-
岩溶地下水是泉城济南工农业生产和社会发展不可缺少的重要资源[1]. 上世纪80年代以来,随着城市化进程的不断加快,济南岩溶地下水开采量不断增大,工农业生产、旅游活动、生活污水等对岩溶地下水造成了一定程度的污染,水质逐年变差[2]. 特别是在泉域补给径流区,城郊和农村点源与面源污染交错,使得硝酸盐污染问题日益突出[3]. 饮用水中NO3-N含量过高容易造成儿童患高铁血红蛋白症,成人患胃癌、食管癌等,威胁人类健康[4-5]. 同时,岩溶区具有特殊的“地表—地下”双层结构,其含水层结构的特殊性决定了NO3−污染状况更为复杂[6-7].
近年来,许多学者针对岩溶水系统硝酸盐污染问题开展了大量研究,主要集中在西南亚热带岩溶区[8-10],而对于北方半湿润半干旱岩溶区的相关研究较少. 前人对于济南泉域主要开展了水文地质条件、岩溶含水层结构、水循环特征及水环境等方面的研究[11-13],特别是在岩溶地下水的水化学特征及水环境演化方面,部分学者对济南泉域岩溶地下水中主要元素、微量元素及稳定环境同位素进行分析,研究了济南泉域地下水补给来源、水文地球化学特征等问题[14-15]. 还有学者对济南泉域岩溶地下水水质变化规律及其影响因素进行了分析[16-17]. 但是在泉域尺度上采用水化学和NO3−氮氧双同位素分析岩溶地下水系统NO3−污染特征及污染来源的研究尚不多见.
本文以济南泉域为例,基于水化学和NO3−氮氧双同位素示踪技术,从水文地球化学角度,系统分析泉域岩溶水水化学特征,探究NO3−污染来源、分布及影响因素,并定量计算NO3−的各类贡献源比例,剖析NO3−的生物地球化学过程,以期为济南泉域岩溶水资源开发利用及生态环境保护提供科学依据.
济南泉域岩溶水系统硝酸盐空间分布及溯源解析
Spatial distribution and traceability analysis of nitrate in karst water system in Jinan spring basin
-
摘要: 人为活动产生的硝酸盐(NO3−)污染是北方岩溶泉域面临的最普遍的环境问题之一. 以济南泉域为研究对象,于2020年9月采集地下水和地表水样品共30件,综合利用水化学分析方法耦合硝酸盐氮氧同位素(
${\delta ^{15}}{{\rm{N}}_{{\rm{N}}{{\rm{O}}_3}}} $ 和${\delta ^{18}}{{\rm{O}}_{{\rm{N}}{{\rm{O}}_3}}} $ )示踪技术,分析研究区NO3−来源及空间分布. 结果表明,研究区主要阴、阳离子浓度从高到低依次为HCO3−>SO42−>Cl−->NO3−、Ca2+>Na+>Mg2+>K+,水化学类型以HCO3·SO4-Ca为主. 地下水NO3−浓度平均值(37.93 mg·L−1)高于地表水(10.15 mg·L−1). 有7个地下水采样点明显受到NO3−污染,超标率为27%,上游补给区及下游汇集排泄区采样点地下水NO3−浓度较高,而径流区采样点地下水NO3−浓度相对偏低. NO3−浓度主要受到无N形态转化的混合过程的影响,反硝化作用并不显著. δ15N和δ18O值范围分别为1.05‰—14.43‰和−7.92‰—22.94‰,MixSIAR模型计算结果显示,粪便和污水对地下水和地表水NO3−的贡献率最大,分别为39.9%和51.5%,其次为土壤氮及降雨和化肥中的NH4+,大气沉降的贡献率最低,说明粪便和污水是该区NO3−污染的主要来源,也可能有土壤有机氮和化肥的混合.Abstract: Nitrate pollution caused by human activities is one of the most common environmental problems in karst spring areas in north China. A total of 30 groundwater and surface water samples were collected in Jinan Spring Basin in September 2020. The source and spatial distribution of nitrate pollution in the study area were analyzed by using hydrochemical analysis method coupled with nitrate nitrogen and oxygen double isotope tracer technology. The results show that the sequences of major anions and cations in water were HCO3−>SO42−>Cl−>NO3− and Ca2+>Na+>Mg2+>K+, respectively. And the main water chemistry type was HCO3·SO4-Ca. The average NO3− concentration in groundwater (37.93 mg·L−1) was higher than that in surface water (10.15 mg·L−1). Waters of 7 sampling sites were obviously polluted by nitrate, exceeding standard rate was 27%, and the concentration of NO3−-N in groundwater at the sampling points of upstream recharge area and downstream drainage area was higher than from runoff area. The concentration of NO3− was mainly affected by the mixing process, while no obvious denitrification occurred. The values of${\delta ^{15}}{{\rm{N}}_{{\rm{N}}{{\rm{O}}_3}}} $ and${\delta ^{18}}{{\rm{O}}_{{\rm{N}}{{\rm{O}}_3}}} $ ranged from 1.05‰ to 14.43‰ and −7.92‰ to 22.94‰, respectively. According to the calculation results of Bayesian isotope mixing model (MixSIAR), manure and sewage was mainly nitrate source of the groundwater and surface water, accounting for 39.3% and 52.3% of the total contribution, respectively. Soil nitrogen and NH4+ in rainfall and fertilizer were the second, and the contribution rate of atmospheric deposition was the lowest. The results indicated that manure and sewage was the main source of nitrate pollution in this area, and there may be a mixture of soil organic nitrogen and chemical fertilizer.-
Key words:
- karst water system /
- hydrochemical characteristics /
- nitrate /
- spatial distribution /
- pollution source.
