-
β-N-甲氨基-L-丙氨酸(β-N-methylamino-L-alanine, BMAA)是一种可由多种蓝藻产生[1]、具有慢性神经毒性的毒素. 毒性研究显示,BMAA可能与肌萎缩性侧索硬化症、阿尔茨海默氏病、帕金森综合症等神经系统退行性疾病有关[2]. 人体可以通过各种各样的形式暴露于BMAA,如食用被污染的水或食物、在受污染的水体中游泳、吸入受BMAA污染的气溶胶等. 随着全球日趋严重的水体富营养化现状,人们对藻毒素的研究逐渐增多,但大部分研究关注重点在微囊藻毒素,由于BMAA检测难度较高(包括多种同分异构体难分离、分子量较小易受各类基质影响、环境中多种赋存形态等)、环境浓度较低[3-4],目前对BMAA的研究非常有限. 本文拟通过对BMAA的检测方法、水环境及各类水产食物的检测水平等进行总结概述,以了解当前人群对BMAA的暴露风险.
-
BMAA是一种非蛋白质氨基酸,其分子中含有羧基、一级胺和二级胺基团(图1),结构与人体必需的赖氨酸相似,分子式C4H10N2O2,相对分子质量为118.13 g·mol−1. BMAA极易溶于水,在环境中有明显的生物累积和生物学放大现象[5]. 目前,已在自然界中发现了多种BMAA的同分异构体,常见的有 2,4-二氨基丁酸(2,4-diaminobutyric acid, DAB)、N-2-氨乙基甘氨酸[N-(2-aminoethyl)glycine, AEG]、β-氨基-N-甲基丙氨酸(β-amino-N-methylalanine, BAMA)(图1). 其中,DAB是一种存在于许多原核和真核生物体内具有肝毒性和神经毒性的毒素,在许多生物样品中均与BMAA共存[6],其熔点、沸点及酸度系数均低于BMAA(表1);AEG是BMAA同分异构体中毒性最强的[7],可被肝脏大量吸收[8],具有肝毒性,其沸点和酸度与BMAA相近,但熔点更低;而BAMA的研究数据有限,仅有证据表明其同样具有神经毒性. BMAA在环境中以游离或结合形式存在,具体分为以下3种形态(图2):(1)以游离分子形式存在的游离态BMAA;(2)与短肽链结合存在的溶解结合态BMAA;(3)错误插入蛋白质中的沉淀结合态BMAA(也称为蛋白结合态BMAA).
其中,溶解结合态与游离态又称为总溶解态BMAA[9]. 由于不同形态的BMAA致神经毒性的作用通路存在差异(如游离态BMAA与重碳酸盐结合后是谷氨酸受体激动剂,可介导神经元变性[10-11];而结合态BMAA可能引起蛋白质的错误折叠从而造成蛋白质功能障碍,引起神经系统损害[12]),区分不同形态的BMAA的污染特征对其生态风险或人群健康风险评价都具有重要意义.
-
目前已报道的BMAA检测方法有高效液相色谱法[13](high performance liquid chromatography, HPLC)、气相色谱-质谱联用法[14](gas chromatograph-mass spectrometer, GC-MS)、液相色谱-串联质谱法[15](liquid chromatography tandem mass spectrometer, LC-MS/MS)等. GC-MS法是早期BMAA的检测方法,由于其前处理较为复杂,目前应用较少. HPLC分析法常与荧光检测器(Fluorescence detector, FLD)联用. 由于BMAA本身无荧光活性且是一种极性小分子化合物,因此在测定前需对BMAA进行衍生化处理,最常用的衍生剂是6-氨基喹啉基-N-羟基琥珀酰亚氨基甲酸酯(6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, AQC)[16]. 然而,荧光检测的低特异性及与其他衍生物的共洗脱会造成BMAA的误鉴,可能导致定量结果的假阳性或浓度被高估[17]. 自2012年后,已少有研究采用HPLC法和GC-MS法分析样本中的BMAA,多采用LC-MS/MS法. LC-MS/MS法通过保留时间、前体离子质荷比、产物离子质荷比和产物离子丰度比[17]的4个指标来定性,是目前分析各类样品中BMAA毒素及其同分异构体最常用的方法. 如表2所示,LC-MS/MS法根据是否使用衍生剂可进一步分为AQC衍生法和直接分析法. 其中,AQC衍生法因其能够检测复杂样品基质中的低浓度BMAA及其同分异构体,同时具有较高选择性而应用更为广泛. 基于LC-MS/MS的AQC衍生法的方法检出限一般比直接进样法低3—5倍,比HPLC-FLD等方法低10倍以上[18]. 经AQC衍生的LC-MS/MS法是美国分析化学家协会(Association of Official Analytical Chemists, AOAC)认可的唯一经过验证的方法. BMAA同分异构体与BMAA结构非常类似,因而可以检测BMAA的方法均可同时测定BMAA及其同分异构体. 近年的研究多同时分析BMAA和DAB、AEG、BAMA的3种同分异构体[19-27](表2). 研究发现色谱柱的选择和洗脱梯度的设定对BMAA及其同分异构体的分离度起决定作用:BAMA常与BMAA共洗脱,二者分离难度较高;DAB与AEG能与BMAA实现较好的色谱分离[28],但易产生相互干扰. 值的注意的是,有些早期文献仅检测了BMAA[29-31],不排除存在高估BMAA浓度的可能性.
