[1] 周林军, 梁梦园, 范德玲, 等. 新污染物环境监测国际实践及启示[J]. 生态与农村环境学报, 2021, 37(12): 1532-1539. doi: 10.19741/j.issn.1673-4831.2021.0293 ZHOU L J, LIANG M Y, FAN D L, et al. International practices and enlightenment for environment monitoring of emerging pollutants[J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1532-1539(in Chinese). doi: 10.19741/j.issn.1673-4831.2021.0293
[2] SOLÁ-GUTIÉRREZ C, SCHRÖDER S, SAN-ROMÁN M F, et al. Critical review on the mechanistic photolytic and photocatalytic degradation of triclosan[J]. Journal of Environmental Management, 2020, 260: 110101. doi: 10.1016/j.jenvman.2020.110101
[3] BAI Y, ZHOU Y L, CHE X W, et al. Indirect photodegradation of sulfadiazine in the presence of DOM: Effects of DOM components and main seawater constituents[J]. Environmental Pollution, 2021, 268: 115689. doi: 10.1016/j.envpol.2020.115689
[4] LI Y J, QIAO X L, ZHOU C Z, et al. Photochemical transformation of sunscreen agent benzophenone-3 and its metabolite in surface freshwater and seawater[J]. Chemosphere, 2016, 153: 494-499. doi: 10.1016/j.chemosphere.2016.03.080
[5] BAO Y P, NIU J F. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors[J]. Chemosphere, 2015, 134: 550-556. doi: 10.1016/j.chemosphere.2014.12.016
[6] de LAURENTIIS E, MINELLA M, SARAKHA M, et al. Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: Reaction pathways and implications for surface waters[J]. Water Research, 2013, 47(15): 5943-5953. doi: 10.1016/j.watres.2013.07.017
[7] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学: 化学, 2010, 40(2): 124-135. doi: 10.1360/zb2010-40-2-124 GE L K, ZHANG S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics[J]. Scientia Sinica Chimica), 2010, 40(2): 124-135(in Chinese). doi: 10.1360/zb2010-40-2-124
[8] GE L K, ZHANG P, HALSALL C, et al. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: Kinetics, pathways, and comparisons with direct photolysis[J]. Water Research, 2019, 149: 243-250. doi: 10.1016/j.watres.2018.11.009
[9] AL HOUSARI F, VIONE D, CHIRON S, et al. Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes[J]. Photochemical & Photobiological Sciences, 2010, 9(1): 78-86.
[10] WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science & Technology, 2011, 45(4): 1334-1340.
[11] TIMKO S A, ROMERA-CASTILLO C, JAFFÉ R, et al. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 866-878.
[12] CHEN X, WANG J Q, CHEN J W, et al. Photodegradation of 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P) in coastal seawaters: Important role of DOM[J]. Journal of Environmental Sciences (China), 2019, 85: 129-137. doi: 10.1016/j.jes.2019.05.017
[13] AIKEN G R, GILMOUR C C, KRABBENHOFT D P, et al. Dissolved organic matter in the Florida Everglades: Implications for ecosystem restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(sup1): 217-248. doi: 10.1080/10643389.2010.530934
[14] 刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响[J]. 环境科学与技术, 2017, 40(1): 85-94. LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants[J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
[15] 杜超. 不同来源腐殖酸及其组分光致产生活性氧物种能力的研究[D]. 南京: 南京农业大学, 2019. DU C. The ability of photo-induced reactive oxygen species from different sources of humic acid and its components[D]. Nanjing: Nanjing Agricultural University, 2019(in Chinese).
[16] COBLE P G, GREEN S A, BLOUGH N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348(6300): 432-435. doi: 10.1038/348432a0
[17] KOWALCZUK P, DURAKO M J, YOUNG H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability[J]. Marine Chemistry, 2009, 113(3/4): 182-196.
