-
作为一种具有高毒性、生物累积和生物放大效应的重金属,汞(Hg)主要以气态形式被排放到大气中,随后可通过大气环流进行全球传输并沉降到陆地和海洋生态系统. 化石燃料燃烧、金属冶炼和垃圾焚烧等人为活动每年产生2000—3000 t的汞排放,而地质活动等自然源的每年汞排放量可达5500 t[1]. 目前,在无明显人为源的偏远地区也普遍检出汞[2],如青藏高原的海螺沟冰川融水中汞含量为6.96—10.78 ng·L-1[3],北极苔原也有显著大气汞沉降[4]. 为降低汞污染对生态系统与人体健康的危害,2013年世界上128个国家和地区签署了《关于汞的水俣公约》以减少汞的使用与人为排放[5],2018年全球人为导致的汞排放较2013年已出现下降[6]. 然而,由于历史上累积汞在表生环境中的再释放和循环,汞污染问题仍将长期存在[7]. 此外,全球变暖可能导致冰川与冻土中汞的释放[8],而升温引起的生态系统中初级生产力提高、生物习性改变以及食物网结构的变化也可能加剧生物体中汞的累积[9].
引起水俣病等公害事件的甲基汞(MeHg)是毒性最高的汞形态之一,其主要来源于硫酸盐还原菌、铁还原菌和产甲烷菌等含有hgcAB基因簇微生物的甲基化[10]. 甲基汞通过与含巯基的蛋白质结合,对生物体造成以神经系统为主的全身性损伤,并可跨过胎盘屏障导致先天性疾病[11-13]. 甲基汞的健康风险与甲基汞暴露直接相关,如食用鱼肉等水产品是甲基汞的重要暴露途径[12,14]. 尽管水中甲基汞在总汞中的占比通常较低,但鱼体中甲基汞可达总汞的95%左右[15],该现象主要是因为甲基汞的生物累积和生物放大效应. 作为海洋中的初级生产者,藻类具有极强的汞富集能力,部分藻中汞浓度可达水环境的103—106倍[16]. 藻类富集的甲基汞可通过食物链传递并在其他生物体内累积,甲基汞的营养级放大斜率可达0.15 —0.35,表现出显著的生物放大效应[17-20]. 同时,日趋严重的全球变暖、水体酸化和富营养化等问题带来了环境因子、藻类丰度、汞浓度与可利用性的新变化.
开展甲基汞在藻类中的富集过程研究以及这一过程对水体甲基汞生物累积与放大的关键影响研究对于揭示汞的生物富集、传递特性以及预测其风险至关重要. 因此,本文对藻类富集甲基汞的特征、机理及影响因素进行详细讨论,总结甲基汞在藻类中的分布、转化与后续营养传递特征,并对相关研究的发展方向进行展望.
藻类对甲基汞的富集与传递研究进展
Research progress on the bioconcentration of methylmercury in algae and its trophic transfer
-
摘要: 甲基汞是一种高毒性的污染物,其易累积在水生生物体内,从而对水生生态系统和人体健康产生危害. 作为水生生态系统的初级生产者,藻类控制着进入食物链的甲基汞浓度和总量. 藻类对甲基汞的显著富集作用及水生食物链传递过程导致其在高营养级生物中显著累积. 因此,厘清藻类在甲基汞的富集与食物链传递过程中的作用对于揭示甲基汞的生物累积和预测甲基汞的环境风险具有重要意义. 本文概述了藻类对甲基汞的富集与食物链传递特征与机制,总结了影响富集与食物链传递的生物与环境因素,讨论了全球变暖和富营养化等环境变化对藻类富集与传递甲基汞的影响,并展望了藻类富集甲基汞研究的发展方向.Abstract: Methylmercury (MeHg), a highly toxic pollutant, can be bioaccumulated by aquatic organisms and cause risks to both the aquatic ecosystem and human health. As the primary producer in the aquatic ecosystem, algae determine the level of MeHg introduced into the food web. The high bioconcentration of MeHg in algae from water and its further trophic transfer lead to its biomagnification in organisms at higher trophic level, which is of great significance to reveal bioaccumulation of MeHg and predict its risk. In this review, we outline the characteristics and mechanisms of MeHg bioconcentration in algae and further trophic transfer. The biological and environmental factors affecting bioconcentration and trophic transfer are discussed. Future research directions on MeHg bioconcentration in algae are also proposed.
-
Key words:
- algae /
- methylmercury /
- bioconcentration /
- trophic transfer /
- adsorption /
- absorption.
