[1] |
KANG F X, JIN M G, QIN P R. Sustainable yield of a Karst aquifer system: A case study of Jinan springs in Northern China [J]. Hydrogeology Journal, 2011, 19(4): 851-863. doi: 10.1007/s10040-011-0725-2
|
[2] |
GUO Y, QIN D J, LI L, et al. A complicated Karst spring system: Identified by Karst springs using water level, hydrogeochemical, and isotopic data in Jinan, China [J]. Water, 2019, 11(5): 947. doi: 10.3390/w11050947
|
[3] |
杨丽芝, 刘春华, 祁晓凡. 济南泉水水化学特征变异研究 [J]. 水资源与水工程学报, 2016, 27(1): 59-64. doi: 10.11705/j.issn.1672-643X.2016.01.10
YANG L Z, LIU C H, QI X F. Study on characteristic variation of hydro-chemistry of Jinan spring [J]. Journal of Water Resources and Water Engineering, 2016, 27(1): 59-64(in Chinese). doi: 10.11705/j.issn.1672-643X.2016.01.10
|
[4] |
KENDALL C, MCDONNELL J. Isotope tracers in catchment hydrology[M]. Amsterdam: Elsevier, 1998, 517-576.
|
[5] |
梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题 [J]. 中国岩溶, 2013, 32(1): 34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006
LIANG Y P, WANG W T, ZHAO C H, et al. Variations of Karst water and environmental problems in North China [J]. Carsologica Sinica, 2013, 32(1): 34-42(in Chinese). doi: 10.3969/j.issn.1001-4810.2013.01.006
|
[6] |
王开然, 郭芳, 姜光辉, 等. 15N和18O在桂林岩溶水氮污染源示踪中的应用 [J]. 中国环境科学, 2014, 34(9): 2223-2230.
WANG K R, GUO F, JIANG G H, et al. Application of 15N and 18O to nitrogen pollution source in Karst water in Eastern Guilin [J]. China Environmental Science, 2014, 34(9): 2223-2230(in Chinese).
|
[7] |
LIANG Y P, GAO X B, ZHAO C H, et al. Review: Characterization, evolution, and environmental issues of Karst water systems in Northern China [J]. Hydrogeology Journal, 2018, 26(5): 1371-1385. doi: 10.1007/s10040-018-1792-4
|
[8] |
段世辉, 蒋勇军, 张远瞩, 等. 岩溶槽谷区地下河硝酸盐来源及其环境效应: 以重庆龙凤槽谷地下河系统为例 [J]. 环境科学, 2019, 40(4): 1715-1725.
DUAN S H, JIANG Y J, ZHANG Y Z, et al. Sources of nitrate in groundwater and its environmental effects in Karst trough valleys: A case study of an underground river system in the Longfeng trough valley, Chongqing [J]. Environmental Science, 2019, 40(4): 1715-1725(in Chinese).
|
[9] |
赵然, 韩志伟, 申春华, 等. 典型岩溶地下河流域水体中硝酸盐源解析 [J]. 环境科学, 2020, 41(6): 2664-2670.
ZHAO R, HAN Z W, SHEN C H, et al. Identifying nitrate sources in a typical Karst underground river basin [J]. Environmental Science, 2020, 41(6): 2664-2670(in Chinese).
|
[10] |
李学先, 吴攀, 查学芳, 等. 基于水化学及稳定同位素的岩溶山区城镇水体硝酸盐来源示踪 [J]. 环境科学学报, 2021, 41(4): 1428-1439.
LI X X, WU P, ZHA X F, et al. Tracing nitrate sources in urban waters of Karst mountainous area using hydrochemistry and stable isotope [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1428-1439(in Chinese).
|
[11] |
ZHANG Z X, WANG W P, QU S S, et al. A new perspective to explore the hydraulic connectivity of Karst aquifer system in Jinan spring catchment, China [J]. Water, 2018, 10(10): 1368. doi: 10.3390/w10101368
|
[12] |
GAO S, LI C S, JIA C, et al. Health risk assessment of groundwater nitrate contamination: A case study of a typical Karst hydrogeological unit in East China [J]. Environmental Science and Pollution Research International, 2020, 27(9): 9274-9287. doi: 10.1007/s11356-019-07075-w
|
[13] |
李严, 王家乐, 靳孟贵, 等. 运用水文时间序列分析识别济南泉域岩溶发育特征 [J]. 地球科学, 2021, 46(7): 2583-2593.