基于LC-MS/MS仪器方法,目前已有文献报道了水体、藻类、海产品等样品中BMAA的前处理方法[21、32-34]. 在这些文献中,通常采用固相萃取法进行水样的富集或基质的净化. 其中,最常用的固相萃取小柱是Oasis MCX小柱,该小柱对BMAA的回收率接近100%[15];也有采用HLB和PCX小柱的报道,但应用很少[35]. 如前文所述,区分BMAA的不同赋存形态对于了解其污染特征及风险评价具有重要意义,因此,许多研究在相关方面进行了探索. BMAA三种赋存形态的分离主要借助三氯乙酸(Trichloroacetic acid, TCA)提取、盐酸水解实现,主要报道的形态(见图2)包括:(1)游离态BMAA:TCA提取后的上清液,直接进行BMAA测定;(2)总溶解态BMAA:TCA提取液经盐酸水解后的上清液,进行后续测定;(3)沉淀结合态BMAA:TCA提取后的沉淀经盐酸水解进行后续处理;(4)总BMAA:样品直接经盐酸水解后,进行BMAA测定. 经过以上形态分离的样品,后续可采用MCX小柱等固相萃取方法进行进一步净化,并根据仪器方法要求,可直接上机分析或进行AQC衍生后再进行上机分析[36]. 其中,单独测定总溶解态BMAA的研究相对较少[37]. BMAA同分异构体各形态分析的前处理方法与BMAA基本一致.
-
在国外水体中BMAA的报道屡见不鲜:Lage等[29]在瑞典芬妮湖水中检出了2—6 μg·L−1的总BMAA;Combes等[38]在法国塞纳河水样中检测到2—13.5 μg·L−1的游离态BMAA;Al-Sammak等[39]在美国内布拉斯加州的7个水库水中检测到了BMAA和DAB,其中,柯克曼湾水样中的BMAA浓度(游离态和沉淀结合态BMAA)高达25.3 μg·L−1,而柳溪镇水样中DAB浓度高达21.1 μg·L−1. 即使在远离海洋和湖泊的沙漠地区的水样中,BMAA也有检出. Craighead等[40]在蒙古国内戈壁沙漠的饮用水和浅水水洼中检出了BMAA和DAB,其中,DAB(100%)的检出率显著高于BMAA(55.6%). 作为BMAA毒素的主要“生产者”,藻类中BMAA的报道更加广泛. 波罗的海的藻类中游离态和沉淀结合态BMAA的浓度分别为0.0097—0.7025 μg·g−1和0.008—2.58 μg·g−1[30];葡萄牙河口的藻类样本中游离态和沉淀结合态BMAA浓度分别为0.04—8 μg·g−1和2—63 μg·g−1,这是首次在河口处报道BMAA毒素的存在[31]. Faassen等[41]在荷兰21个城市采集的藻类浮渣中,有9个地区的样本中检出了游离态BMAA,浓度为4—42 μg·g−1;2个地区的样品中检出了1 μg·g−1和4 μg·g−1的DAB. 英国1990—2004年间采集的12种藻类样品中BMAA(游离态和沉淀结合态)的检出浓度为8—287 μg·g−1[42];值得注意的是,其中5个检出了BMAA毒素的水体发生了动物接触后死亡事件,虽未证明BMAA是其直接死因,但仍不能忽视BMAA可能带来的健康风险. 此外,Roy-Lachapelle等[43]采集了加拿大5个湖泊中的藻类样品,分别在4个湖泊中检出了BMAA(10—300 μg·g−1),4个湖泊中检出了DAB(8—40 μg·g−1),以及在3个湖泊中检出了AEG(9—80 μg·g−1). 可见,BMAA及其同分异构体在水环境中的污染状况在不同国家和地区不尽相同,但都存在一定程度上的污染.
目前关于我国水环境中BMAA检出情况的报道如表3所示,已有的调查表明我国水环境中BMAA的污染情况并不乐观. 闫博引等[35]在全国14个地区调查了不同水体(海水、湖泊水、水库水)中BMAA的污染情况,其结果显示:水库水样中均未发现BMAA的存在;青岛海域、厦门海域水样中BMAA疑似存在,但无法准确定量(<0.01 μg·g−1);而在观赏性湖泊水样中,BMAA的检出率高达70%,表明我国水环境中存在BMAA污染的风险,且水质较差的景观湖污染风险最大. Cao等[32]在太湖水样中检出了0.23 μg·L−1的BMAA和0.002 μg·L−1左右的DAB. 顾笑笑等[44]在湖州市淡水混和养殖池塘的水体和底泥中分别检测到3.081—3.203 μg·L−1和0.681—0.711 μg·g−1的BMAA,表明在淡水养殖环境中也存在BMAA的污染. Wang等[45]在青岛胶州湾浮游植物中检测到0.03—1.00 μg·g−1的BMAA和0.01—0.48 μg·g−1的DAB,同时发现浮游植物中BMAA的浓度存在季节性变化. 此外,作为藻华无公害处理的产物—蓝藻有机肥中也被检出数量可观的BMAA毒素(游离态BMAA:1.8—16.3 μg·g−1、结合态BMAA:3.43—13.67 μg·g−1)[46].
-
由于水环境中存在广泛的BMAA污染,水产品也无法避免地受到污染. 相较于水体和藻类,水产品中BMAA主要检测游离态和沉淀结合态,检出品种包括滤食性软体动物、甲壳动物和鱼类等. 斯德哥尔摩市售的贻贝、生蚝和虾样品中总BMAA的检出浓度为0.08—0.90 μg·g−1[47];法国肖泻湖的贻贝样品中BMAA(游离态和总BMAA)、AEG、DAB的检出率分别为47%、91.2%、100%[48];波罗的海的贻贝中总BMAA的浓度范围为0.63—1.6 μg·g−1[49];南非水库的鱼类中BMAA(游离态和沉淀结合态BMAA)的检出浓度为1.63—3.055 μg·g−1[50];Christensen[51]在美国东南部地区的螃蟹样品中检出4.7—14.1 μg·g−1的总BMAA. 此外,Field等[52]在调查美国马里兰州安纳波利斯的3名肌萎缩侧索硬化症(Amyotrophic Lateral Sclerosis, ALS)患者的发病原因时,发现3人均食用了当地切萨皮克湾的青蟹,而在切萨皮克湾青蟹的蟹钳样品中均检测到了浓度高达115.2 μg·g−1的总BMAA和72.7 μg·g−1的DAB,提示BMAA毒素及其同分异构体可能是ALS发病的危险因素. 我国的水产品中也有BMAA检出的相关报道(表4):陈咏梅等[53]在武汉官桥湖水华爆发期间检出了鱼体内的BMAA残留,平均含量为(0.32±0.317) μg·g−1;Wu等[54]调查了太湖流域6种淡水养殖产品可食用部分BMAA的浓度范围为0.28—5.47 μg·g−1;顾笑笑等[44]在研究湖州市水华严重的淡水养殖池塘中水产的污染状况时发现软体动物、甲壳动物、鱼类中均可检出BMAA,其含量分别为0.528—1.065 μg·g−1、0.456—0.555 μg·g−1、0.358—0.494 μg·g−1;Li等[55]在中国东海、黄海海域的扁玉螺中检测到0.86—3.97 μg·g−1的BMAA和0.21—0.40 μg·g−1的DAB.