-
表 1 实验室条件下常见藻类对甲基汞的富集效果
Table 1. Bioconcentration of MeHg in common algae under laboratory conditions
所属纲
Class受试藻类
Subject algae甲基汞形态
MeHg
species甲基汞浓度/
(nmol·L−1)
Concentration暴露时间/h
Exposure
time是否清洗
Whether
cleaned吸收速率/
(cell−1 h−1·nmol·L−1)a
Absorption ratelgVCFb/
生物累积因子
lgVCF/BCF富集率c
Enrichment
ratio文献
References绿藻纲 葡萄鼓藻
Cosmarium botrytisCH3HgCl 0.02 24e 否 —f 5.94 ± 0.69b —f [30] 绿藻纲 钙化裂须藻
Schizothrix calcicolaCH3HgCl 0.02 24d 否 —f 5.60 ± 0.21b —f [30] 绿藻纲 小球藻
Chlorella autotrophicaCH3HgCl 3.29 72g 8 mmol·L−1半胱氨酸
pH = 8.2,1 min—f 113.8h —f [31] 绿藻纲 羊角月牙藻
Selenastrum capricornutumCH3HgCl 1.5 1 否 1.3×10−4 —f 0.97 [23] 绿藻纲 羊角月牙藻
Selenastrum capricornutumCH3Hg-GSH 1.5i 1 否 1.03×10−4 —f 0.93 [23] 绿藻纲 羊角月牙藻
Selenastrum capricornutumCH3HgCl 0.02 24e 否 —f 6.67 ± 0.13b —f [30] 绿藻纲 羊角月牙藻
Selenastrum capricornutumCH3Hg-Cys 1.5i 1 否 1.11×10−4 —f 0.92 [23] 绿藻纲 蛋白核小球藻
Chlorella pyrenoidsaCH3HgCl 0.4 24e 0.8 mmol·L−1半胱氨酸
pH = 7.1,5 min0.08 —f 0.46 [28] 绿藻纲 杜氏藻
Dunaliella tertiolectaCH3HgCl 0.29—0.42 4d 否 0.63 ± 0.03 4.46b —f [32] 绿藻纲 斜生栅藻
Scenedesmus obliquusCH3HgCl 0.4 24e 0.8 mmol·L−1半胱氨酸
pH = 7.1,5 min0.02 —f 0.86 [28] 蓝藻纲 聚球藻
Synechococcus bacillarisCH3HgCl 0.29—0.42 4d 否 0.97±0.03 6.34b —f [32] 硅藻纲 海链藻
Thalassiosira sp.CH3HgCl 0.02 24e 否 —f 5.37 ± 0.04b —f [30] 硅藻纲 假微型海链藻
Thalassiosira pseudonanaCH3Hg-Cys 4×10−3 1d 否 11—14×10−3 5.47b —f [32] 硅藻纲 假微型海链藻
Thalassiosira pseudonanaCH3HgCl 0.29—0.42 4d 否 15.00 ± 3.00 5.44b —f [32] 硅藻纲 假微型海链藻
Thalassiosira pseudonanaCH3Hg-Met 0.28—0.48 l 4 否 16.9 ± 0.2 6.22b —f [24] 硅藻纲 假微型海链藻
Thalassiosira pseudonanaCH3Hg-HA 0.28—0.48l 4 否 11.9 ± 1.5 6.07b —f [24] 硅藻纲 假微型海链藻
Thalassiosira pseudonanaCH3HgCl 7.32 72g 8 mmol·L−1半胱氨酸
pH = 8.2,1 min—f 14.7h —f [31] 硅藻纲 威氏海链藻
Thalassiosira weissflogiiCH3HgCl 1.85 1d 8 mmol·L−1半胱氨酸
pH = 8.2,1 min4.6 9.8×106 j —f [33] 硅藻纲 威氏海链藻
Thalassiosira weissflogiiCH3HgCl 1.85 1k 8 mmol·L−1半胱氨酸
pH = 8.2,1 min3.01 7.4×106 j —f [33] 硅藻纲 布氏双尾藻
Ditylum brightwelliiCH3HgCl 0.1 1d 否 130 5.49b —f [34] 硅藻纲 旋链角毛藻
Chaetoceros curvisetusCH3HgCl 2.5 5d 否 1.8 6.04b —f [34] 鞭藻纲 等鞭金藻
Isochrysis galbanaCH3HgCl 4.59 72g 8 mmol·L−1 半胱氨酸
pH = 8.2,1 min—f 79.23h —f [31] 注:GSH: Glutathione; Cys: Cysteine; Met: Methionine; HA: Humic acid.