[18] ZHANG H F, ZHENG Y C, WANG X C, et al. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments[J]. Journal of Environmental Management, 2021, 294: 113041. doi: 10.1016/j.jenvman.2021.113041
[19] STEDMON C A, MARKAGER S. Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing[J]. Estuarine, Coastal and Shelf Science, 2003, 57(5/6): 973-979.
[20] 任东, 陈芳, 蒲红玉, 等. 溶解有机质的光化学行为及其环境效应[J]. 生态与农村环境学报, 2019, 35(5): 563-572. doi: 10.19741/j.issn.1673-4831.2018.0319 REN D, CHEN F, PU H Y, et al. Photochemical behaviors and environmental effects of dissolved organic matter[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 563-572(in Chinese). doi: 10.19741/j.issn.1673-4831.2018.0319
[21] ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-2017.
[22] MENG F G, HUANG G C, YANG X, et al. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers[J]. Water Research, 2013, 47(14): 5027-5039. doi: 10.1016/j.watres.2013.05.043
[23] DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities[J]. Water Research, 2019, 163: 114908. doi: 10.1016/j.watres.2019.114908
[24] ARTIFON V, ZANARDI-LAMARDO E, FILLMANN G. Aquatic organic matter: Classification and interaction with organic microcontaminants[J]. Science of the Total Environment, 2019, 649: 1620-1635. doi: 10.1016/j.scitotenv.2018.08.385
[25] CONNOLLY C T, CARDENAS M B, BURKART G A, et al. Groundwater as a major source of dissolved organic matter to Arctic coastal waters[J]. Nature Communications, 2020, 11: 1479. doi: 10.1038/s41467-020-15250-8
[26] HOSEN J D, ARMSTRONG A W, PALMER M A. Dissolved organic matter variations in coastal plain wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality[J]. Hydrological Processes, 2018, 32(11): 1664-1681. doi: 10.1002/hyp.11519
[27] MELENDEZ-PEREZ J J, MARTÍNEZ-MEJÍA M J, AWAN A T, et al. Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry[J]. Organic Geochemistry, 2016, 101: 99-107. doi: 10.1016/j.orggeochem.2016.08.005
[28] SONG N, JIANG H L. Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: Dual role of solar irradiation[J]. Water Research, 2020, 172: 115516. doi: 10.1016/j.watres.2020.115516
[29] 郭忠禹, 陈景文, 张思玉, 等. 天然水中溶解性有机质对有机微污染物光化学转化的影响[J]. 科学通报, 2020, 65(26): 2786-2803. doi: 10.1360/TB-2020-0791 GUO Z Y, CHEN J W, ZHANG S Y, et al. Effects of dissolved organic matter on photochemical transformation of organic micropollutants in natural waters[J]. Chinese Science Bulletin, 2020, 65(26): 2786-2803(in Chinese). doi: 10.1360/TB-2020-0791
[30] ZHANG D N, YAN S W, SONG W H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter[J]. Environmental Science & Technology, 2014, 48(21): 12645-12653.
[31] CANONICA S, FREIBURGHAUS M. Electron-rich phenols for probing the photochemical reactivity of freshwaters[J]. Environmental Science & Technology, 2001, 35(4): 690-695.
[32] BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin[J]. Water Research, 2017, 110: 170-179. doi: 10.1016/j.watres.2016.12.016
[33] ZHOU C Z, CHEN J W, XIE Q, et al. Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater[J]. Chemosphere, 2015, 138: 792-797.
[34] 邰超, 李雁宾, 阴永光, 等. 天然水体中可溶性有机质的自由基光化学行为[J]. 化学进展, 2012, 24(7): 1388-1397. TAI C, LI Y B, YIN Y G, et al. Free radical photochemistry of dissolved organic matter in natural water[J]. Progress in Chemistry, 2012, 24(7): 1388-1397(in Chinese).