-
表 1 研究区水化学指标数据
Table 1. Hydrochemical indexes in the study area
采样点
Sampling
sitesT/℃ pH EC/
(µS·cm−1)ρ/(mg·L−1) DO K+ Na+ Ca2+ Mg2+ NH4+−N Cl− HCO3− SO42− NO2−−N NO3−−N 总硬度
Total hardnessTDS 间接补给区
Indirect recharge areaG1 19.5 7.79 716 7.05 3.08 57.99 77.06 16.92 0.01 39.54 220.77 133.03 <0.005 2.95 262.14 463.86 G2 24.5 7.62 851 7.74 0.92 30.66 129.50 15.65 0.02 35.25 234.71 174.23 <0.005 6.68 387.85 550.61 G3 17.6 7.28 742 3.99 2.14 18.30 109.26 16.71 <0.01 26.41 283.51 85.23 <0.005 7.36 341.67 451.70 G4 18.1 7.20 1251 6.70 3.41 21.05 203.13 36.36 0.05 27.10 304.43 346.05 0.006 17.96 657.02 892.74 G5 17.1 7.18 1044 6.56 4.35 18.60 146.35 28.55 0.01 30.71 309.07 118.82 <0.005 32.90 483.07 671.46 G6 22.2 7.47 755 5.45 1.91 11.02 124.82 15.17 0.03 9.15 339.28 79.34 0.180 3.19 374.17 433.32 G7 16.0 7.59 605 7.07 0.83 4.80 89.72 26.28 <0.01 9.31 288.16 59.99 <0.005 5.86 332.28 369.61 G8 21.3 7.75 608 8.77 0.92 6.10 95.85 15.46 0.01 10.70 246.33 65.73 <0.005 6.15 303.02 353.71 G9 21.8 7.56 719 7.87 2.96 12.27 111.80 15.40 <0.01 17.11 267.24 84.84 <0.005 7.48 342.62 420.78 G10 17.7 7.48 550 8.41 1.49 8.52 82.00 15.69 0.01 12.44 218.44 61.87 <0.005 7.75 269.40 337.55 直接补给区
Direct recharge areaG11 17.9 7.59 884 4.75 2.37 80.86 93.06 16.72 <0.01 75.30 220.77 168.19 <0.005 2.24 301.27 569.83 G12 20.5 7.28 795 8.13 0.48 24.70 105.21 17.54 <0.01 40.75 313.72 70.27 <0.005 4.79 334.97 451.47 G13 18.8 7.60 644 9.06 0.78 8.69 109.62 10.18 0.01 21.78 223.09 71.79 0.006 9.50 315.69 386.67 G14 17.7 8.93 476 1.92 8.38 24.30 17.07 10.29 1.45 14.87 76.69 68.23 0.094 0.17 84.99 185.79 G15 17.5 7.27 1176 7.40 2.03 43.97 161.77 34.61 0.15 81.75 290.48 205.02 0.043 15.55 546.50 754.93 G16 18.9 7.92 1143 2.45 28.54 84.67 123.25 18.80 0.02 69.11 151.05 352.93 <0.005 3.02 385.20 782.09 G17 19.2 7.14 934 6.44 0.54 34.81 135.93 20.41 0.02 68.86 288.16 108.07 0.006 9.62 423.51 571.36 G18 20.9 7.95 654 8.83 0.67 7.34 97.12 20.75 0.02 18.79 250.98 67.90 <0.005 8.95 327.99 386.36 排泄区
Discharge areaG19 19.7 7.01 1107 6.19 0.46 28.12 178.32 22.62 0.01 99.67 313.72 106.83 <0.005 19.34 538.48 694.81 G20 21.7 7.24 809 8.65 0.71 15.67 117.16 21.29 0.02 39.18 290.48 78.38 <0.005 10.76 380.26 483.21 G21 21.4 7.61 606 6.41 1.07 18.61 89.13 15.81 0.02 39.17 209.15 67.95 <0.005 5.67 287.70 375.12 G22 18.8 7.05 873 1.65 4.15 31.06 106.91 35.19 4.01 42.27 453.15 42.32 0.006 1.76 411.90 514.11 G23 21.9 7.92 803 3.72 3.46 49.98 49.18 42.94 0.05 90.18 153.37 131.52 0.006 3.57 299.64 464.22 G24 17.7 7.58 639 6.91 1.05 13.05 92.11 16.74 0.02 36.85 188.23 82.60 <0.005 7.60 298.96 382.54 G25 19.2 7.37 872 6.32 1.50 32.49 125.64 22.48 0.02 62.16 269.57 104.44 <0.005 10.28 406.31 543.44 G26 19.3 7.29 972 6.31 1.29 41.90 136.66 23.29 0.02 75.43 290.48 121.88 <0.005 11.57 437.17 610.62 地表水
