-
我国北方大部分区域属于干旱半干旱区,地表水较少,而地下水由于分布广泛、变化稳定、水质优良的特点,已成为当地工、农业生活生产的主要用水[1]. 但随着农药、化肥的广泛使用、污水的大量排放,地表水与地下水水质不断恶化,城市经济发展和生态良性循环受到严重制约[2-3]. 开展流域水化学特征及水质评价研究,对明确水质现状、揭示水循演化规律、健全水污染防治与水资源管理制度具有重要意义[4-5].
针对流域水化学特征及水质评价,国内外学者已开展了大量研究工作. 丁启振等[6]通过对新疆博尔塔拉河上游河谷地区不同水体进行取样分析,揭示了该区水化学的控制作用,明确了水化学组分的主要来源及水质现状. 夏璐等[7]运用多种水化学方法,对胶东半岛沿海地区的地下水进行分析,明确了区域水化学特征,并揭示了地下水污染主要是由人类活动引起的. Srilert等[8]通过对泰国碧差汶府与披集府交界处的地下水进行取样分析,明确了研究区不同时期的水化学类型,并基于主成分分析揭示了自然因素和人类活动对水化学的影响. Bouselsal等[9]基于多种水化学分析方法,揭示了阿尔及利亚地区地下水的水化学成因规律及主要离子反应,并使用电导率(EC)、钠吸附比(SAR)等不同参数,对饮用水源和灌溉水源分别进行了水质评价.
在以往的研究中,众学者主要集中于泉域地下水水化学特征沿流向的演化规律研究,或不同水体的水化学特征及成因机制研究,很少涉及对流域水化学在垂向的分布特征及成因规律研究. 而在该地区,也主要集中于对三姑泉域岩溶地下水的水化学特征研究,缺乏对丹河流域水化学特征及其成因规律的针对性探究. 因此,本文以丹河流域泽州段的地表水、浅层地下水、深层地下水及泉水等4种水体类型为研究对象,基于采样实测数据,结合流域水文地质条件,旨在查明流域水化学的垂向分布特征及成因规律,明确不同水体的水质现状,为丹河流域的水源保护及生态管理提供科学依据.
丹河流域(泽州段)不同水体水化学特征及水质评价
Hydrochemical characteristics and water quality evaluation of different water bodies in Zezhou section of Danhe River Basin
-
摘要: 为研究丹河流域不同水体水化学特征及水质现状,采用相关性分析、Piper三线图、氯碱指数及主要阴阳离子比值等多种水化学方法,对地表水、浅层水、深层水及泉水的水化学特征进行分析,并基于熵权-模糊综合评价法和Wilcox、USSL图解法进行水质评价,结果表明:(1)区内水体均呈弱碱性;TDS和F−浓度由上至下逐渐减小. (2)地表水和浅层水的水化学类型主要为HCO3 SO4-Ca·Na;深层水和泉水主要为HCO3·SO4-Ca;在地表水下渗过程中,阳离子倾向于由Ca-Na型向Ca型转变,阴离子倾向于由SO4型向HCO3型转变. (3)研究区水化学特征主要受岩石风化作用控制;水化学组分主要来源于硅酸盐岩溶解,且还存在蒸发盐岩溶解、碳酸盐岩溶解及阳离子交换作用. (4)水质评价结果显示,66.7%的浅层水、100%的深层水和泉水适合人体饮用;部分地表水的灌溉盐害风险较高. 该研究明确了区内不同水体水化学特征及水质现状,结果可为水资源开发及保护提供有效依据.
-
关键词:
- 水化学特征 /
- 水质评价 /
- 熵权-模糊综合评价法 /
- 丹河.