(a. 单位为cell−1 h−1 nmol·L−1;b.体积富集因子(Volume concentration factor,VCF)=平衡后藻类中的甲基汞浓度(mol·µm−3)/水中的甲基汞浓度(mol·µm−3);c.富集率 = 平衡后藻类中的甲基汞含量(µg)/水中的甲基汞含量(µg);d.培养过程为全程光照条件;e.培养中明暗时间比为12 : 12;f.文章内未给出具体数据,用“—”表示;g.培养中明暗时间比为14 : 10;h.生物富集因子(Bioaccumulation factor,BAF)= 平衡后藻类中的甲基汞浓度(µg·g−1 湿重)/水中的甲基汞浓度(µg·g−1);i.藻类暴露甲基汞浓度为1.5 nmol·L−1,表中谷胱甘肽或半胱氨酸的浓度为90 nmol·L−1;j.生物富集因子 = 平衡后藻类中的甲基汞浓度(µg·mol−1 以生物炭计)/水中的甲基汞浓度(µg·L−1);k.藻在暴露前在2 µg·L−1的甲基汞溶液中驯化18 d(明暗时间比为14 : 10),大约为第18代藻类;l.暴露的蛋氨酸浓度为1 nmol·L−1,胡敏酸浓度为1 mg·L−1 C)
(a. cell−1 h−1 nmol−1; b. VCF = MeHg concentration in algae (mol·µm−3) / MeHg concentration in water (mol·µm−3) after equilibrium; c. The enrichment rate = MeHg concentration in algae (µg) / MeHg concentration in water (µg) after equilibrium; d. The cultivation process was under full light; e. The ratio of light and dark time in culture was 12 : 12; f. No specific data is given in the reference, which is indicated by "-"; g. The ratio of light and dark time in culture was 14 : 10; h. BAF = MeHg concentration in algae (µg·g−1 wet weight) / MeHg concentration in water (µg·g−1) after equilibrium; i. The concentration of MeHg exposed to algae is 1.5 nmol·L−1, and the concentration of glutathione or cysteine in the table is 90 nmol·L−1; j. Bioconcentration factor = MeHg concentration in algae (µg·mol−1 in biochar) / MeHg concentration in water (µg·L−1) after equilibrium; k. Algae were acclimated in 2 µg·L−1 MeHg solution for 18 days before exposure (the ratio of light and dark time was 14:10), which was about the 18th generation of algae; l. The exposed methionine concentration was 1 nmol·L−1 and the humic acid concentration was 1 mg·L−1 C.) -
[1] FUTSAETER G, WILSON S. The UNEP global mercury assessment: Sources, emissions and transport[C]. Proceedings of the 16th International Conference on Heavy Metals in the Environment (ICHMET), Rome, ITALY, 2012. [2] 吴飞, 王训, 罗辑, 等. 青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示 [J]. 环境化学, 2019, 38(7): 1619-1627. doi: 10.7524/j.issn.0254-6108.2018092302 WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of Tibetan Plateau regions and its implications of atmospheric mercury pollution [J]. Environmental Chemistry, 2019, 38(7): 1619-1627(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092302
[3] 王洁, 孙学军, 李明月, 等. 海螺沟冰川融水径流中汞与悬浮颗粒物的季节变化特征及其关系研究 [J]. 地球与环境, 2022, 50(3): 320-327. WANG J, SUN X J, LI M Y, et al. Seasonal variation and relationship between mercury and suspended particulate matter in Hailuogou glacier meltwater runoff [J]. Earth and Environment, 2022, 50(3): 320-327(in Chinese).
[4] OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution [J]. Nature, 2017, 547(7662): 201-204. doi: 10.1038/nature22997 [5] 冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展 [J]. 中国科学院院刊, 2020, 35(11): 1344-1350. doi: 10.16418/j.issn.1000-3045.20201015002 FENG X B, SHI J B, LI P, et al. Progress of mercury pollution research and implementation of minamata convention in China [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1344-1350(in Chinese). doi: 10.16418/j.issn.1000-3045.20201015002
[6] OUTRIDGE P M, MASON R P, WANG F, et al. Updated global and oceanic mercury budgets for the united nations global mercury assessment 2018 [J]. Environmental Science & Technology, 2018, 52(20): 11466-11477. [7] WANG F Y, OUTRIDGE P M, FENG X B, et al. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere?- Implications for evaluating the effectiveness of the Minamata Convention [J]. Science of the Total Environment, 2019, 674: 58-70. doi: 10.1016/j.scitotenv.2019.04.101 [8] SUN X J, ZHANG Q G, ZHANG G S, et al. Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights [J]. Water Research, 2022, 218: 118474. doi: 10.1016/j.watres.2022.118474 [9] JANSEN W. Mercury concentrations in commercial fish species from Lake Winnipeg, 1971-2019 [J]. Journal of Great Lakes Research, 2021, 47(3): 648-662. doi: 10.1016/j.jglr.2021.02.001 [10] ZHAO L D, CHEN H M, LU X, et al. Contrasting effects of dissolved organic matter on mercury methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 [J]. Environmental Science & Technology, 2017, 51(18): 10468-10475. [11] LU F C. Mercury as a food contaminant [J]. WHO Chronicle, 1974, 28(1): 8-11. [12] MERGLER D, ANDERSON H A, CHAN L H M, et al. Methylmercury exposure and health effects in humans: A worldwide concern [J]. Ambio, 2007, 36(1): 3-11. doi: 10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2 [13] TRASANDE L, LANDRIGAN P J, SCHECHTER C. Public health and economic consequences of methyl mercury toxicity to the developing brain [J]. Environmental Health Perspectives, 2005, 113(5): 590-596. doi: 10.1289/ehp.7743 [14] BATTUELLO M, SARTOR R M, BRIZIO P, et al. The influence of feeding strategies on trace element bioaccumulation in copepods (Calanoida) [J]. Ecological Indicators, 2017, 74: 311-320. doi: 10.1016/j.ecolind.2016.11.041 [15] WATRAS C J, BLOOM N S. Mercury and methylmercury, in individual zooplankton: Implications for bioaccumulation [J]. Limnology and Oceanography, 1992, 37(6): 1313-1318. doi: 10.4319/lo.1992.37.6.1313 [16] 毋赟, 王文雄. 汞在海洋浮游植物中的生物累积和毒性效应 [J]. 生态毒理学报, 2014, 9(5): 810-818. WU Y, WANG W X. Bioaccumulation and toxicity of mercury in marine phytoplankton [J]. Asian Journal of Ecotoxicology, 2014, 9(5): 810-818(in Chinese).