Surface waterS1 24.3 8.56 676 16.28 4.57 27.83 80.16 18.44 0.04 35.58 164.99 135.83 <0.005 1.44 276.10 397.93 S2 26.3 8.36 508 8.74 3.02 17.40 63.77 15.61 0.28 22.29 146.40 95.30 0.088 2.69 223.52 310.53 S3 21.8 8.31 441 8.82 1.90 10.75 59.48 12.36 0.02 13.26 144.08 75.73 0.009 2.17 199.46 260.79 S4 22.3 8.11 476 7.66 1.47 11.12 59.75 17.37 0.10 16.02 137.11 88.27 0.009 2.87 220.76 279.50 表 2 地下水NO3-N浓度>10 mg·L−1采样点分布
Table 2. Distribution of groundwater concentration of NO3-N>10 mg·L−1 sampling sites
采样点
Sampling sitesNO3−N/(mg·L−1) 分区
PartitionG4 17.96 间接补给区
Indirect recharge areaG5 32.90 间接补给区
Indirect recharge areaG15 15.55 直接补给区
Direct recharge areaG19 19.34 排泄区
Discharge areaG20 10.76 排泄区
Discharge areaG25 10.28 排泄区
Discharge areaG26 11.57 排泄区
Discharge area表 3 地下水水化学成分相关系数矩阵
Table 3. Correlation coefficient matrix of groundwater hydrochemical composition
pH EC TDS K+ Na+ Ca2+ Mg2+ HCO3− Cl− NO3− SO42− pH 1 −0.54 −0.54 0.36 0.1 −0.75 −0.35 −0.82 −0.28 −0.52 −0.03 EC 1 0.98 0.29 0.49 0.82 0.57 0.37 0.63 0.55 0.74 TDS 1 0.31 0.49 0.83 0.54 0.33 0.57 0.54 0.80 K+ 1 0.57 −0.06 −0.01 −0.37 0.15 −0.18 0.61 Na+ 1 0.01 0.19 −0.25 0.70 −0.22 0.60 Ca2+ 1 0.32 0.59 0.28 0.68 0.49 Mg2+ 1 0.36 0.44 0.33 0.32 HCO3− 1 −0.01 0.32 −0.17 Cl− 1 0.15 0.36 NO3− 1 0.19 SO42− 1 表 4 地下水和地表水NO3−不同来源的贡献率(%)
Table 4. Contribution rate of potential source to NO3− in groundwater and surface water
来源
Source地下水
Ground water地表水
Surface water最小值
Min最大值
Max平均值±标准差
Mean±SD最小值
Min最大值
Max平均值±标准差
Mean±SD粪便和污水
Manure & nitrogen21.3 61.0 39.9±13.1 41.2 62.7 51.5±9.0 土壤有机氮
Soil organic nitrogen15.5 35.3 27.4±6.4 10.8 24.2 19.2±5.9 降雨和化肥中的NH4+
NH4+ in rainfall and fertilizer12.2 34.2 22.9±6.9 13.3 18.2 15.7±2.1 化肥
Chemical fertilizer1.3 25.3 6.6±5.1 7.8 10.5 8.9±1.2 大气沉降
Atmospheric deposition0.5 21.0 3.3±4.6 3.6 5.9 4.7±1.1 -
[1] KANG F X, JIN M G, QIN P R. Sustainable yield of a Karst aquifer system: A case study of Jinan springs in Northern China [J]. Hydrogeology Journal, 2011, 19(4): 851-863. doi: 10.1007/s10040-011-0725-2 [2] GUO Y, QIN D J, LI L, et al. A complicated Karst spring system: Identified by Karst springs using water level, hydrogeochemical, and isotopic data in Jinan, China [J]. Water, 2019, 11(5): 947. doi: 10.3390/w11050947 [3] 杨丽芝, 刘春华, 祁晓凡. 济南泉水水化学特征变异研究 [J]. 水资源与水工程学报, 2016, 27(1): 59-64. doi: 10.11705/j.issn.1672-643X.2016.01.10 YANG L Z, LIU C H, QI X F. Study on characteristic variation of hydro-chemistry of Jinan spring [J]. Journal of Water Resources and Water Engineering, 2016, 27(1): 59-64(in Chinese). doi: 10.11705/j.issn.1672-643X.2016.01.10