Abstract: In order to study the hydrochemical characteristics and water quality status of different water bodies in Danhe River Basin, the hydrochemical characteristics of surface water, shallow groundwater, deep groundwater and spring water were analyzed by using various hydrochemical methods such as correlation analysis, Piter trilinear, chlor alkali index and the ratio of main cation and anion. The water quality was evaluated based on entropy weight fuzzy comprehensive evaluation method and Wilcox and USSL graphical methods. The results showed that: (1) The water bodies in the area were weakly alkaline; The concentrations of TDS and F−decreased gradually from top to bottom. (2) The hydrochemical types of surface water and shallow groundwater are mainly HCO3·SO4-Ca; The deep groundwater and spring water are mainly HCO3·SO4-Ca; In the process of surface water infiltration, cations tend to change from Ca-Na type to Ca type, and anions tend to change from SO4 type to HCO3 type. (3) The hydrochemical characteristics of the study area are mainly controlled by rock weathering; The hydrochemical components mainly come from the dissolution of silicate rocks, and there are also evaporation salt rock dissolution, carbonate rock dissolution and cation exchange. (4) The results of water quality evaluation show that 66.7% of shallow groundwater, 100% of deep groundwater and spring water are suitable for human consumption; Some surface water has high risk of salt damage. The study clarified the hydrochemical characteristics and water quality status of different water bodies in the area, and the results can provide an effective basis for water resources development and protection. -
表 1 水化学特征参数统计
Table 1. Statistics of hydrochemical characteristic parameters
水体类型
Water type统计量
WtatisticspH TDS Ca2+ Mg2+ Na+ K+ Cl− SO42− HCO3− F− 地表水
Surface water
(n=12)Max 8.69 1051.00 155.80 56.60 205.21 9.90 224.60 667.74 270.44 2.66 Me 8.23 709.50 94.29 40.47 102.71 7.33 116.24 369.21 215.36 0.40 Min 7.81 193.00 53.47 28.34 50.99 3.59 58.73 211.02 178.80 0.21 Mean 8.25 645.83 98.64 40.33 119.13 6.91 129.45 378.42 216.26 0.70 SD 0.20 234.42 23.69 9.60 46.21 1.74 58.70 124.83 23.98 0.67 CV 0.02 0.36 0.24 0.24 0.39 0.25 0.45 0.33 0.11 0.96 浅层地下水
Shallow groundwater
(n=6)Max 7.88 780.00 231.52 32.70 99.56 5.04 89.23 570.97 375.49 0.90 Me 7.54 601.50 180.17 31.92 84.18 3.43 59.16 292.09 306.05 0.32 Min 7.32 512.00 130.27 21.12 19.41 1.24 31.56 215.04 250.33 0.15 Mean 7.58 621.17 180.56 29.64 69.66 3.33 61.50 338.50 310.11 0.44 SD 0.21 87.55 34.54 4.11 30.50 1.44 20.12 118.22 46.77 0.27 CV 0.03 0.14 0.19 0.14 0.44 0.43 0.33 0.35 0.15 0.62 深层地下水
Deep groundwater