[35] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species[J]. Chemistry - A European Journal, 2014, 20(34): 10590-10606. doi: 10.1002/chem.201400413
[36] JI Y F, ZENG C, FERRONATO C, et al. Nitrate-induced photodegradation of atenolol in aqueous solution: Kinetics, toxicity and degradation pathways[J]. Chemosphere, 2012, 88(5): 644-649. doi: 10.1016/j.chemosphere.2012.03.050
[37] ZHANG K, PARKER K M. Halogen radical oxidants in natural and engineered aquatic systems[J]. Environmental Science & Technology, 2018, 52(17): 9579-9594.
[38] ZHANG H Q, XIE H B, CHEN J W, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: A quantum chemical study on cephradine[J]. Environmental Science & Technology, 2015, 49(3): 1552-1558.
[39] LEAL J F, ESTEVES V I, SANTOS E B H. BDE-209: Kinetic studies and effect of humic substances on photodegradation in water[J]. Environmental Science & Technology, 2013, 47(24): 14010-14017.
[40] REMUCAL C K. The role of indirect photochemical degradation in the environmental fate of pesticides: A review[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 628-653.
[41] DABIĆ D, BABIĆ S, ŠKORIĆ I. The role of photodegradation in the environmental fate of hydroxychloroquine[J]. Chemosphere, 2019, 230: 268-277. doi: 10.1016/j.chemosphere.2019.05.032
[42] GARCÍA P E, QUEIMALIÑOS C, DIÉGUEZ M C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic systems: Influence of the dissolved organic matter pool[J]. Chemosphere, 2019, 217: 550-557. doi: 10.1016/j.chemosphere.2018.10.179
[43] CHIWA M, HIGASHI N, OTSUKI K, et al. Sources of hydroxyl radical in headwater streams from nitrogen-saturated forest[J]. Chemosphere, 2015, 119: 1386-1390. doi: 10.1016/j.chemosphere.2014.02.046
[44] ZENG T, ARNOLD W A. Pesticide photolysis in prairie potholes: Probing photosensitized processes[J]. Environmental Science & Technology, 2013, 47(13): 6735-6745.
[45] CARENA L, FABBRI D, PASSANANTI M, et al. The role of direct photolysis in the photodegradation of the herbicide bentazone in natural surface waters[J]. Chemosphere, 2020, 246: 125705. doi: 10.1016/j.chemosphere.2019.125705
[46] GERECKE A C, CANONICA S, MÜLLER S R, et al. Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes[J]. Environmental Science & Technology, 2001, 35(19): 3915-3923.
[47] BERTOLDI C, RODRIGUES A G, FERNANDES A N. Removal of endocrine disrupters in water under artificial light: The effect of organic matter[J]. Journal of Water Process Engineering, 2019, 27: 126-133. doi: 10.1016/j.jwpe.2018.11.016
[48] JIA C Z, WANG Y X, ZHANG C X, et al. Photocatalytic degradation of bisphenol A in aqueous suspensions of titanium dioxide[J]. Environmental Engineering Science, 2012, 29(7): 630-637. doi: 10.1089/ees.2011.0132
[49] LEE J H, ZHOU J L, LEE Y, et al. Changes in the sorption and rate of 17β-estradiol biodegradation by dissolved organic matter collected from different water sources[J]. Journal of Environmental Monitoring: JEM, 2012, 14(2): 543-551. doi: 10.1039/C1EM10690B
[50] XUE S, SUN J J, LIU Y, et al. Effect of dissolved organic matter fractions on photodegradation of phenanthrene in ice[J]. Journal of Hazardous Materials, 2019, 361: 30-36. doi: 10.1016/j.jhazmat.2018.08.072
[51] OZAKI N, TANAKA T, KINDAICHI T, et al. Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation[J]. Environmental Technology & Innovation, 2021, 23: 101766.
[52] CARENA L, MINELLA M, BARSOTTI F, et al. Phototransformation of the herbicide propanil in paddy field water[J]. Environmental Science & Technology, 2017, 51(5): 2695-2704.