更值得关注的是,BMAA具有生物富集和生物放大的特性,营养级别高的水产品一旦被污染,将大大增加人群对BMAA的食用风险. 王超等[56]在黄海海域比较了不同营养级生物—浮游植物、浮游动物、软体动物和节肢动物体内BMAA的含量,发现BMAA浓度沿食物链:浮游植物(0.1 μg·g−1)—浮游动物(1 μg·g−1)—软体动物(3.5 μg·g−1)—节肢动物(12 μg·g−1)逐级升高,生物富集和生物放大效应明显. Jiao等[5]通过监测太湖贡湖湾不同营养级生物中的BMAA浓度,发现软体动物、甲壳类动物和鱼类的BMAA平均水平分别达到3.21、3.76、6.05 μg·g−1;而含量最高的是营养层次较高的翘嘴红鮊. 多项关于鲨鱼产品的调查结果显示,鲨鱼中BMAA残留极高:太平洋和大西洋鲨鱼鱼鳍和肌肉样本中,总BMAA浓度范围为34—2011 μg·g−1[57];美国南佛罗里达州的7种市售鱼翅中总BMAA检出浓度为144—1836 μg·g−1[58],市售的94%的鲨鱼软骨粉(15/16)中检出了75—352 μg·g−1的总BMAA,16种软骨粉中均检出DAB(69—1483 μg·g−1)和AEG(1298—1729 μg·g−1)[59]. 由此可见,营养级别越高的水产品中BMAA的食用风险越高,应引起人们的高度关注.
-
近年来,藻类相关产品因其广泛的药用价值和丰富的营养价值受到人们的青睐,螺旋藻衍生的一系列保健品已在70多个国家和地区进行销售[61]. 但据研究显示,相关产品的藻类来源可能被BMAA污染:加拿大的4种市售螺旋藻蛋白粉样品中BMAA、DAB和AEG均可检出,浓度分别为0.13—0.74 μg·g−1、9.32—107.06 μg·g−1和0.14—6.48 μg·g−1[26];美国18种市售藻类膳食补充剂中有2种检出0.04 μg·g−1和0.55 μg·g−1的总BMAA[62];德国33种藻类膳食补充剂中有1种检出了0.08 μg·g−1的DAB[63]. 藻类保健品的健康效应数据来源多是体外实验或实验动物,缺乏人体临床试验,不具有普遍性;且藻类保健品生产行业大多是自我管理,存在低估藻类保健品带来健康风险的可能性. 樊华等[64]分析了我国市面上11个较流通品牌的螺旋藻制剂,结果显示均含有0.004—0.02 μg·g−1游离态的DAB,但还未见有关于藻类保健品中BMAA毒素检出的报道,在该方面存在较大的研究空白.
-
相比于微囊藻毒素和贝类毒素,目前关于BMAA的基础研究相对较少,因此,目前仍无官方的健康指导值或限量要求. 世界卫生组织(World Health Organization, WHO)目前仅对蓝藻毒素中的微囊藻毒素等个别毒素提出了限量标准,如MC-LR的每日容许摄入量为0.04 μg·kg−1[65],食用贝类中石房蛤毒素的允许浓度为80 μg·100 g−1新鲜组织[66]. 已有学者试图建立水产品中BMAA的安全摄入标准限值(Guideline Values, GVs). Wu等[54]依据美国环保署(Environmental Protection Agency, EPA)提出的健康风险评价方法,以大鼠幼崽纹状体神经肽系统发生变化作为毒性终点[67],并结合我国藻类污染现状提出了水产品中BMAA的建议GVs限值为7.2 μg·g−1干重(成人)和1.8 μg·g−1干重(儿童). 顾笑笑等[44]则参照美国国家科学院(National Academy of Sciences, NAS)提出的健康风险评价方法,采用猕猴出现皮质神经功能障碍、帕金森特征及行为异常作为毒性终点[2],提出水产品中BMAA的GVs值为12 μg·g−1干重(成人)和3 μg·g−1干重(儿童). 值得注意的是,这两项研究中均采用100 g·d−1干重作为人群对水产品的平均消费量. 通过查阅资料[68]发现,2013—2020年我国居民人均水产品消费量从28.5 g·d−1湿重增加到38.1 g·d−1湿重,平均每年以0.47的速度增长. 考虑水产品中含水量一般为70%—80%,取25%作为干湿重的比值[69],我国居民人均水产品消费量仅为7.1—9.5 g·d−1干重,远低于两篇文献中的取值. 基于此消费数据重新估算水产品中BMAA的GVs值,分别为:成人为75.6—101.1 μg·g−1干重,儿童为18.9—25.3 μg·g−1干重(采用Wu计算方法);成人为126—168.5 μg·g−1干重,儿童为42—56.2 μg·g−1干重(采用顾笑笑计算方法). 考虑到我国不同地区人群对水产品消费的巨大差异,我们进一步采用我国水产品消费量最大的海南省的消费数据进行估算. 2015—2020年海南省人均水产消费量[68]为17.5—21.6 g·d−1干重,则两种方法估算的BMAA的GVs值分别为:成人33.3 μg·g−1干重和55.4 μg·g−1干重,儿童8.3 μg·g−1干重和18.5 μg·g−1干重. 鉴于我国近年来人均水产消费量逐年递增的现象,应根据实际情况,及时修正BMAA的健康指导值.