[17] CÓRDOBA-TOVAR L, MARRUGO-NEGRETE J, BARÓN P R, et al. Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review[J]. Environmental Research, 2022, 204(Pt C): 112226. [18] LEHNHERR I. Methylmercury biogeochemistry: A review with special reference to Arctic aquatic ecosystems [J]. Environmental Reviews, 2014, 22(3): 229-243. doi: 10.1139/er-2013-0059 [19] DRANGUET P, le FAUCHEUR S, SLAVEYKOVA V I. Mercury bioavailability, transformations, and effects on freshwater biofilms [J]. Environmental Toxicology and Chemistry, 2017, 36(12): 3194-3205. doi: 10.1002/etc.3934 [20] CHEN C L, AMIRBAHMAN A, FISHER N, et al. Methylmercury in marine ecosystems: Spatial patterns and processes of production, bioaccumulation, and biomagnification [J]. EcoHealth, 2008, 5(4): 399-408. doi: 10.1007/s10393-008-0201-1 [21] SCHARTUP A T, QURESHI A, DASSUNCAO C, et al. A model for methylmercury uptake and trophic transfer by marine plankton [J]. Environmental Science & Technology, 2018, 52(2): 654-662. [22] HARDING G, DALZIEL J, VASS P. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine [J]. PLoS One, 2018, 13(7): e0197220. doi: 10.1371/journal.pone.0197220 [23] SKROBONJA A, GOJKOVIC Z, SOERENSEN A L, et al. Uptake kinetics of methylmercury in a freshwater alga exposed to methylmercury complexes with environmentally relevant thiols [J]. Environmental Science & Technology, 2019, 53(23): 13757-13766. [24] LEE C S, FISHER N S. Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter [J]. Marine Chemistry, 2017, 197: 70-79. doi: 10.1016/j.marchem.2017.09.005 [25] 金林, 孙荣国, 莫雅斐, 等. 椭圆小球藻对汞的吸附-解吸探究 [J]. 地球与环境, 2018, 46(6): 599-605. doi: 10.14050/j.cnki.1672-9250.2018.46.117 JIN L, SUN R G, MO Y F, et al. Study on adsorption-desorption of mercury by Chlorella ellipsoidea [J]. Earth and Environment, 2018, 46(6): 599-605(in Chinese). doi: 10.14050/j.cnki.1672-9250.2018.46.117
[26] le FAUCHEUR S, CAMPBELL P G C, FORTIN C, et al. Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling [J]. Environmental Toxicology and Chemistry, 2014, 33(6): 1211-1224. doi: 10.1002/etc.2424 [27] FUJITA M, HASHIZUME K. Status of uptake of mercury by the fresh water diatom, Synedra ulna [J]. Water Research, 1975, 9(10): 889-894. doi: 10.1016/0043-1354(75)90038-X [28] 刘军晖, 麻冰涓, 毛宇翔, 等. 微藻对无机汞和甲基汞的吸附和吸收特性 [J]. 环境化学, 2017, 36(7): 1602-1613. doi: 10.7524/j.issn.0254-6108.2017.07.2016110701 LIU J H, MA B J, MAO Y X, et al. Adsorption and absorption characteristics of inorganic mercury and methylmercury by microalgae [J]. Environmental Chemistry, 2017, 36(7): 1602-1613(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016110701
[29] 刘瑞霞, 汤鸿霄, 劳伟雄. 重金属的生物吸附机理及吸附平衡模式研究 [J]. 化学进展, 2002, 14(2): 87-92. doi: 10.3321/j.issn:1005-281X.2002.02.002 LIU R X, TANG H X, LAO W X. Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials [J]. Progress in Chemistry, 2002, 14(2): 87-92(in Chinese). doi: 10.3321/j.issn:1005-281X.2002.02.002