[53] 任文华, 肖玉梅, 黄金莉, 等. 丁吡吗啉在腐殖酸存在下的光降解[J]. 农药, 2020, 59(3): 193-196, 208. REN W H, XIAO Y M, HUANG J L, et al. The photolysis of pyrimorph on the effect of humic acid[J]. Agrochemicals, 2020, 59(3): 193-196, 208(in Chinese).
[54] 郑晓冬, 乔显亮, 肖杰, 等. 水中溶解性有机质对三氯生光解的影响[J]. 环境科学与技术, 2013, 36(10): 182-185. ZHENG X D, QIAO X L, XIAO J, et al. Photolysis of TCS by DOM in water[J]. Environmental Science & Technology, 2013, 36(10): 182-185(in Chinese).
[55] 刘师宇, 向武, 黄碧捷, 等. 腐殖酸和β-环糊精对阿特拉津光降解的影响[J]. 环境科学与技术, 2017, 40(7): 93-96. LIU S Y, XIANG W, HUANG B J, et al. Effects of humic acids and β-cyclodextrins on photodegradation of atrazine[J]. Environmental Science & Technology, 2017, 40(7): 93-96(in Chinese).
[56] DIMOU A D, SAKKAS V A, ALBANIS T A. Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: Kinetics and photoproduct analysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 473-480. doi: 10.1016/j.jphotochem.2004.02.001
[57] TIAN Y J, ZOU J R, FENG L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs[J]. Water Research, 2019, 149: 35-41. doi: 10.1016/j.watres.2018.10.076
[58] MANSOUR M, FEICHT E A, BEHECHTI A, et al. Experimental approaches to studying the photostability of selected pesticides in water and soil[J]. Chemosphere, 1997, 35(1/2): 39-50.
[59] 任东, 杨小霞, 马晓冬, 等. DOM结构特征及其对17β-雌二醇光降解的影响[J]. 中国环境科学, 2015, 35(5): 1375-1383. doi: 10.3969/j.issn.1000-6923.2015.05.012 REN D, YANG X X, MA X D, et al. Structural characteristics of DOM and its effects on the photodegradation of 17β-estradiol[J]. China Environmental Science, 2015, 35(5): 1375-1383(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.05.012
[60] REN D, CHEN F, REN Z G, et al. Different response of 17α-ethinylestradiol photodegradation induced by aquatic humic and fulvic acids to typical water matrixes[J]. Process Safety and Environmental Protection, 2019, 121: 367-373. doi: 10.1016/j.psep.2018.11.018
[61] WANG J Q, CHEN J W, QIAO X L, et al. Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2, 4-Dihydroxybenzophenone[J]. Water Research, 2019, 151: 280-287. doi: 10.1016/j.watres.2018.12.045
[62] 白莹, 崔正国, 苏荣国, 等. 水体中布洛芬的间接光降解作用机理研究[J]. 中国环境科学, 2019, 39(7): 2831-2837. doi: 10.3969/j.issn.1000-6923.2019.07.017 BAI Y, CUI Z G, SU R G, et al. The indirect photodegradation mechanism of ibuprofen in simulated seawater[J]. China Environmental Science, 2019, 39(7): 2831-2837(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.07.017
[63] BAI Y, CUI Z G, SU R G, et al. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters[J]. Chemosphere, 2018, 205: 108-117. doi: 10.1016/j.chemosphere.2018.04.087
[64] POWELL H K J, FENTON E. Size fractionation of humic substances: Effect on protonation and metal binding properties[J]. Analytica Chimica Acta, 1996, 334(1/2): 27-38.