-
综上所述,作为一种具有慢性神经毒性的蓝藻毒素,BMAA在国内外水环境、水产品以及藻类保健品中被广泛检出;尤其是在营养级别较高的水生生物体内的残留高达mg·g−1级别,严重威胁人群的身体健康. 作为一个湖泊众多、水产业兴旺、且水体富营养化严重的国家,我国目前对于相关环境及产品中BMAA的调查研究还非常有限;在分析检测方法上还有许多的提升空间;对这类物质的毒性异构体的关注不够等等.
在未来,应对BMAA毒素及其同分异构体展开以下两方面的研究,以期全面了解我国BMAA毒素的污染现状:(1)开发更加可靠、具有选择性的分析方法来检测我国环境中BMAA毒素的暴露水平和污染程度,以评估与BMAA暴露相关的公共健康风险,减少对人类健康的潜在影响. (2)全面对BMAA赋存状态进行分析研究,得到所检测物质中准确的BMAA毒素含量,为生态风险评估工作提供基础理论依据.
水环境和水产品中β-N-甲氨基-L-丙氨酸(BMAA)检测方法和检出情况的研究进展
Research progress on detection methods and detection levels of β-N-methylamino-L-alanine (BMAA) in water environment and aquatic samples
-
摘要: 本文对蓝藻毒素β-N-甲氨基-L-丙氨酸(β-N-methylamino-L-alanine, BMAA)的结构形态、检测方法、环境和食物中的检出情况等方面进行系统综述. 研究结果表明,BMAA主要存在3种赋存形态(游离态、溶解结合态、沉淀结合态);环境和食物中的BMAA类目前主要采用经过AQC衍生的LC-MS/MS法检测,样品需经形态分离后、采用MCX固相萃取小柱处理. 水环境、水产品和藻类保健品中BMAA类的污染已被大量报道. 亚洲、北美洲、欧洲的相关环境和食物中均有一定的检出(检出浓度:水样<0.01—25.3 μg·L-1;藻类<0.01—300 μg·g-1;非鲨鱼水产品中0.08—115.3 μg·g-1;藻类保健品中0.04—0.73 μg·g-1). BMAA存在生物积累和生物放大的现象,水产品中营养级别越高的生物检出浓度就越高,如鲨鱼类产品中检出浓度高达34—2011 μg·g-1,需要引起重视. 我国目前对BMAA的相关研究还很有限,未来应加强检测方法、现场调查、风险评估等相关方面的研究,以全面了解我国人群对BMAA类物质的暴露风险.
-
关键词:
- β-N-甲氨基-L-丙氨酸(BMAA) /
- LC-MS/MS /
- 水环境 /
- 水产品 /
- 藻类产品.
Abstract: This paper systematically reviewed the structure, morphology, detection methods, environment and the level of β-N-methylamino-L-alanine (BMAA) in environment and food samples. The results show that BMAA mainly exists in three forms, including free BMAA, soluble bound BMAA, and precipitated bound BMAA. Currently, BMAAs in the environment and food are mainly detected by the AQC-derived LC-MS/MS method. The samples need to be morphologically separated and processed with MCX solid phase extraction cartridges. The contamination of BMAA has been reported in the water environment, aquatic products and algae health products in Asia, North America and Europe, with the detectable concentrations of < 0.01—25.3 μg·L-1 in water samples , < 0.01—300 μg·g-1 in algae samples, 0.08—115.3 μg·g-1 in non-shark aquatic products and 0.04—0.73 μg·g-1 in algal health products. Due to the bioaccumulation and biomagnification of BMAA, the aquatic products with higher nutrient levels showed higher concentrations. For example, the BMAA levels reported in the shark products were up to 34—2011 μg·g-1. Therefore, more attentions should be paid to these animals. At present, the relevant researches on BMAA in our country are very limited. More efforts should be made in analytical method development, on-site investigation and risk assessments to comprehensively assess the exposure risk of Chinese population to BMAAs. -
-
表 1 BMAA及其同分异构体的理化性质
Table 1. Physicochemical properties of BMAA and its isomers
物质名称
Substance熔点
Melting point沸点
Boiling point酸度系数
pKa水溶性
Water-solubility稳定性
StabilityBMAA 177℃ 284.2℃ 2.1 易溶于水 稳定,不易分解 DAB 144℃ 220.7℃ 1.8 AEG 140-143℃ 290℃ 2.2 表 2 2018-2022年LC-MS/MS法在不同介质中BMAA及其同分异构体的检出限
Table 2. Detection limits of BMAA and its isomers in different matrixes from 2018 to 2022 by LC-MS/MS
样本类型
Type of matrix是否衍生
Derivatization检测物质
Type of toxin检出限/(μg·L−1)
Detection of limit参考文献
ReferencesBMAA BAMA DAB AEG 水 水库水 直接进样 总BMAA、
总DAB、
总AEG0.015 NR 0.0091 0.0061 [19] 地表水 FMOCa衍生 游离态BMAA、
游离态BAMA、
游离态DAB、
游离态AEG0.005 0.005 0.003 0.002 [20] 藻类 淡水及海洋藻类 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.01 0.01 [21] 水华藻类 EZ:faast衍生b 游离态BMAA、
游离态DAB0.02 NR 0.04 NR [22] 生物结皮c AQC衍生 总BMAA、
总BAMA、
总DAB、
总AEG0.01 0.037 0.01 0.01 [23] 生物基质 藻类、贝类、血浆、脑脊液 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.01 0.01 [24] 贝类 AQC衍生 总溶解态BMAA、
总溶解态DAB0.31d NR 0.013d NR [25] 藻类相关产品 螺旋藻天然保健品 AQC衍生 总BMAA、
总DAB、
总AEG0.187 NR 0.187 0.187 [26] 螺旋藻粉 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.02 0.01 [27] 注:NR:Not Report, 未报道;aFMOC(9-fluorenylmethyl chlorofor mate):9-芴基甲基氯甲酸酯;b一种游离氨基酸衍生试剂盒;c一种沙漠地表覆被类型;d检出限单位为μg·g−1. 表 3 BMAA在我国部分水环境中的检出情况
Table 3. Detection of BMAA in some water environments in China
样品类别
Species检测地点
Location检出浓度
Concentration存在形态
Existence前处理
Pretreatment参考文献
References水体