(n=10)Max 8.34 677.00 158.74 42.82 55.40 1.74 141.54 266.20 330.79 0.57 Me 7.81 435.00 99.50 28.49 29.79 1.07 50.37 140.42 297.26 0.33 Min 7.67 252.00 77.80 19.13 1.32 0.75 14.43 51.40 248.09 0.21 Mean 7.86 435.00 110.49 28.98 28.18 1.17 63.12 155.17 291.01 0.33 SD 0.19 133.01 24.73 6.44 20.83 0.30 37.17 68.09 21.21 0.11 CV 0.02 0.31 0.22 0.22 0.74 0.25 0.59 0.44 0.07 0.32 表 2 水体主要水化学组分相关性
Table 2. Correlation of main hydrochemical components of water body
水体类型
Water typeCa2+ Mg2+ Na+ K+ Cl− SO42− HCO3− TDS F− pH 水体类型
Water type地表水
Surface waterCa2+ 1 −0.04 −0.42 −0.62 0.03 0.68 0.11 0.72 −0.77 0.12 浅层地下水
Shallow groundwaterMg2+ 0.55 1 −0.57 0.47 −0.61 0.39 −0.49 0.23 0.22 0.35 Na+ 0.73 0.58 1 0.91 0.81 −0.94 0.79 0.72 0.33 −0.31 K+ 0.74 0.71 0.94 1 −0.76 0.14 −0.80 0.53 0.49 0.38 地表水
Surface waterCl− 0.71 0.81 0.92 0.88 1 −0.69 0.98 0.88 −0.23 −0.52 浅层地下水
Shallow groundwaterSO42− 0.86 0.67 0.95 0.90 0.85 1 −0.64 0.71 −0.48 0.34 HCO3− 0.14 −0.50 −0.14 −0.11 −0.33 0.04 1 0.62 −0.24 −0.38 TDS 0.63 0.09 0.73 0.59 0.64 0.76 0.16 1 −0.74 −0.58 F− 0.72 0.57 0.67 0.60 0.65 0.79 −0.01 0.64 1 0.09 pH −0.59 −0.13 −0.37 −0.32 −0.37 −0.42 −0.02 −0.48 −0.29 1 深层地下水
Deep groundwaterCa2+ 1 Mg2+ 0.80 1 Na+ 0.24 0.21 1 K+ 0.19 −0.05 0.73 1 Cl− 0.76 0.59 0.68 0.56 1 SO42− 0.88 0.75 0.66 0.45 0.67 1 HCO3− 0.48 0.25 −0.59 −0.54 0.11 0.09 1 TDS 0.67 0.42 0.68 0.60 0.84 0.69 0.12 1 F− −0.15 0.24 −0.18 −0.29 −0.34 0.02 −0.19 −0.28 1 pH 0.12 0.11 0.42 0.50 0.09 0.41 −0.55 −0.04 0.14 1 表 3 水质综合评价结果表
Table 3. Comprehensive evaluation results of water quality
水体类型
Water type取样点
Water sampleⅠ Ⅱ Ⅲ Ⅳ Ⅴ 水质
Water quality浅层地下水
Shallow ground waterB1 0.032 0.138 0.277 0.37 0.183 Ⅳ B2 0.047 0.105 0.253 0.406 0.189 Ⅳ B3 0.257 0.389 0.337 0.017 0 Ⅱ B4 0.437 0.262 0.294 0.007 0 Ⅰ B5 0.208 0.394 0.283 0.105 0.009 Ⅱ B6 0.252 0.285 0.321 0.125 0.017 Ⅰ 深层地下水
Deep ground waterC1 0.497 0.323 0.179 0 0 Ⅰ C2 0.638 0.253 0.109 0 0 Ⅰ C3 0.246 0.536 0.218 0 0 Ⅱ C4 0.528 0.347 0.126 0 0 Ⅰ C5 0.269 0.423 0.309 0 0 Ⅱ C6 0.351 0.38 0.243 0.027 0 Ⅱ C7 0.343 0.491 0.166 0 0 Ⅱ C8 0.793 0.138 0.069 0 0 Ⅰ C9 0.275 0.352 0.372 0 0 Ⅲ C10 0.449 0.432 0.119 0 0 Ⅰ 泉水
Spring waterS 0.47 0.32 0.178 0.032 0 Ⅰ -
[1] 李国秀. 吉林省西部地区地下水水质演化研究[D]. 长春: 吉林大学, 2017. LI G X. Research on evolution of groundwater quality in the western Jilin Province[D]. Changchun: Jilin University, 2017 (in Chinese).
[2] 石立明. 邯郸黑龙港平原地下水水文地球化学特征及水质评价研究[D]. 邯郸: 河北工程大学, 2020. SHI L M. Research on hydrogeochemical characteristics and water quality assessment of groundwater in heilonggang basin of Handan city[D]. Handan: Hebei University of Engineering, 2020 (in Chinese).
[3] 高燕燕. 关中平原地下水化学成分时空演化规律及人体健康风险评价[D]. 西安: 长安大学, 2020. GAO Y Y. Spatio-temporal evolution of hydrochemical components and human health risk assessment of groundwater in Guanzhong plain[D]. Xi'an: Chang’an University, 2020 (in Chinese).