[65] KOIVULA N, HÄNNINEN K. Concentrations of monosaccharides in humic substances in the early stages of humification[J]. Chemosphere, 2001, 44(2): 271-279. doi: 10.1016/S0045-6535(00)00167-3
[66] 傅平青, 刘丛强, 吴丰昌. 水环境中腐殖质金属离子键合作用研究进展[J]. 生态学杂志, 2004, 23(6): 143-148. doi: 10.13292/j.1000-4890.2004.0217 FU P Q, LIU C Q, WU F C. Binding of metal-ions with humic substances in aquatic environments: A review[J]. Chinese Journal of Ecology, 2004, 23(6): 143-148(in Chinese). doi: 10.13292/j.1000-4890.2004.0217
[67] 李会杰. 腐殖酸和富里酸的提取与表征研究[D]. 武汉: 华中科技大学, 2012. LI H J. Study on extraction and characterization of HA and FA[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese).
[68] 郝港利, 邓文博, 刘文娟. 芦芽山阔叶林土壤中腐殖酸和富里酸的提取与表征研究[J].山西大学学报(自然科学版),2023(4):961-968. HAO G L, DENG W B, LIU W J. Study on isolation and characterization of soil humic acid and fulvic acid in broadleaf forest from Luya mountain[J]. Journal of Shanxi University (Natural Science Edition), 2023(4):961-968.
[69] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents[J]. Environmental Science & Technology, 2010, 44(7): 2400-2405.
[70] THESE A, WINKLER M, THOMAS C, et al. Determination of molecular formulas and structural regularities of low molecular weight fulvic acids by size-exclusion chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2004, 18(16): 1777-1786. doi: 10.1002/rcm.1550
[71] 杜超, 程德义, 代静玉, 等. 不同来源溶解性有机质在光辐射下产生活性氧基团能力的差异[J]. 环境科学学报, 2019, 39(7): 2279-2287. doi: 10.13671/j.hjkxxb.2019.0094 DU C, CHENG D Y, DAI J Y, et al. Differences in the ability of dissolved organic matter from different sources to produce reactive oxygen species under light irradiation[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2279-2287(in Chinese). doi: 10.13671/j.hjkxxb.2019.0094
[72] FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176: 210-217. doi: 10.1016/j.biortech.2014.11.032
[73] del VECCHIO R, BLOUGH N V. On the origin of the optical properties of humic substances[J]. Environmental Science & Technology, 2004, 38(14): 3885-3891.
[74] NEBBIOSO A, PICCOLO A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid[J]. Analytica Chimica Acta, 2012, 720: 77-90. doi: 10.1016/j.aca.2012.01.027
[75] MINELLA M, ROMEO F, VIONE D, et al. Low to negligible photoactivity of lake-water matter in the size range from 0.1 to 5 μm[J]. Chemosphere, 2011, 83(11): 1480-1485. doi: 10.1016/j.chemosphere.2011.02.093
[76] MINELLA M, MERLO M P, MAURINO V, et al. Transformation of 2, 4, 6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures[J]. Chemosphere, 2013, 90(2): 306-311. doi: 10.1016/j.chemosphere.2012.07.013
[77] YUAN C Y, CHAKRABORTY M, CANONICA S, et al. Isoproturon reappearance after photosensitized degradation in the presence of triplet ketones or fulvic acids[J]. Environmental Science & Technology, 2016, 50(22): 12250-12257.
[78] JANSSEN E M L, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan[J]. Environmental Science & Technology, 2014, 48(9): 4916-4924.
[79] WENK J, AESCHBACHER M, SANDER M, et al. Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet-induced contaminant transformation[J]. Environmental Science & Technology, 2015, 49(14): 8541-8549.
[80] 郑国航, 邢明飞, 郝智能, 等. 固相萃取法分离富集环境水体中溶解性有机质的研究进展[J]. 环境化学, 2021, 40(8): 2288-2298. doi: 10.7524/j.issn.0254-6108.2021022403 ZHENG G H, XING M F, HAO Z N, et al. Isolation and concentration of dissolved organic matter by using solid phase extraction method in environmental waters[J]. Environmental Chemistry, 2021, 40(8): 2288-2298(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022403
[81] 王杰琼. 近岸海水中溶解性有机质对有机微污染物光降解行为的影响[D]. 大连: 大连理工大学, 2019. WANG J Q. Effects of dissolved organic matter extracted from coastal seawaters on photodegradation behavior of organic micropollutants[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
[82] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties[J]. Environmental Science. Processes & Impacts, 2016, 18(11): 1381-1399.