(湖泊水+海水+水库水)太湖无锡流域 0.129/0.105 游离态/沉淀结合态BMAA 直接分析法 [35] 南京玄武湖 0.628/0.072 豫园景观湖 0.697/0.116 南昌孔目湖 1.648/0.19 南山景观湖 0.486/0.215 云南滇池 1.493/0.359 安徽巢湖 0.108/0.099 武汉东湖 <0.01 洞庭湖 <0.01 杭州西湖 <0.01 大连海域 <0.01 滨海流域 <0.01 青岛流域 <0.01 厦门海域 <0.01 密云水库 <0.01 深圳水库 <0.01 太湖 0.23a 总BMAA 直接分析法 [32] 蓝藻有机肥 太湖 1.8—16.3/3.43—13.67 游离态/沉淀结合态BMAA AQC-衍生法 [46] 水体 湖州市淡水养殖池塘 3.081—3.203a 总BMAA AQC-衍生法 [44] 底泥 0.681—0.711 浮游植物 青岛胶州湾 0.03—1.00 总溶解态BMAA 直接分析法 [45] 注:a检出浓度单位为μg·L−1,未带上标的检出浓度单位为μg·g−1. 表 4 BMAA在我国水产品中的检出情况
Table 4. Detection of BMAA in Chinese aquatic products
样品类别
Species样品名称
Samples检测地点
Location检出浓度/(μg·g−1)
Concentration存在形态
Existence前处理
Pretreatment参考文献
References软体动物 扁玉螺 黄海海域 3.54/20.92 游离态/总溶解态BMAA 直接分析法 [9] 脉红螺 0.64 栉江珧 2.57 菲律宾蛤仔 0.86 扁玉螺 1.76/4.07 AQC-衍生法 脉红螺 0.40 栉江珧 1.17 菲律宾蛤仔 0.51 背角无齿蚌 太湖贡湖湾 0.147—0.173/3.26—3.78 游离态/沉淀结合态BMAA AQC-衍生法 [60] 铜锈环棱螺 0.09—0.141/3.154—3.786 厚壳贻贝 舟山市 0.45 游离态BMAA 直接分析法 [55] 长竹蛏 荣成市 0.66 软体动物 扁玉螺 荣成市 2.15 游离态BMAA 直接分析法 [55] 大连市 3.97 连云港市 0.99 莱州市 0.86 青岛市 1.43 河蚬 湖州市淡水
养殖池塘0.528—0.540 总BMAA AQC-衍生法 [44] 铜锈环棱螺 1.015—1.065 贻贝 太湖贡湖湾 2.437—4.663 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 淡水蜗牛 0.63—3.85 亚洲蛤 0.80—6.72 河蚬 太湖 1.27—4.01 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 无齿蚌 0.28—4.92 甲壳动物 日本沼虾 湖州市淡水
养殖池塘0.456—0.468 总BMAA AQC-衍生法 [44] 中华绒螯蟹 0.543—0.555 日本沼虾 太湖贡湖湾 0.044—0.076/0.888—1.132 游离态/沉淀结合态BMAA AQC-衍生法 [60] 太湖秀丽白虾 ND/0.078—0.162 淡水蟹 太湖贡湖湾 5.727—11.793 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 螃蟹 6.479—6.481 淡水虾 0.177—1.903 西伯利亚对虾 0.104—0.136 对虾 3.141—7.099 日本沼虾 太湖 0.65—3.45 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 中华绒螯蟹 1.82—4.16 鱼类 草鱼 太湖 1.78—3.10 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 青鱼 2.95—5.47 青鱼 湖州市淡水
养殖池塘0.358—0.370 总BMAA AQC-衍生法 [44] 鲫 0.482—0.494 麦穗鱼 太湖贡湖湾 0.038—0.102/0.07—0.13 游离态/沉淀结合态BMAA AQC-衍生法 [60] 梅鲚鱼 ND/6.96—7.72 鲢鱼 0.121—0.159/10.27—11.31 黄颡鱼 0.52—0.60/8.67—9.45 鳑鲏 武汉官桥湖 0.038—0.448/ND 游离态/沉淀结合态BMAA AQC-衍生法 [53] 鲫 0.086—0.166/ND 鲤 0.1—0.5/0.233—0.393 鲢 0.01—0.046/ND 鳙 0.018—0.06/ND 鳊 0.631—1.121/0.001—0.003 鱼类 太湖贡湖湾 0.049—49.31 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 注:ND:Not Detected, 未检测到. -
[1] COX P A, BANACK S A, MURCH S J, et al. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(14): 5074-5078. doi: 10.1073/pnas.0501526102 [2] SPENCER P S, NUNN P B, HUGON J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin [J]. Science, 1987, 237(4814): 517-522. doi: 10.1126/science.3603037 [3] CHERNOFF N, HILL D J, DIGGS D L, et al. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans [J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2017, 20(4): 1-47. [4] MANOLIDI K, TRIANTIS T M, KALOUDIS T, et al. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements [J]. Journal of Hazardous Materials, 2019, 365: 346-365. doi: 10.1016/j.jhazmat.2018.10.084 [5] JIAO Y Y, CHEN Q K, CHEN X, et al. Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-L-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk [J]. Science of the Total Environment, 2014, 468/469: 457-463. doi: 10.1016/j.scitotenv.2013.08.064 [6] RÉVEILLON D, SÉCHET V, HESS P, et al. Systematic detection of BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts [J]. Toxicon, 2016, 110: 35-46. doi: 10.1016/j.toxicon.2015.11.011 [7] SCHNEIDER T, SIMPSON C, DESAI P, et al. Neurotoxicity of isomers of the environmental toxin L-BMAA [J]. Toxicon, 2020, 184: 175-179. doi: 10.1016/j.toxicon.2020.06.014 [8] GALLO-TORRES H E, HEIMER E, SCHEIDL F, et al. The gastrointestinal absorption, tissue distribution, urinary excretion and metabolism of N-(2-aminoethyl)-Glycine (AEG) in the rat [J]. Life Sciences, 1980, 27(24): 2347-2357. doi: 10.1016/0024-3205(80)90504-4 [9] 王超, 邱江兵, 宋甲亮, 等. 不同液相色谱-质谱联用法分析贝类样品中神经毒素β-N-甲氨基-L-丙氨酸的比较 [J]. 中国渔业质量与标准, 2021, 11(1): 34-45. WANG C, QIU J B, SONG J L, et al. A comparative study on the analytical performance of different liquid chromatography coupled with tandem mass spectrometry for neurotoxin β-N-methylamino-L-alanine in mollusks [J]. Chinese Fishery Quality and Standards, 2021, 11(1): 34-45(in Chinese).