[4] 杨锐, 周金龙, 魏兴, 等. 新疆和田东部平原区地下水化学特征及演化规律 [J]. 环境化学, 2022, 41(4): 1367-1379. doi: 10.7524/j.issn.0254-6108.2020120202 YANG R, ZHOU J L, WEI X, et al. Hydrochemical characteristics and evolution of groundwater in the eastern plain of Hotian Prefecture, Xinjiang [J]. Environmental Chemistry, 2022, 41(4): 1367-1379(in Chinese). doi: 10.7524/j.issn.0254-6108.2020120202
[5] 高磊, 陈建耀, 王江, 等. 东莞石马河流域水化学特征时空差异及来源辨析 [J]. 环境科学, 2015, 36(5): 1573-1581. GAO L, CHEN J Y, WANG J, et al. Temporal-spatial variation and source identification of hydro-chemical characteristics in Shima River catchment, Dongguan city [J]. Environmental Science, 2015, 36(5): 1573-1581(in Chinese).
[6] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价 [J]. 干旱区研究, 2022, 39(3): 829-840. DING Q Z, LEI M, ZHOU J L, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River [J]. Arid Zone Research, 2022, 39(3): 829-840(in Chinese).
[7] 夏璐, 游海池, 刘久潭, 等. 胶东半岛沿海地区地下水水化学特征及水质评价 [J]. 环境科学与技术, 2021, 44(10): 1-10. XIA L, YOU H C, LIU J T, et al. Hydrochemical characteristics and water quality evaluation of groundwater in coastal area of Jiaodong peninsula [J]. Environmental Science & Technology, 2021, 44(10): 1-10(in Chinese).
[8] CHOTPANTARAT S, THAMRONGSRISAKUL J. Natural and anthropogenic factors influencing hydrochemical characteristics and heavy metals in groundwater surrounding a gold mine, Thailand [J]. Journal of Asian Earth Sciences, 2021, 211: 104692. doi: 10.1016/j.jseaes.2021.104692 [9] BOUSELSAL B, SAIBI H. Evaluation of groundwater quality and hydrochemical characteristics in the shallow aquifer of El-Oued region (Algerian Sahara) [J]. Groundwater for Sustainable Development, 2022, 17: 100747. doi: 10.1016/j.gsd.2022.100747 [10] 安静, 徐明德, 孙凯迪, 等. 三级生态保护体系区划研究: 以山西省高平市为例 [J]. 环境科学与技术, 2018, 41(10): 226-232. AN J, XU M D, SUN K D, et al. Research on delineation of three-level ecological conservation system: A case study in Gaoping city, Shanxi provice [J]. Environmental Science & Technology, 2018, 41(10): 226-232(in Chinese).
[11] 赵兴华, 李泽利, 贾冰莹, 等. 不同评价方法在地下水源水质评价中的应用: 以天津市为例 [J]. 农业资源与环境学报, 2021, 38(4): 686-692. ZHAO X H, LI Z L, JIA B Y, et al. Application of different methods for quality evaluation of groundwater drinking water sources: A case study of Tianjin [J]. Journal of Agricultural Resources and Environment, 2021, 38(4): 686-692(in Chinese).
[12] 丁冉, 肖伟华, 于福亮, 等. 水资源质量评价方法的比较与改进 [J]. 中国环境监测, 2011, 27(3): 63-68. DING R, XIAO W H, YU F L, et al. Evaluation method for water quality: A review and further investigation for improvement [J]. Environmental Monitoring in China, 2011, 27(3): 63-68(in Chinese).
[13] 唐宁. 无锡梁溪河水质模型及其不确定性分析[D]. 南京: 南京大学, 2017. TANG N. Water quality model of Liangxi River in Wuxi and its uncertainty analysis[D]. Nanjing: Nanjing University, 2017 (in Chinese).