[83] HERBECK L S, UNGER D, WU Y, et al. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China[J]. Continental Shelf Research, 2013, 57: 92-104. doi: 10.1016/j.csr.2012.05.006
[84] WANG J Q, CHEN J W, QIAO X L, et al. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters[J]. Water Research, 2018, 144: 365-372. doi: 10.1016/j.watres.2018.07.043
[85] 郭忠禹. 海水溶解性有机质对磺胺氯哒嗪光降解的影响[D]. 大连: 大连理工大学, 2020. GUO Z Y. Photodegradation of sulfachloropyridazine in presence of seawater dissolved organic matter[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
[86] HELMS J R, STUBBINS A, PERDUE E M, et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence[J]. Marine Chemistry, 2013, 155: 81-91. doi: 10.1016/j.marchem.2013.05.015
[87] del VECCHIO R, BLOUGH N V. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling[J]. Marine Chemistry, 2002, 78(4): 231-253. doi: 10.1016/S0304-4203(02)00036-1
[88] SINGH S, D'SA E J, SWENSON E M. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)[J]. Science of the Total Environment, 2010, 408(16): 3211-3222. doi: 10.1016/j.scitotenv.2010.03.044
[89] YANG L, ZHANG J, YANG G P. Mixing behavior, biological and photolytic degradation of dissolved organic matter in the East China Sea and the Yellow Sea[J]. Science of the Total Environment, 2021, 762: 143164. doi: 10.1016/j.scitotenv.2020.143164
[90] BAI Y, SU R G, YAO Q Z, et al. Characterization of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the Yellow Sea using excitation-emission matrix spectroscopy (EEMs) and parallel factor analysis (PARAFAC)[J]. Estuaries and Coasts, 2017, 40(5): 1325-1345. doi: 10.1007/s12237-017-0221-6
[91] 纪美辰, 李思佳, 常明, 等. 二龙湖表层水体有色溶解有机物的光学特性及来源[J]. 环境科学研究, 2020, 33(8): 1821-1829. JI M C, LI S J, CHANG M, et al. Photometric characteristics and sources of colored dissolved organic matter in surface water from erlong lake[J]. Research of Environmental Sciences, 2020, 33(8): 1821-1829(in Chinese).
[92] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
[93] NIU X Z, LIU C, GUTIERREZ L, et al. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter[J]. Water Research, 2014, 66: 140-148. doi: 10.1016/j.watres.2014.08.017
[94] BARSOTTI F, GHIGO G, VIONE D. Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315: 87-93. doi: 10.1016/j.jphotochem.2015.09.012
[95] PENG N, WANG K F, LIU G G, et al. Quantifying interactions between propranolol and dissolved organic matter (DOM) from different sources using fluorescence spectroscopy[J]. Environmental Science and Pollution Research International, 2014, 21(7): 5217-5226. doi: 10.1007/s11356-013-2436-9
[96] BATISTA A P S, TEIXEIRA A C S C, COOPER W J, et al. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine[J]. Water Research, 2016, 93: 20-29. doi: 10.1016/j.watres.2015.11.036
[97] CAVANI L, HALLADJA S, TER HALLE A, et al. Relationship between photosensitizing and emission properties of peat humic acid fractions obtained by tangential ultrafiltration[J]. Environmental Science & Technology, 2009, 43(12): 4348-4354.
