure on impairing the gut microbiota in mice[J]. Chemosphere, 2022, 303: 134951. doi: 10.1016/j.chemosphere.2022.134951 [74] KE Y C, TONG T L, CHEN J F, et al. Influences of hexafluoropropylene oxide (HFPO) homologues on soil microbial communities[J]. Chemosphere, 2020, 259: 127504. doi: 10.1016/j.chemosphere.2020.127504 [75] BAO Y X, CAGNETTA G, HUANG J, et al. Degradation of hexafluoropropylene oxide oligomer acids as PFOA alternatives in simulated nanofiltration concentrate: Effect of molecular structure[J]. Chemical Engineering Journal, 2020, 382: 122866. doi: 10.1016/j.cej.2019.122866 [76] BENTEL M J, YU Y C, XU L H, et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: Structure-reactivity relationships and environmental implications[J]. Environmental Science & Technology, 2020, 54(4): 2489-2499. [77] LI C, MI N, CHEN Z H, et al. Photodegradation of hexafluoropropylene oxide trimer acid under UV irradiation[J]. Journal of Environmental Sciences, 2020, 97: 132-140. doi: 10.1016/j.jes.2020.05.006 [78] CHEN Z H, TENG Y, HUANG L Q, et al. Rapid photo-reductive destruction of hexafluoropropylene oxide trimer acid (HFPO-TA) by a stable self-assembled micelle system of producing hydrated electrons[J]. Chemical Engineering Journal, 2021, 420: 130436. doi: 10.1016/j.cej.2021.130436