[14] 侯玉婷, 周忠发, 王历, 等. 基于改进模糊综合评价法的喀斯特山区水质评价研究 [J]. 水利水电技术, 2018, 49(7): 129-135. HOU Y T, ZHOU Z F, WANG L, et al. Improved fuzzy comprehensive evaluation method-based study on water quality evaluation in Karst Mountain area [J]. Water Resources and Hydropower Engineering, 2018, 49(7): 129-135(in Chinese).
[15] ZHOU Z Y, ZHANG X J, DONG W Y. Fuzzy comprehensive evaluation for safety guarantee system of reclaimed water quality [J]. Procedia Environmental Sciences, 2013, 18: 227-235. doi: 10.1016/j.proenv.2013.04.029 [16] WANG X J, ZOU Z H, ZOU H. Water quality evaluation of Haihe River with fuzzy similarity measure methods [J]. Journal of Environmental Sciences, 2013, 25(10): 2041-2046. doi: 10.1016/S1001-0742(12)60260-5 [17] ZOU Z H, YUN Y, SUN J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment [J]. Journal of Environmental Sciences, 2006, 18(5): 1020-1023. doi: 10.1016/S1001-0742(06)60032-6 [18] 陈朋, 王家鼎, 袁亮, 等. 修正内梅罗指数法和模糊综合评判法在凤凰镇地下水水质评价中的应用 [J]. 水土保持通报, 2017, 37(2): 165-170. CHEN P, WANG J D, YUAN L, et al. Application of modified nemerow index and fuzzy comprehensive evaluation method on groundwater quality evaluation in Fenghuang town [J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 165-170(in Chinese).
[19] 岳自慧, 许兴, 毛桂莲. 燃煤脱硫废弃物中的钙对提高作物抗盐碱胁迫的可能机理及进展 [J]. 农业科学研究, 2009, 30(2): 48-52. YUE Z H, XU X, MAO G L. Effects of calcium of desulphurized coal-burning residue on stress-resistant ability under saline-alkali stress of plant [J]. Journal of Agricultural Sciences, 2009, 30(2): 48-52(in Chinese).
[20] KHONG L X, ISMAIL S, SAAD N A, et al. Evaluation on groundwater quality of limestone aquifer in Kinta Valley, Perak for the use as irrigation water [J]. Materials Today:Proceedings, 2022, 66: 3040-3043. doi: 10.1016/j.matpr.2022.07.334 [21] MORÁN-RAMÍREZ J, RAMOS-LEAL J A, FUENTES-RIVAS R M, et al. Hydrogeochemical processes in aquifers of volcano-sedimentary origin using inverse modeling [J]. Journal of South American Earth Sciences, 2022, 117: 103888. doi: 10.1016/j.jsames.2022.103888 [22] WANG J H, LI C, XU Y P, et al. Identifying major contributors to algal blooms in Lake Dianchi by analyzing river-lake water quality correlations in the watershed [J]. Journal of Cleaner Production, 2021, 315: 128144. doi: 10.1016/j.jclepro.2021.128144 [23] 杨巧凤, 王瑞久, 徐素宁, 等. 莱州湾南岸卤水的稳定同位素与地球化学特征 [J]. 地质论评, 2016, 62(2): 343-352. YANG Q F, WANG R J, XU S N, et al. Hydrogeochemical and stable isotopic characteristics of brine in Laizhou Bay [J]. Geological Review, 2016, 62(2): 343-352(in Chinese).
[24] 张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律 [J]. 地学前缘, 2021, 28(4): 194-205. ZHANG J T, SHI Z M, WANG G C, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(4): 194-205(in Chinese).
[25] 曾邯斌, 苏春利, 谢先军, 等. 河套灌区西部浅层地下水咸化机制 [J]. 地球科学, 2021, 46(6): 2267-2277. ZENG H B, SU C L, XIE X J, et al. Mechanism of salinization of shallow groundwater in western Hetao irrigation area [J]. Earth Science, 2021, 46(6): 2267-2277(in Chinese).