[98] ZHOU H X, LIAN L S, YAN S W, et al. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents[J]. Water Research, 2017, 112: 120-128. doi: 10.1016/j.watres.2017.01.048
[99] LIU Y Z, SUN H W, ZHANG L Q, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes[J]. Process Safety and Environmental Protection, 2017, 112: 335-341. doi: 10.1016/j.psep.2017.08.044
[100] PENG N, WANG K F, LIAO P P, et al. Dual roles of fulvic acid on the photodegradation of propranolol under different light-source irradiation[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 052050. doi: 10.1088/1755-1315/199/5/052050
[101] 刘砚弘, 李威, 韩建刚. Fe(Ⅲ)对不同来源溶解性有机质的光化学活性的影响[J]. 农业环境科学学报, 2019, 38(11): 2563-2572. doi: 10.11654/jaes.2019-0411 LIU Y H, LI W, HAN J G. Effect of Fe(Ⅲ)on the photochemical activity of dissolved organic matter from different sources[J]. Journal of Agro-Environment Science, 2019, 38(11): 2563-2572(in Chinese). doi: 10.11654/jaes.2019-0411
[102] ZHAO Q, FANG Q, LIU H Y, et al. Halide-specific enhancement of photodegradation for sulfadiazine in estuarine waters: Roles of halogen radicals and main water constituents[J]. Water Research, 2019, 160: 209-216. doi: 10.1016/j.watres.2019.05.061
[103] PINTO M I, SALGADO R, COTTRELL B A, et al. Influence of dissolved organic matter on the photodegradation and volatilization kinetics of chlorpyrifos in coastal waters[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310: 189-196. doi: 10.1016/j.jphotochem.2015.05.024
[104] HOU Z C, FANG Q, LIU H Y, et al. Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters: Roles of triplet-excited dissolved organic matter and halogen radicals[J]. Environmental Pollution, 2021, 276: 116692. doi: 10.1016/j.envpol.2021.116692
[105] LI Y J, QIAO X L, ZHANG Y N, et al. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates[J]. Water Research, 2016, 102: 405-412. doi: 10.1016/j.watres.2016.06.054
[106] ZHANG X, WU F, WU X W, et al. Photodegradation of acetaminophen in TiO2 suspended solution[J]. Journal of Hazardous Materials, 2008, 157(2/3): 300-307.
[107] JIN X, XU H Z, QIU S S, et al. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 224-231. doi: 10.1016/j.jphotochem.2016.08.032
[108] BAENA-NOGUERAS R M, GONZÁLEZ-MAZO E, LARA-MARTÍN P A. Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation[J]. Science of the Total Environment, 2017, 590/591: 643-654. doi: 10.1016/j.scitotenv.2017.03.015
[109] 于莉莉, 钟晔, 孙福红, 等. pH值对滇池水体溶解性有机质(DOM)光降解作用的影响[J]. 光谱学与光谱分析, 2019, 39(8): 2533-2539. YU L L, ZHONG Y, SUN F H, et al. Effects of pH values on the photo-degradation of dissolved organic matter (DOM) from Dianchi Lake[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2533-2539(in Chinese).
[110] PACE M L, RECHE I, COLE J J, et al. pH change induces shifts in the size and light absorption of dissolved organic matter[J]. Biogeochemistry, 2012, 108(1/2/3): 109-118.
[111] ZHANG Y N, ZHAO J C, ZHOU Y J, et al. Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters[J]. Environmental Science. Processes & Impacts, 2019, 21(1): 155-162.
[112] CHU C J, SHAO M Y, WANG X. Dissolved biochar promoted photodegradation of tetracycline in aqueous environment[J]. E3S Web of Conferences, 2021, 251: 02055.
[113] GAO Y, YAN M Q, KORSHIN G V. Effects of ionic strength on the chromophores of dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(10): 5905-5912.
[114] PAN Y H, GARG S, WAITE T D, et al. Copper inhibition of triplet-induced reactions involving natural organic matter[J]. Environmental Science & Technology, 2018, 52(5): 2742-2750.