LI Y, WANG J L, JIN M G, et al. Hydrodynamic characteristics of Jinan Karst spring system identified by hydrologic time-series data [J]. Earth Science, 2021, 46(7): 2583-2593(in Chinese).
|
[14] |
高宗军, 徐军祥, 王世臣, 等. 济南岩溶水微量元素分布特征及其水文地质意义 [J]. 地学前缘, 2014, 21(4): 135-146.
GAO Z J, XU J X, WANG S C, et al. The distribution characteristics and hydrogeological significance of trace elements in Karst water, Jinan, China [J]. Earth Science Frontiers, 2014, 21(4): 135-146(in Chinese).
|
[15] |
ZHOU J, XING L T, ZHANG F J, et al. Chemical characteristics research on Karst water in Jinan spring area [J]. Advanced Materials Research, 2015, 1092/1093: 593-596. doi: 10.4028/www.scientific.net/AMR.1092-1093.593
|
[16] |
孙斌, 邢立亭, 李常锁. 趵突泉泉域岩溶水典型污染组分变化特征及污染途径 [J]. 中国岩溶, 2018, 37(6): 810-818.
SUN B, XING L T, LI C S. Variation of typical pollution components and pollution way of Karst water in Baotu Spring region [J]. Carsologica Sinica, 2018, 37(6): 810-818(in Chinese).
|
[17] |
管清花, 李福林, 王爱芹, 等. 济南市岩溶泉域地下水化学特征与水环境演化 [J]. 中国岩溶, 2019, 38(5): 653-662. doi: 10.11932/karst20190501
GUAN Q H, LI F L, WANG A Q, et al. Hydrochemistry characteristics and evolution of Karst spring groundwater system in Jinan [J]. Carsologica Sinica, 2019, 38(5): 653-662(in Chinese). doi: 10.11932/karst20190501
|
[18] |
邢立亭, 周娟, 宋广增, 等. 济南四大泉群泉水补给来源混合比探讨 [J]. 地学前缘, 2018, 25(3): 260-272.
XING L T, ZHOU J, SONG G Z, et al. Mixing ratios of recharging water sources for the four largest spring groups in Jinan [J]. Earth Science Frontiers, 2018, 25(3): 260-272(in Chinese).
|
[19] |
殷秀兰, 王庆兵, 凤蔚. 济南岩溶泉域泉群区水化学与环境同位素研究 [J]. 地质学报, 2017, 91(7): 1651-1660. doi: 10.3969/j.issn.0001-5717.2017.07.016
YIN X L, WANG Q B, FENG W. Hydro-chemical and isotopic study of the Karst spring catchment in Jinan [J]. Acta Geologica Sinica, 2017, 91(7): 1651-1660(in Chinese). doi: 10.3969/j.issn.0001-5717.2017.07.016
|
[20] |
高帅, 李常锁, 贾超, 等. 济南趵突泉泉域岩溶水化学特征时空差异性研究[J]. 地质学报, 2019, 93(S1): 61-70.
GAO S, LI C S, JIA C, et al. Spatiotemporal difference study of Karst hydrochemical characteristics in the Baotu Spring area of Jinan[J]. Acta Geologica Sinica, 2019, 93(Sup 1): 61-70(in Chinese).
|
[21] |
徐慧珍, 李文鹏, 殷秀兰, 等. 济南泉域浅层地下水水化学同位素研究 [J]. 水文地质工程地质, 2008, 35(3): 65-69,98. doi: 10.3969/j.issn.1000-3665.2008.03.017
XU H Z, LI W P, YIN X L, et al. Hydrochemistry and isotopes of shallow groundwater in the Jinan spring catchment [J]. Hydrogeology & Engineering Geology, 2008, 35(3): 65-69,98(in Chinese). doi: 10.3969/j.issn.1000-3665.2008.03.017
|
[22] |
王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因 [J]. 地球科学, 2017, 42(5): 821-831.