[4] KENDALL C, MCDONNELL J. Isotope tracers in catchment hydrology[M]. Amsterdam: Elsevier, 1998, 517-576. [5] 梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题 [J]. 中国岩溶, 2013, 32(1): 34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006 LIANG Y P, WANG W T, ZHAO C H, et al. Variations of Karst water and environmental problems in North China [J]. Carsologica Sinica, 2013, 32(1): 34-42(in Chinese). doi: 10.3969/j.issn.1001-4810.2013.01.006
[6] 王开然, 郭芳, 姜光辉, 等. 15N和18O在桂林岩溶水氮污染源示踪中的应用 [J]. 中国环境科学, 2014, 34(9): 2223-2230. WANG K R, GUO F, JIANG G H, et al. Application of 15N and 18O to nitrogen pollution source in Karst water in Eastern Guilin [J]. China Environmental Science, 2014, 34(9): 2223-2230(in Chinese).
[7] LIANG Y P, GAO X B, ZHAO C H, et al. Review: Characterization, evolution, and environmental issues of Karst water systems in Northern China [J]. Hydrogeology Journal, 2018, 26(5): 1371-1385. doi: 10.1007/s10040-018-1792-4 [8] 段世辉, 蒋勇军, 张远瞩, 等. 岩溶槽谷区地下河硝酸盐来源及其环境效应: 以重庆龙凤槽谷地下河系统为例 [J]. 环境科学, 2019, 40(4): 1715-1725. DUAN S H, JIANG Y J, ZHANG Y Z, et al. Sources of nitrate in groundwater and its environmental effects in Karst trough valleys: A case study of an underground river system in the Longfeng trough valley, Chongqing [J]. Environmental Science, 2019, 40(4): 1715-1725(in Chinese).
[9] 赵然, 韩志伟, 申春华, 等. 典型岩溶地下河流域水体中硝酸盐源解析 [J]. 环境科学, 2020, 41(6): 2664-2670. ZHAO R, HAN Z W, SHEN C H, et al. Identifying nitrate sources in a typical Karst underground river basin [J]. Environmental Science, 2020, 41(6): 2664-2670(in Chinese).
[10] 李学先, 吴攀, 查学芳, 等. 基于水化学及稳定同位素的岩溶山区城镇水体硝酸盐来源示踪 [J]. 环境科学学报, 2021, 41(4): 1428-1439. LI X X, WU P, ZHA X F, et al. Tracing nitrate sources in urban waters of Karst mountainous area using hydrochemistry and stable isotope [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1428-1439(in Chinese).
[11] ZHANG Z X, WANG W P, QU S S, et al. A new perspective to explore the hydraulic connectivity of Karst aquifer system in Jinan spring catchment, China [J]. Water, 2018, 10(10): 1368. doi: 10.3390/w10101368 [12] GAO S, LI C S, JIA C, et al. Health risk assessment of groundwater nitrate contamination: A case study of a typical Karst hydrogeological unit in East China [J]. Environmental Science and Pollution Research International, 2020, 27(9): 9274-9287. doi: 10.1007/s11356-019-07075-w [13] 李严, 王家乐, 靳孟贵, 等. 运用水文时间序列分析识别济南泉域岩溶发育特征 [J]. 地球科学, 2021, 46(7): 2583-2593. LI Y, WANG J L, JIN M G, et al. Hydrodynamic characteristics of Jinan Karst spring system identified by hydrologic time-series data [J]. Earth Science, 2021, 46(7): 2583-2593(in Chinese).