[10] HOEFFER C A, KLANN E. mTOR signaling: At the crossroads of plasticity, memory and disease [J]. Trends in Neurosciences, 2010, 33(2): 67-75. doi: 10.1016/j.tins.2009.11.003 [11] CHONG Z Z, SHANG Y C, WANG S H, et al. A critical kinase cascade in neurological disorders: PI 3-K, Akt, and mTOR [J]. Future Neurology, 2012, 7(6): 733-748. doi: 10.2217/fnl.12.72 [12] PAPAPETROPOULOS S. Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm [J]. Neurochemistry International, 2007, 50(7/8): 998-1003. [13] EMMONS R V, KARAJ E, CUDJOE E, et al. Leveraging multi-mode microextraction and liquid chromatography stationary phases for quantitative analysis of neurotoxin β-N-methylamino-L-alanine and other non-proteinogenic amino acids [J]. Journal Of Chromatography A, 2022, 1685: 463636. doi: 10.1016/j.chroma.2022.463636 [14] PAGLIARA P, DE BENEDETTO G E, FRANCAVILLA M, et al. Bioactive potential of two marine picocyanobacteria belonging to cyanobium and synechococcus genera[J]. Microorganisms, 2021, 9(10):2048. [15] ZHAO P, QIU J B, LI A F, et al. Matrix effect of diverse biological samples extracted with different extraction ratios on the detection of β-N-methylamino-L-alanine by two common LC-MS/MS analysis methods [J]. Toxins, 2022, 14(6): 387. doi: 10.3390/toxins14060387 [16] ROSÉN J, WESTERBERG E, HELLENÄS K E, et al. A new method for analysis of underivatized free β-methylamino-alanine: Validation and method comparison [J]. Toxicon, 2016, 121: 105-108. doi: 10.1016/j.toxicon.2016.08.021 [17] FAASSEN E J, GILLISSEN F, LÜRLING M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria [J]. PLoS One, 2012, 7(5): e36667. doi: 10.1371/journal.pone.0036667 [18] BISHOP S L, MURCH S J. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-L-alanine (BMAA) [J]. Analyst, 2019, 145(1): 13-28. [19] APARICIO-MURIANA M M, CARMONA-MOLERO R, LARA F J, et al. Multiclass cyanotoxin analysis in reservoir waters: Tandem solid-phase extraction followed by zwitterionic hydrophilic interaction liquid chromatography-mass spectrometry [J]. Talanta, 2022, 237: 122929. doi: 10.1016/j.talanta.2021.122929 [20] VO DUY S, MUNOZ G, DINH Q T, et al. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry [J]. PLoS One, 2019, 14(8): e0220698. doi: 10.1371/journal.pone.0220698 [21] METCALF J S, BANACK S A, WESSEL R A, et al. Toxin analysis of freshwater cyanobacterial and marine harmful algal blooms on the west coast of Florida and implications for estuarine environments [J]. Neurotoxicity Research, 2021, 39(1): 27-35. doi: 10.1007/s12640-020-00248-3 [22] MAIN B J, BOWLING L C, PADULA M P, et al. Detection of the suspected neurotoxin β-methylamino-L-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia [J]. Harmful Algae, 2018, 74: 10-18. doi: 10.1016/j.hal.2018.03.004 [23] CHATZIEFTHIMIOU A D, BANACK S A, COX P A. Biocrust-produced cyanotoxins are found vertically in the desert soil profile [J]. Neurotoxicity Research, 2021, 39(1): 42-48. doi: 10.1007/s12640-020-00224-x [24] BANACK S A. Second laboratory validation of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2, 4-diaminobuytric acid by ultra-performance liquid chromatography and tandem mass spectrometry [J]. Neurotoxicity Research, 2021, 39(1): 107-116. doi: 10.1007/s12640-020-00208-x [25] LI A, HU Y, SONG J, et al. Ubiquity of the neurotoxin β-N-methylamino-L-alanine and its isomers confirmed by two different mass spectrometric methods in diverse marine mollusks [J]. Toxicon, 2018, 151: 129-136. doi: 10.1016/j.toxicon.2018.07.004 [26] GLOVER W B, BAKER T C, MURCH S J, et al. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in food products containing cyanobacteria by ultra-performance liquid chromatography and tandem mass spectrometry: Single-laboratory validation [J]. Journal of AOAC International, 2015, 98(6): 1559-1565. doi: 10.5740/jaoacint.15-084 [27] BAKER T C, TYMM F J M, MURCH S J. Assessing environmental exposure to β-N-methylamino-L-alanine (BMAA) in complex sample matrices: A comparison of the three most popular LC-MS/MS methods [J]. Neurotoxicity Research, 2018, 33(1): 43-54. doi: 10.1007/s12640-017-9764-3 [28] TYMM F J M, BISHOP S L, MURCH S J. A single laboratory validation for the analysis of underivatized β-N-methylamino-L-alanine (BMAA) [J]. Neurotoxicity Research, 2021, 39(1): 49-71. doi: 10.1007/s12640-019-00137-4 [29] LAGE S, ANNADOTTER H, RASMUSSEN U, et al. Biotransfer of β-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake [J]. Marine Drugs, 2015, 13(3): 1185-1201. doi: 10.3390/md13031185 [30] LAGE S, BURIAN A, RASMUSSEN U, et al. BMAA extraction of cyanobacteria samples: Which method to choose? [J]. Environmental Science and Pollution Research International, 2016, 23(1): 338-350. doi: 10.1007/s11356-015-5266-0 [31] CERVANTES CIANCA R C, BAPTISTA M S, LOPES V R, et al. The non-protein amino acid β-N-methylamino-L-alanine in portuguese cyanobacterial isolates [J]. Amino Acids, 2012, 42(6): 2473-2479. doi: 10.1007/s00726-011-1057-1 [32] CAO Y, HU S Y, GONG T T, et al. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation [J]. Water Research, 2019, 159: 365-374. doi: 10.1016/j.watres.2019.05.007 [33] VIOLI J P, MITROVIC S M, COLVILLE A, et al. Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia [J]. Ecotoxicology and Environmental Safety, 2019, 172: 72-81. doi: 10.1016/j.ecoenv.2019.01.046 [34] CHATZIEFTHIMIOU A D, DEITCH E J, GLOVER W B, et al. Analysis of neurotoxic amino acids from marine waters, microbial mats, and seafood destined for human consumption in the Arabian Gulf [J]. Neurotoxicity Research, 2018, 33(1): 143-152. doi: 10.1007/s12640-017-9772-3 [35] 闫博引. 蓝藻神经毒素BMAA在水中赋存状态及氧化降解机制[D]. 哈尔滨: 哈尔滨工业大学, 2020. YAN B Y. Occurrence state and oxidative degragation mechanism of cyanobacterial neurotoxin BMAA in water[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
[36] FAASSEN E J, ANTONIOU M G, BEEKMAN-LUKASSEN W, et al. A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: Soluble bound BMAA found to be an important fraction [J]. Marine Drugs, 2016, 14(3): 45. doi: 10.3390/md14030045 [37] LANCE E, ARNICH N, MAIGNIEN T, et al. Occurrence of β-N-methylamino-L-alanine (BMAA) and isomers in aquatic environments and aquatic food sources for humans [J]. Toxins, 2018, 10(2): 83. doi: 10.3390/toxins10020083 [38] COMBES A, EL ABDELLAOUI S, SARAZIN C, et al. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-L-alanine in complex environmental samples [J]. Analytica Chimica Acta, 2013, 771: 42-49. doi: 10.1016/j.aca.2013.02.016 [39] AL-SAMMAK M A, HOAGLAND K D, CASSADA D, et al. Co-occurrence of the cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska reservoirs, fish, and aquatic plants [J]. Toxins, 2014, 6(2): 488-508. doi: 10.3390/toxins6020488 [40] CRAIGHEAD D, METCALF J S, BANACK S A, et al. Presence of the neurotoxic amino acids β-N-methylamino-L-alanine (BMAA) and 2, 4-diaminobutyric acid (DAB) in shallow springs from the Gobi Desert [J]. Amyotrophic Lateral Sclerosis, 2009, 10(sup2): 96-100. doi: 10.3109/17482960903278469 [41] FAASSEN E J, GILLISSEN F, ZWEERS H A J, et al. Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-, γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms [J]. Amyotrophic Lateral Sclerosis, 2009, 10(sup2): 79-84. doi: 10.3109/17482960903272967 [42] METCALF J S, BANACK S A, LINDSAY J, et al. Co-occurrence of β-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004 [J]. Environmental Microbiology, 2008, 10(3): 702-708. doi: 10.1111/j.1462-2920.2007.01492.x [43] ROY-LACHAPELLE A, SOLLIEC M, SAUVÉ S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2015, 407(18): 5487-5501. doi: 10.1007/s00216-015-8722-2 [44] 顾笑笑, 吴湘, 张爱, 等. 神经毒素BMAA在淡水池塘水体中的健康风险及调控技术 [J]. 水生生物学报, 2022, 46(2): 176-183. doi: 10.7541/2021.2021.012 GU X X, WU X, ZHANG A, et al. Health risk of neurotoxin β-N-methylamino-L-alanine(BMAA) in freshwater aquaculture ponds and its control technology [J]. Acta Hydrobiologica Sinica, 2022, 46(2): 176-183(in Chinese). doi: 10.7541/2021.2021.012
[45] WANG C, YAN C, QIU J B, et al. Food web biomagnification of the neurotoxin β-N-methylamino-L-alanine in a diatom-dominated marine ecosystem in China [J]. Journal of Hazardous Materials, 2021, 404: 124217. doi: 10.1016/j.jhazmat.2020.124217 [46] 李博. 藻毒素BMAA在土壤与作物间的迁移累积及其对秀丽隐杆线虫的影响[D]. 南京: 南京农业大学, 2019. LI B. Transfer and bioaccumulation of A cyanobacterial neurotoxin BMAA between soil and crop and its effects on Caenorhabditis elegans[D]. Nanjing: Nanjing Agricultural University, 2019(in Chinese).