[115] PAN Y H, RUAN X X, GARG S, et al. Copper inhibition of triplet-sensitized phototransformation of phenolic and amine contaminants[J]. Environmental Science & Technology, 2020, 54(16): 9980-9989.
[116] RORABACHER D B. Electron transfer by copper centers[J]. Chemical Reviews, 2004, 104(2): 651-698. doi: 10.1021/cr020630e
[117] CIEŚLA P, KOCOT P, MYTYCH P, et al. Homogeneous photocatalysis by transition metal complexes in the environment[J]. Journal of Molecular Catalysis A: Chemical, 2004, 224(1/2): 17-33.
[118] WANG L, ZHANG C B, WU F, et al. Determination of hydroxyl radicals from photolysis of Fe(III)-pyruvate complexes in homogeneous aqueous solution[J]. Reaction Kinetics and Catalysis Letters, 2006, 89(1): 183-192. doi: 10.1007/s11144-006-0101-8
[119] LIU H, ZHAO H M, QUAN X, et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science & Technology, 2009, 43(20): 7712-7717.
[120] 庄晓虹, 喻婷, 胡桂娟, 等. 铁离子、铜离子及腐殖酸对壬基酚光降解的影响[J]. 辽宁大学学报(自然科学版), 2017, 44(1): 75-80. doi: 10.16197/j.cnki.lnunse.2017.01.015 ZHUANG X H, YU T, HU G J, et al. Effect of iron ions, copper ions and humic acid on nonylphenol's photodegradation[J]. Journal of Liaoning University (Natural Sciences Edition), 2017, 44(1): 75-80(in Chinese). doi: 10.16197/j.cnki.lnunse.2017.01.015
[121] WANG L, ZHANG C, MESTANKOVA H, et al. Photoinduced degradation of 2, 4-dichlorophenol in water: Influence of various Fe(Ⅲ) carboxylates[J]. Photochemical & Photobiological Sciences, 2009, 8(7): 1059-1065.
[122] 王丽苹. Fe0/H2O2类芬顿法对污泥脱水性能的改善及机理分析[D]. 广州: 华南理工大学, 2018. WANG L P. Improvement of waste activated sludge dewaterability by Fe~0/H2O2 Fenton-like process and its mechanism analysis[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
[123] 丁世敏, 涂建峰, 崔小平, 等. 类-Fenton体系对水中17β-雌二醇的光降解[J]. 环境污染治理技术与设备, 2005(7): 29-32. DING S M, TU J F, CUI X P, et al. Light induced degradation of 17β-estradiol in Fenton-like system[J]. Techniques and Equipment for Environmental Pollution Control, 2005(7): 29-32(in Chinese).
[124] 石陶然, 张远, 于涛, 等. 滇池沉积物不同分子量溶解性有机质分布及其与Cu和Pb的相互作用[J]. 环境科学研究, 2013, 26(2): 137-144. SHI T R, ZHANG Y, YU T, et al. Distribution of different molecular weight fractions of dissolved organic matters and their complexation with Cu and Pb in the sediment from Dianchi Lake, China[J]. Research of Environmental Sciences, 2013, 26(2): 137-144(in Chinese).
[125] WAN D, SHARMA V K, LIU L, et al. Mechanistic insight into the effect of metal ions on photogeneration of reactive species from dissolved organic matter[J]. Environmental Science & Technology, 2019, 53(10): 5778-5786.
[126] LIU H Y, ZHANG Z Y, TU Y N, et al. Dual roles of Cu2+ complexation with dissolved organic matter on the photodegradation of trace organic pollutants: Triplet- and OH-induced reactions[J]. Science of the Total Environment, 2022, 815: 152934. doi: 10.1016/j.scitotenv.2022.152934
[127] OGAWA K, GUO F Q, SCHANZE K S. Phosphorescence quenching of a platinum acetylide polymer by transition metal ions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207(1): 79-85. doi: 10.1016/j.jphotochem.2009.04.013