[30] MILES C J, MOYE H A, PHLIPS E J, et al. Partitioning of monomethylmercury between freshwater algae and water [J]. Environmental Science & Technology, 2001, 35(21): 4277-4282. [31] WU Y, WANG W X. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton [J]. Environmental Pollution, 2011, 159(10): 3097-3105. doi: 10.1016/j.envpol.2011.04.012 [32] LEE C S, FISHER N S. Methylmercury uptake by diverse marine phytoplankton [J]. Limnology and Oceanography, 2016, 61(5): 1626-1639. doi: 10.1002/lno.10318 [33] WU Y, WANG W X. Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure [J]. Aquatic Toxicology, 2013, 138/139: 52-59. doi: 10.1016/j.aquatox.2013.04.012 [34] KIM H, van DUONG H, KIM E, et al. Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton [J]. Environmental Toxicology, 2014, 29(8): 936-941. doi: 10.1002/tox.21821 [35] DENG G F, ZHANG T W, YANG L M, et al. Studies of biouptake and transformation of mercury by a typical unicellular diatom Phaeodactylum tricornutum [J]. Chinese Science Bulletin, 2013, 58(2): 256-265. doi: 10.1007/s11434-012-5514-3 [36] 刘朝淑, 莫雅斐, 孙荣国, 等. 水华束丝藻和铜绿微囊藻对水中甲基汞的吸附特征及动力学研究 [J]. 地球与环境, 2020, 48(4): 518-524. doi: 10.14050/j.cnki.1672-9250.2020.48.066 LIU C S, MO Y F, SUN R G, et al. Study on adsorption characteristics and kinetics of methylmercury in water by Aphanizomenon flosaquae and Microcystis aeruginosa [J]. Earth and Environment, 2020, 48(4): 518-524(in Chinese). doi: 10.14050/j.cnki.1672-9250.2020.48.066
[37] DAVIS T A, VOLESKY B, MUCCI A. A review of the biochemistry of heavy metal biosorption by brown algae [J]. Water Research, 2003, 37(18): 4311-4330. doi: 10.1016/S0043-1354(03)00293-8 [38] LI X G, FENG H, HUANG M R. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents [J]. Chemistry - A European Journal, 2009, 15(18): 4573-4581. doi: 10.1002/chem.200802431 [39] 王倩雅, 张莹, 李爱芬, 等. 硫素营养水平对产油尖状栅藻光合生理及生化组成的影响 [J]. 水生生物学报, 2017, 41(4): 904-913. doi: 10.7541/2017.113 WANG Q Y, ZHANG Y, LI A F, et al. Effects of sulfur concentration on the photosynthetic physiology and biochemical composition of Scenedesmus acuminatus [J]. Acta Hydrobiologica Sinica, 2017, 41(4): 904-913(in Chinese). doi: 10.7541/2017.113
[40] MOYE H A, MILES C J, PHLIPS E J, et al. Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water [J]. Environmental Science & Technology, 2002, 36(16): 3550-3555. [41] YIN Z B, JIANG H Y, SYVERSEN T, et al. The methylmercury-l-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter [J]. Journal of Neurochemistry, 2008, 107(4): 1083-1090. [42] ASCHNER M, CLARKSON T W. Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: The role of amino acids [J]. Pharmacology & Toxicology, 1989, 64(3): 293-297. [43] MASON R P, REINFELDER J R, MOREL F M M. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom [J]. Environmental Science & Technology, 1996, 30(6): 1835-1845. [44] DHAKA A, VISWANATH V, PATAPOUTIAN A. Trp ion channels and temperature sensation [J]. Annual Review of Neuroscience, 2006, 29: 135-161. doi: 10.1146/annurev.neuro.29.051605.112958 [45] PICKHARDT P C, FISHER N S. Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies [J]. Environmental Science & Technology, 2007, 41(1): 125-131. [46] 金林. 贵州喀斯特水库中几种典型藻对汞吸附—解吸及光还原的影响[D]. 贵阳: 贵州师范大学, 2018. JIN L. Effects of several typical algae on adsorption-desorption and photoreduction of mercury in the Karst reservoir in Guizhou[D]. Guiyang: Guizhou Normal University, 2018(in Chinese).