[47] JIANG L Y, KISELOVA N, ROSÉN J, et al. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets [J]. Scientific Reports, 2014, 4: 6931. doi: 10.1038/srep06931 [48] RÉVEILLON D, ABADIE E, SÉCHET V, et al. β-N-methylamino-L-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea [J]. Marine Environmental Research, 2015, 110: 8-18. doi: 10.1016/j.marenvres.2015.07.015 [49] LAMPINEN SALOMONSSON M, HANSSON A, BONDESSON U. Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2013, 5(18): 4865. doi: 10.1039/c3ay40657a [50] SCOTT L L, DOWNING S, DOWNING T. Potential for dietary exposure to β-N-methylamino-L-alanine and microcystin from a freshwater system [J]. Toxicon, 2018, 150: 261-266. doi: 10.1016/j.toxicon.2018.06.076 [51] CHRISTENSEN S J, HEMSCHEIDT T K, TRAPIDO-ROSENTHAL H, et al. Detection and quantification of β-methylamino-L-alanine in aquatic invertebrates [J]. Limnology and Oceanography:Methods, 2012, 10(11): 891-898. doi: 10.4319/lom.2012.10.891 [52] FIELD N C, METCALF J S, CALLER T A, et al. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD [J]. Toxicon, 2013, 70: 179-183. doi: 10.1016/j.toxicon.2013.04.010 [53] 陈咏梅, 赵以军, 陈默, 等. 武汉官桥湖蓝藻毒素BMAA的生物累积与健康风险评估 [J]. 水生态学杂志, 2019, 40(4): 22-29. doi: 10.15928/j.1674-3075.2019.04.004 CHEN Y M, ZHAO Y J, CHEN M, et al. Bioaccumulation and health risk assessment of the cyanobacterial neurotoxin BMAA in Guanqiao Lake, Wuhan [J]. Journal of Hydroecology, 2019, 40(4): 22-29(in Chinese). doi: 10.15928/j.1674-3075.2019.04.004
[54] WU X, WU H, GU X X, et al. Biomagnification characteristics and health risk assessment of the neurotoxin BMAA in freshwater aquaculture products of Taihu Lake Basin, China [J]. Chemosphere, 2019, 229: 332-340. doi: 10.1016/j.chemosphere.2019.04.210 [55] LI A F, SONG J L, HU Y, et al. New typical vector of neurotoxin β-N-methylamino-L-alanine (BMAA) in the marine benthic ecosystem [J]. Marine Drugs, 2016, 14(11): 202. doi: 10.3390/md14110202 [56] 王超, 邱江兵, 柳超, 等. 神经毒素BMAA沿海洋食物链的迁移转化行为研究[C]. 第十四届生物毒素毒理学术大会暨第一届生物毒素——从生存适应到转化医学专题学术会议会刊, 2019. WANG C, QIU J B, LIU C, et al. Migration and transformation behavior of neurotoxin BMAA along the Marine food chain[C]. Proceedings of the 14th Biotoxin Toxicology Conference and the 1st Biotoxin: From Survival Adaptation to Translational Medicine Symposium, 2019(in Chinese).
[57] HAMMERSCHLAG N, DAVIS D A, MONDO K, et al. Cyanobacterial neurotoxin BMAA and mercury in sharks [J]. Toxins, 2016, 8(8): 238. doi: 10.3390/toxins8080238 [58] MONDO K, HAMMERSCHLAG N, BASILE M, et al. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins [J]. Marine Drugs, 2012, 10(2): 509-520. [59] MONDO K, BROC GLOVER W, MURCH S J, et al. Environmental neurotoxins β-N-methylamino-L-alanine (BMAA) and mercury in shark cartilage dietary supplements [J]. Food Chem Toxicol, 2014, 70: 26-32. doi: 10.1016/j.fct.2014.04.015 [60] 焦一滢. 蓝藻神经毒素β-N-甲氨基-L-丙氨酸在太湖食物链中赋存与环境行为研究[D]. 南京: 南京大学, 2014. JIAO Y Y. Occurrence of the cyanobacterial neurotoxin β-N-methylamino-L-alanine in foodchains of lake Tai and the study of environmental fates[D]. Nanjing: Nanjing University, 2014(in Chinese).
[61] GANTAR M, SVIRČEV Z. Microalgae and cyanobacteria: Food for thought(1) [J]. Journal of Phycology, 2008, 44(2): 260-268. doi: 10.1111/j.1529-8817.2008.00469.x [62] ROY-LACHAPELLE A, SOLLIEC M, BOUCHARD M F, et al. Detection of cyanotoxins in algae dietary supplements [J]. Toxins, 2017, 9(3): 76. doi: 10.3390/toxins9030076 [63] KRÜGER T, MÖNCH B, OPPENHÄUSER S, et al. LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2, 4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius [J]. Toxicon, 2010, 55(2/3): 547-557. [64] 樊华. 淡水蓝藻产生神经毒素BMAA和DAB的潜力及其环境影响因子研究[D]. 青岛: 中国海洋大学, 2013. FAN H. Potential production of neurotoxins BMAA and DAB in freshwater cyanobacteria and effects environmental factors[D]. Qingdao: Ocean University of China, 2013(in Chinese).
[65] DROBAC D, TOKODI N, SIMEUNOVIĆ J, et al. Human exposure to cyanotoxins and their effects on health [J]. Arhiv Za Higijenu Rada i Toksikologiju, 2013, 64(2): 119-130. [66] FALCONER I R, HUMPAGE A R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water [J]. International Journal of Environmental Research and Public Health, 2005, 2(1): 43-50. doi: 10.3390/ijerph2005010043 [67] KARLSSON O, KULTIMA K, WADENSTEN H, et al. Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats [J]. Journal of Proteome Research, 2013, 12(4): 1678-1690. doi: 10.1021/pr3010265 [68] 全国居民主要食品消费量[EB/OL]. 国家统计局, 2013-2020. National consumption of major food products[EB/OL]. National Bureau of Statistics, 2013-2020.
[69] 闫云君, 梁彦龄. 水生大型无脊椎动物的干湿重比的研究 [J]. 华中理工大学学报, 1999, 27(9): 61-63. YAN Y J, LIANG Y L. A study of dry to wet weight ratio of aquatic macroinvertebrates [J]. Journal of Huazhong University of Science and Technology, 1999, 27(9): 61-63(in Chinese).
-