[26] WANG H, JIANG X W, WAN L, et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin [J]. Journal of Hydrology, 2015, 527: 433-441. doi: 10.1016/j.jhydrol.2015.04.063 [27] 孙厚云, 王晨昇, 卫晓锋, 等. 大兴安岭南段巴音高勒流域水化学特征及驱动因子 [J]. 环境化学, 2020, 39(9): 2507-2519. doi: 10.7524/j.issn.0254-6108.2020032102 SUN H Y, WANG C S, WEI X F, et al. Hydrochemical characteristics and driving factors in the water of the Bayingaole Basin, Southern Great Xing’an Range [J]. Environmental Chemistry, 2020, 39(9): 2507-2519(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032102
[28] PENG H, YANG W, NADINE FERRER A S, et al. Hydrochemical characteristics and health risk assessment of groundwater in Karst areas of southwest China: A case study of Bama, Guangxi [J]. Journal of Cleaner Production, 2022, 341: 130872. doi: 10.1016/j.jclepro.2022.130872 [29] 曾小仙, 曾妍妍, 周金龙, 等. 石河子市浅层地下水化学特征及其成因分析 [J]. 干旱区研究, 2021, 38(1): 68-75. doi: 10.13866/j.azr.2021.01.08 ZENG X X, ZENG Y Y, ZHOU J L, et al. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City [J]. Arid Zone Research, 2021, 38(1): 68-75(in Chinese). doi: 10.13866/j.azr.2021.01.08
[30] SHARMA M K, KUMAR P, PRAJAPATI P, et al. Study of hydrochemical and geochemical characteristics and solute fluxes in upper Ganga basin, India [J]. Journal of Asian Earth Sciences:X, 2022, 8: 100108. doi: 10.1016/j.jaesx.2022.100108 [31] 林云, 曹飞龙, 武亚遵, 等. 北方典型岩溶泉域地下水水文地球化学特征分析: 以鹤壁许家沟泉域为例 [J]. 地球与环境, 2020, 48(3): 294-306. LIN Y, CAO F L, WU Y Z, et al. Hydrogeochemical characteristics of groundwater in typical Karst spring areas of North China-a case study in the Xujiagou Spring area, Hebi [J]. Earth and Environment, 2020, 48(3): 294-306(in Chinese).
[32] SANGADI P, KUPPAN C, RAVINATHAN P. Effect of hydro-geochemical processes and saltwater intrusion on groundwater quality and irrigational suitability assessed by geo-statistical techniques in coastal region of eastern Andhra Pradesh, India [J]. Marine Pollution Bulletin, 2022, 175: 113390. doi: 10.1016/j.marpolbul.2022.113390 [33] GEETHA S A, SIVAKUMAR C Appraisement of phreatic water characteristic using water quality Index modeling and GIS in industrialized region[J]. Materials Today: Proceedings, 2021, 43: 1568-1581. [34] 周永学, 李美琪, 黄志杰, 等. 长期咸水滴灌对灰漠土理化性质及棉花生长的影响 [J]. 干旱地区农业研究, 2021, 39(4): 12-20. doi: 10.7606/j.issn.1000-7601.2021.04.02 ZHOU Y X, LI M Q, HUANG Z J, et al. Effects of long-term saline water drip irrigation on physicochemical properties and cotton growth in grey desert soil [J]. Agricultural Research in the Arid Areas, 2021, 39(4): 12-20(in Chinese). doi: 10.7606/j.issn.1000-7601.2021.04.02
[35] 马贵仁, 王丽萍, 屈忠义, 等. 构建河套灌区大规模盐碱地改良效果评估指标体系 [J]. 灌溉排水学报, 2020, 39(8): 72-84. MA G R, WANG L P, QU Z Y, et al. Constructing an index-based system to evaluate the efficacy of large-scale remediation of saline-alkali soil for Hetao irrigated district [J]. Journal of Irrigation and Drainage, 2020, 39(8): 72-84(in Chinese).