[47] VALLEE B L, ULMER D D. Biochemical effects of mercury, cadmium, and lead [J]. Annual Review of Biochemistry, 1972, 41(10): 91-128. [48] SIMON D F, DESCOMBES P, ZERGES W, et al. Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium [J]. Environmental Toxicology and Chemistry, 2008, 27(8): 1668-1675. doi: 10.1897/07-649.1 [49] 张晓华, 刘骥, 柳敬丽, 等. DMSP的生物合成与裂解及其在硫循环中的作用 [J]. 中国科学基金, 2018, 32(5): 471-478. doi: 10.16262/j.cnki.1000-8217.2018.05.005 ZHANG X H, LIU J, LIU J L, et al. Biosynthesis and cleavage of DMSP and their roles in global sulfur cycle [J]. Bulletin of National Natural Science Foundation of China, 2018, 32(5): 471-478(in Chinese). doi: 10.16262/j.cnki.1000-8217.2018.05.005
[50] LAROSE C, DOMMERGUE A, de ANGELIS M, et al. Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic [J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6263-6275. doi: 10.1016/j.gca.2010.08.043 [51] REISCH C R, MORAN M A, WHITMAN W B. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi [J]. Journal of Bacteriology, 2008, 190(24): 8018-8024. doi: 10.1128/JB.00770-08 [52] LÁZARO W L, DÍEZ S, BRAVO A G, et al. Cyanobacteria as regulators of methylmercury production in periphyton [J]. Science of the Total Environment, 2019, 668: 723-729. doi: 10.1016/j.scitotenv.2019.02.233 [53] BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries [J]. Sedimentary Geology, 2006, 185(3/4): 131-145. [54] BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes [J]. Nature Communications, 2017, 8: 14255. doi: 10.1038/ncomms14255 [55] LÁZARO W L, GUIMARÃES J R D, IGNÁCIO A R A, et al. Cyanobacteria enhance methylmercury production: A hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil [J]. Science of the Total Environment, 2013, 456/457: 231-238. doi: 10.1016/j.scitotenv.2013.03.022 [56] DING L Y, HE N N, YANG S, et al. Inhibitory effects of Skeletonema costatum on mercury methylation by Geobacter sulfurreducens PCA [J]. Chemosphere, 2019, 216: 179-185. doi: 10.1016/j.chemosphere.2018.10.121 [57] SEELOS M, BEUTEL M, AUSTIN C M, et al. Effects of hypolimnetic oxygenation on fish tissue mercury in reservoirs near the new Almaden Mining District, California, USA[J]. Environmental Pollution, 2021, 268(Pt A): 115759. [58] LUO H W, CHENG Q Q, PAN X L. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor [J]. Science of the Total Environment, 2020, 720: 137540. doi: 10.1016/j.scitotenv.2020.137540 [59] MORENO F N, ANDERSON C W N, STEWART R B, et al. Phytofiltration of mercury-contaminated water: Volatilisation and plant-accumulation aspects [J]. Environmental and Experimental Botany, 2008, 62(1): 78-85. doi: 10.1016/j.envexpbot.2007.07.007 [60] COSSART T, GARCIA-CALLEJA J, WORMS I A M, et al. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake [J]. Environmental Pollution, 2021, 288: 117771. doi: 10.1016/j.envpol.2021.117771 [61] LI Y, LI D, SONG B B, et al. The potential of mercury methylation and demethylation by 15 species of marine microalgae [J]. Water Research, 2022, 215: 118266. doi: 10.1016/j.watres.2022.118266 [62] DIMENTO B P, MASON R P. Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters [J]. Marine Chemistry, 2017, 196: 116-125. doi: 10.1016/j.marchem.2017.08.006 [63] MONPERRUS M, TESSIER E, AMOUROUX D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea [J]. Marine Chemistry, 2007, 107(1): 49-63. doi: 10.1016/j.marchem.2007.01.018 [64] TOSSELL J A. Theoretical study of the photodecomposition of methyl Hg complexes [J]. The Journal of Physical Chemistry A, 1998, 102(20): 3587-3591. doi: 10.1021/jp980244u [65] TREVORS J T. The role of microbial metal resistance and detoxification mechanisms in environmental bioassay research [J]. Hydrobiologia, 1989, 188/189(1): 143-147. doi: 10.1007/BF00027779 [66] MASON R P, MOREL F M M, HEMOND H F. The role of microorganisms in elemental mercury formation in natural waters [J]. Water, Air, and Soil Pollution, 1995, 80(1/2/3/4): 775-787. [67] MORELLI E, FERRARA R, BELLINI B, et al. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure [J]. The Science of the Total Environment, 2009, 408(2): 286-293. doi: 10.1016/j.scitotenv.2009.09.047 [68] KELLY D, BUDD K, LEFEBVRE D D. Mercury analysis of acid- and alkaline-reduced biological samples: Identification of meta-cinnabar as the major biotransformed compound in algae [J]. Applied and Environmental Microbiology, 2006, 72(1): 361-367. doi: 10.1128/AEM.72.1.361-367.2006 [69] WU Y, WANG W X. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton [J]. Aquatic Toxicology, 2014, 148: 122-129. doi: 10.1016/j.aquatox.2014.01.005 [70] CARRASCO-GIL S, SIEBNER H, LEDUC D L, et al. Mercury localization and speciation in plants grown hydroponically or in a natural environment [J]. Environmental Science & Technology, 2013, 47(7): 3082-3090. [71] LAVOIE M, BERNIER J, FORTIN C, et al. Cell homogenization and subcellular fractionation in two phytoplanktonic algae: Implications for the assessment of metal subcellular distributions [J]. Limnology and Oceanography:Methods, 2009, 7(4): 277-286. doi: 10.4319/lom.2009.7.277 [72] WALLACE W G, LUOMA S N. Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM) [J]. Marine Ecology Progress Series, 2003, 257: 125-137. doi: 10.3354/meps257125 [73] SATOH M, HIRACHI Y, YOSHIOKA A, et al. Determination of cellular levels of nonprotein thiols in phytoplankton and their correlations with susceptibility to mercury [J]. Journal of Phycology, 2002, 38(5): 983-990. doi: 10.1046/j.1529-8817.2002.t01-1-01223.x [74] RAINBOW P S. Trace metal concentrations in aquatic invertebrates: Why and so what? [J]. Environmental Pollution, 2002, 120(3): 497-507. doi: 10.1016/S0269-7491(02)00238-5 [75] REINFELDER J R, FISHER N S. The assimilation of elements ingested by marine planktonic bivalve larvae [J]. Limnology and Oceanography, 1994, 39(1): 12-20. doi: 10.4319/lo.1994.39.1.0012 [76] LAVOIE M, le FAUCHEUR S, FORTIN C, et al. Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules [J]. Aquatic Toxicology, 2009, 92(2): 65-75. doi: 10.1016/j.aquatox.2008.12.007 [77] RAINBOW P S, AMIARD J C, AMIARD-TRIQUET C, et al. Trophic transfer of trace metals: Subcellular compartmentalization in bivalve prey, assimilation by a gastropod predator and in vitro digestion simulations [J]. Marine Ecology Progress Series, 2007, 348: 125-138. doi: 10.3354/meps07086 [78] DANG F, WANG W X. Subcellular controls of mercury trophic transfer to a marine fish [J]. Aquatic Toxicology, 2010, 99(4): 500-506. doi: 10.1016/j.aquatox.2010.06.010 [79] NG T Y T, WANG W X. Dynamics of metal subcellular distribution and its relationship with metal uptake in marine mussels [J]. Environmental Toxicology and Chemistry, 2005, 24(9): 2365-2372. doi: 10.1897/04-637R.1 [80] LEE R E. Phycology [M]. Cambridge: Cambridge University Press, 1999. [81] ZHANG Y X, SOERENSEN A L, SCHARTUP A T, et al. A global model for methylmercury formation and uptake at the base of marine food webs [J]. Global Biogeochemical Cycles, 2020, 34(2): e2019GB006348. [82] 邓龙. 浮游植物对汞和甲基汞的富集特征研究[D]. 贵阳: 贵州师范大学, 2016. DENG L. Enrichment features of mercury and methylmercury in phytoplankton[D]. Guiyang: Guizhou Normal University, 2016(in Chinese).
[83] BEUTEL M, FUHRMANN B, HERBON G, et al. Cycling of methylmercury and other redox-sensitive compounds in the profundal zone of a hypereutrophic water supply reservoir [J]. Hydrobiologia, 2020, 847(21): 4425-4446. doi: 10.1007/s10750-020-04192-3 [84] le FAUCHEUR S, TREMBLAY Y, FORTIN C, et al. Acidification increases mercury uptake by a freshwater alga, Chlamydomonas reinhardtii [J]. Environmental Chemistry, 2011, 8(6): 612-622. doi: 10.1071/EN11006 [85] HINTELMANN H, WELBOURN P M, EVANS R D. Binding of methylmercury compounds by humic and fulvic acids [J]. Water, Air, and Soil Pollution, 1995, 80(1/2/3/4): 1031-1034. [86] RAZAVI N R, QU M Z, CHEN D M, et al. Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregion [J]. Limnology and Oceanography, 2015, 60(2): 386-401. doi: 10.1002/lno.10036 [87] 叶幼亭, 史大林. 全球变化对海洋生态系统初级生产关键过程的影响 [J]. 植物生态学报, 2020, 44(5): 575-582. doi: 10.17521/cjpe.2019.0313 YE Y T, SHI D L. Effects of global change on key processes of primary production in marine ecosystems [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 575-582(in Chinese). doi: 10.17521/cjpe.2019.0313