[14] 高宗军, 徐军祥, 王世臣, 等. 济南岩溶水微量元素分布特征及其水文地质意义 [J]. 地学前缘, 2014, 21(4): 135-146. GAO Z J, XU J X, WANG S C, et al. The distribution characteristics and hydrogeological significance of trace elements in Karst water, Jinan, China [J]. Earth Science Frontiers, 2014, 21(4): 135-146(in Chinese).
[15] ZHOU J, XING L T, ZHANG F J, et al. Chemical characteristics research on Karst water in Jinan spring area [J]. Advanced Materials Research, 2015, 1092/1093: 593-596. doi: 10.4028/www.scientific.net/AMR.1092-1093.593 [16] 孙斌, 邢立亭, 李常锁. 趵突泉泉域岩溶水典型污染组分变化特征及污染途径 [J]. 中国岩溶, 2018, 37(6): 810-818. SUN B, XING L T, LI C S. Variation of typical pollution components and pollution way of Karst water in Baotu Spring region [J]. Carsologica Sinica, 2018, 37(6): 810-818(in Chinese).
[17] 管清花, 李福林, 王爱芹, 等. 济南市岩溶泉域地下水化学特征与水环境演化 [J]. 中国岩溶, 2019, 38(5): 653-662. doi: 10.11932/karst20190501 GUAN Q H, LI F L, WANG A Q, et al. Hydrochemistry characteristics and evolution of Karst spring groundwater system in Jinan [J]. Carsologica Sinica, 2019, 38(5): 653-662(in Chinese). doi: 10.11932/karst20190501
[18] 邢立亭, 周娟, 宋广增, 等. 济南四大泉群泉水补给来源混合比探讨 [J]. 地学前缘, 2018, 25(3): 260-272. XING L T, ZHOU J, SONG G Z, et al. Mixing ratios of recharging water sources for the four largest spring groups in Jinan [J]. Earth Science Frontiers, 2018, 25(3): 260-272(in Chinese).
[19] 殷秀兰, 王庆兵, 凤蔚. 济南岩溶泉域泉群区水化学与环境同位素研究 [J]. 地质学报, 2017, 91(7): 1651-1660. doi: 10.3969/j.issn.0001-5717.2017.07.016 YIN X L, WANG Q B, FENG W. Hydro-chemical and isotopic study of the Karst spring catchment in Jinan [J]. Acta Geologica Sinica, 2017, 91(7): 1651-1660(in Chinese). doi: 10.3969/j.issn.0001-5717.2017.07.016
[20] 高帅, 李常锁, 贾超, 等. 济南趵突泉泉域岩溶水化学特征时空差异性研究[J]. 地质学报, 2019, 93(S1): 61-70. GAO S, LI C S, JIA C, et al. Spatiotemporal difference study of Karst hydrochemical characteristics in the Baotu Spring area of Jinan[J]. Acta Geologica Sinica, 2019, 93(Sup 1): 61-70(in Chinese).
[21] 徐慧珍, 李文鹏, 殷秀兰, 等. 济南泉域浅层地下水水化学同位素研究 [J]. 水文地质工程地质, 2008, 35(3): 65-69,98. doi: 10.3969/j.issn.1000-3665.2008.03.017 XU H Z, LI W P, YIN X L, et al. Hydrochemistry and isotopes of shallow groundwater in the Jinan spring catchment [J]. Hydrogeology & Engineering Geology, 2008, 35(3): 65-69,98(in Chinese). doi: 10.3969/j.issn.1000-3665.2008.03.017
[22] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因 [J]. 地球科学, 2017, 42(5): 821-831. WANG J Y, WANG J L, JIN M G. Hydrochemical characteristics and formation causes of Karst water in Jinan spring catchment [J]. Earth Science, 2017, 42(5): 821-831(in Chinese).
[23] MATIATOS I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos Basin (Central Greece) [J]. Science of the Total Environment, 2016, 541: 802-814. doi: 10.1016/j.scitotenv.2015.09.134 [24] YU L, ZHENG T Y, ZHENG X L, et al. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation [J]. Science of the Total Environment, 2020, 718: 137242. doi: 10.1016/j.scitotenv.2020.137242 [25] PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: Coping with too much variation [J]. PLoS One, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672 [26] 金赞芳, 胡晶, 吴爱静, 等. 基于多同位素的不同土地利用区域水体硝酸盐源解析 [J]. 环境科学, 2021, 42(4): 1696-1705. JIN Z F, HU J, WU A J, et al. Identify the nitrate sources in different land use areas based on multiple isotopes [J]. Environmental Science, 2021, 42(4): 1696-1705(in Chinese).
[27] 王雨旸, 杨平恒. 张洁茹. 重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J]. 环境科学, 2022, 43(10): 4470-4479. WANG Y Y, YANG P H, ZHANG J R. Sources and biogeochemical processes of nitrate in the Laolongdong karst underground river basin, Chongqing [J]. Environmental Science, 2022, 43(10): 4470-4479 (in Chinese).
[28] XU Z F, LIU C Q. Water geochemistry of the Xijiang Basin rivers, South China: Chemical weathering and CO2 consumption [J]. Applied Geochemistry, 2010, 25: 1603-1614. doi: 10.1016/j.apgeochem.2010.08.012 [29] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009 [30] 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因 [J]. 中国岩溶, 2021, 40(3): 398-408. WANG R, LI X H. Hydrochemical characteristics and genesis of Karst groundwater in the Baiquan spring catchment [J]. Carsologica Sinica, 2021, 40(3): 398-408(in Chinese).
[31] 任孝宗, 杨小平. 鄂尔多斯沙区天然水体水化学组成及其成因 [J]. 地理学报, 2021, 76(9): 2224-2239. doi: 10.11821/dlxb202109013 REN X Z, YANG X P. Hydrochemical compositions of natural waters in Ordos Deserts and their influencing factors [J]. Acta Geographica Sinica, 2021, 76(9): 2224-2239(in Chinese). doi: 10.11821/dlxb202109013
[32] ZHANG P, YUE F J, WANG X D, et al. Antecedent rainfall and land use controlling the fate of nitrogen in Karst urban rivers, elucidated by an isotopic approach [J]. Journal of Hydrology, 2021, 592: 125803. doi: 10.1016/j.jhydrol.2020.125803 [33] WANG K R, CHEN H W, LI F L, et al. Spatial distribution characteristics of nitrogen pollution in a typical Karst groundwater system [J]. Arabian Journal of Geosciences, 2020, 13(10): 1-9. [34] 盛婷, 杨平恒, 谢国文, 等. 基于δ15N和δ18O的农业区地下河硝酸盐污染来源 [J]. 环境科学, 2018, 39(10): 4547-4555. SHENG T, YANG P H, XIE G W, et al. Nitrate-nitrogen pollution sources of an underground river in Karst agricultural area using 15N and 18O isotope technique [J]. Environmental Science, 2018, 39(10): 4547-4555(in Chinese).
[35] WELLS N S, CLOUGH T J, JOHNSON-BEEBOUT S E, et al. Effects of denitrification and transport on the isotopic composition of nitrate (δ18O, δ15N) in freshwater systems [J]. Science of the Total Environment, 2019, 651: 2228-2234. doi: 10.1016/j.scitotenv.2018.10.065 [36] YANG P H, WANG Y Y, WU X Y, et al. Nitrate sources and biogeochemical processes in Karst underground rivers impacted by different anthropogenic input characteristics [J]. Environmental Pollution, 2020, 265: 114835. doi: 10.1016/j.envpol.2020.114835 [37] 路路, 戴尔阜, 程千钉, 等. 基于水环境化学及稳定同位素联合示踪的土地利用类型对地下水体氮素归趋影响 [J]. 地理学报, 2019, 74(9): 1878-1889. doi: 10.11821/dlxb201909013 LU L, DAI E F, CHENG Q D, et al. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach [J]. Acta Geographica Sinica, 2019, 74(9): 1878-1889(in Chinese). doi: 10.11821/dlxb201909013
[38] MING X X, GROVES C, WU X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a Karst World Heritage site [J]. Science of the Total Environment, 2020, 735: 138907. doi: 10.1016/j.scitotenv.2020.138907 [39] GIBRILLA A, FIANKO J R, GANYAGLO S, et al. Nitrate contamination and source apportionment in surface and groundwater in Ghana using dual isotopes (15N and 18O-NO3) and a Bayesian isotope mixing model [J]. Journal of Contaminant Hydrology, 2020, 233: 103658. doi: 10.1016/j.jconhyd.2020.103658