[88] WANG X M, CHENG H, CHE H Z, et al. Modern dust aerosol availability in northwestern China [J]. Scientific Reports, 2017, 7: 8741. doi: 10.1038/s41598-017-09458-w [89] JIANG S, LIU X D, CHEN Q Q. Distribution of total mercury and methylmercury in lake sediments in Arctic Ny-Ålesund [J]. Chemosphere, 2011, 83(8): 1108-1116. doi: 10.1016/j.chemosphere.2011.01.031 [90] WU P P, KAINZ M J, VALDÉS F, et al. Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs [J]. Scientific Reports, 2021, 11: 16859. doi: 10.1038/s41598-021-95742-9 [91] AIKEN G, HAITZER M, RYAN J N, et al. Interactions between dissolved organic matter and mercury in the Florida Everglades [J]. Journal De Physique Ⅳ, 2003, 107: 29-32. [92] LUENGEN A C, FISHER N S, BERGAMASCHI B A. Dissolved organic matter reduces algal accumulation of methylmercury [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1712-1719. doi: 10.1002/etc.1885 [93] MANGAL V, STENZLER B R, POULAIN A J, et al. Aerobic and anaerobic bacterial mercury uptake is driven by algal organic matter composition and molecular weight [J]. Environmental Science & Technology, 2019, 53(1): 157-165. [94] CHEN H W, WU Y Y, LI Y X, et al. Methylmercury accumulation and toxicity to cyanobacteria: Implications of extracellural polymeric substances and growth properties [J]. Water Environment Research, 2014, 86(7): 626-634. doi: 10.2175/106143014X13975035525465 [95] WANG W X, WONG R S K, WANG J F, et al. Influences of different selenium species on the uptake and assimilation of Hg(II) and methylmercury by diatoms and green mussels [J]. Aquatic Toxicology, 2004, 68(1): 39-50. doi: 10.1016/j.aquatox.2004.02.003 [96] AMIARD-TRIQUET C, AMIARD J C. Influence of ecological factors on accumulation of metal mixtures [J]. Metal Metabolism in Aquatic Environments, 1998: 316-386. [97] GOSNELL K J, BALCOM P H, TOBIAS C R, et al. Spatial and temporal trophic transfer dynamics of mercury and methylmercury into zooplankton and phytoplankton of Long Island Sound [J]. Limnology and Oceanography, 2017, 62(3): 1122-1138. doi: 10.1002/lno.10490 [98] LEE C S, FISHER N S. Bioaccumulation of methylmercury in a marine copepod [J]. Environmental Toxicology and Chemistry, 2017, 36(5): 1287-1293. doi: 10.1002/etc.3660 [99] GOSNELL K J, DAM H G, MASON R P. Mercury and methylmercury uptake and trophic transfer from marine diatoms to copepods and field collected zooplankton [J]. Marine Environmental Research, 2021, 170: 105446. doi: 10.1016/j.marenvres.2021.105446 [100] BEŁDOWSKA M, KOBOS J. Mercury concentration in phytoplankton in response to warming of an autumn-winter season [J]. Environmental Pollution, 2016, 215: 38-47. doi: 10.1016/j.envpol.2016.05.002 [101] 王文雄, 潘进芬. 重金属在海洋食物链中的传递 [J]. 生态学报, 2004, 24(3): 599-604. doi: 10.3321/j.issn:1000-0933.2004.03.030 WANG W X, PAN J F. The transfer of metals in marine food chains: A review [J]. Acta Ecologica Sinica, 2004, 24(3): 599-604(in Chinese). doi: 10.3321/j.issn:1000-0933.2004.03.030
[102] LONG S X, HAMILTON P B, YANG Y, et al. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China [J]. Environmental Pollution, 2018, 239: 147-160. doi: 10.1016/j.envpol.2018.04.008 [103] DIJKSTRA J A, BUCKMAN K L, WARD D, et al. Experimental and natural warming elevates mercury concentrations in estuarine fish [J]. PLoS one, 2013, 8(3): e0058401. [104] TSUI M T K, WANG W X. Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2004, 70(3): 245-256. doi: 10.1016/j.aquatox.2004.09.006 [105] PICKHARDT P C, FOLT C L, CHEN C Y, et al. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7): 4419-4423. doi: 10.1073/pnas.072531099 [106] SOERENSEN A L, SCHARTUP A T, GUSTAFSSON E, et al. Eutrophication increases phytoplankton methylmercury concentrations in a coastal sea-A Baltic sea case study [J]. Environmental Science & Technology, 2016, 50(21): 11787-11796. [107] TADA Y Y, MARUMOTO K. Uptake of methylmercury by marine microalgae and its bioaccumulation in them [J]. Journal of Oceanography, 2020, 76(1): 63-70. doi: 10.1007/s10872-019-00525-6 [108] LEI P, ZHANG J, ZHU J J, et al. Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes [J]. Environmental Science & Technology, 2021, 55(15): 10811-10820.