WANG J Y, WANG J L, JIN M G. Hydrochemical characteristics and formation causes of Karst water in Jinan spring catchment [J]. Earth Science, 2017, 42(5): 821-831(in Chinese).
|
[23] |
MATIATOS I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos Basin (Central Greece) [J]. Science of the Total Environment, 2016, 541: 802-814. doi: 10.1016/j.scitotenv.2015.09.134
|
[24] |
YU L, ZHENG T Y, ZHENG X L, et al. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation [J]. Science of the Total Environment, 2020, 718: 137242. doi: 10.1016/j.scitotenv.2020.137242
|
[25] |
PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: Coping with too much variation [J]. PLoS One, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672
|
[26] |
金赞芳, 胡晶, 吴爱静, 等. 基于多同位素的不同土地利用区域水体硝酸盐源解析 [J]. 环境科学, 2021, 42(4): 1696-1705.
JIN Z F, HU J, WU A J, et al. Identify the nitrate sources in different land use areas based on multiple isotopes [J]. Environmental Science, 2021, 42(4): 1696-1705(in Chinese).
|
[27] |
王雨旸, 杨平恒. 张洁茹. 重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J]. 环境科学, 2022, 43(10): 4470-4479.
WANG Y Y, YANG P H, ZHANG J R. Sources and biogeochemical processes of nitrate in the Laolongdong karst underground river basin, Chongqing [J]. Environmental Science, 2022, 43(10): 4470-4479 (in Chinese).
|
[28] |
XU Z F, LIU C Q. Water geochemistry of the Xijiang Basin rivers, South China: Chemical weathering and CO2 consumption [J]. Applied Geochemistry, 2010, 25: 1603-1614. doi: 10.1016/j.apgeochem.2010.08.012
|
[29] |
MARANDI A, SHAND P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009
|
[30] |
王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因 [J]. 中国岩溶, 2021, 40(3): 398-408.
WANG R, LI X H. Hydrochemical characteristics and genesis of Karst groundwater in the Baiquan spring catchment [J]. Carsologica Sinica, 2021, 40(3): 398-408(in Chinese).
|
[31] |
任孝宗, 杨小平. 鄂尔多斯沙区天然水体水化学组成及其成因 [J]. 地理学报, 2021, 76(9): 2224-2239. doi: 10.11821/dlxb202109013
REN X Z, YANG X P. Hydrochemical compositions of natural waters in Ordos Deserts and their influencing factors [J]. Acta Geographica Sinica, 2021, 76(9): 2224-2239(in Chinese). doi: 10.11821/dlxb202109013
|
[32] |
ZHANG P, YUE F J, WANG X D, et al. Antecedent rainfall and land use controlling the fate of nitrogen in Karst urban rivers, elucidated by an isotopic approach [J]. Journal of Hydrology, 2021, 592: 125803. doi: 10.1016/j.jhydrol.2020.125803
|
[33] |
WANG K R, CHEN H W, LI F L, et al. Spatial distribution characteristics of nitrogen pollution in a typical Karst groundwater system [J]. Arabian Journal of Geosciences, 2020, 13(10): 1-9.
|
[34] |
盛婷, 杨平恒, 谢国文, 等. 基于δ15N和δ18O的农业区地下河硝酸盐污染来源 [J]. 环境科学, 2018, 39(10): 4547-4555.
SHENG T, YANG P H, XIE G W, et al. Nitrate-nitrogen pollution sources of an underground river in Karst agricultural area using 15N and 18O isotope technique [J]. Environmental Science, 2018, 39(10): 4547-4555(in Chinese).
|
[35] |
WELLS N S, CLOUGH T J, JOHNSON-BEEBOUT S E, et al. Effects of denitrification and transport on the isotopic composition of nitrate (δ18O, δ15N) in freshwater systems [J]. Science of the Total Environment, 2019, 651: 2228-2234. doi: 10.1016/j.scitotenv.2018.10.065
|
[36] |
YANG P H, WANG Y Y, WU X Y, et al. Nitrate sources and biogeochemical processes in Karst underground rivers impacted by different anthropogenic input characteristics [J]. Environmental Pollution, 2020, 265: 114835. doi: 10.1016/j.envpol.2020.114835
|
[37] |
路路, 戴尔阜, 程千钉, 等. 基于水环境化学及稳定同位素联合示踪的土地利用类型对地下水体氮素归趋影响 [J]. 地理学报, 2019, 74(9): 1878-1889. doi: 10.11821/dlxb201909013
LU L, DAI E F, CHENG Q D, et al. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach [J]. Acta Geographica Sinica, 2019, 74(9): 1878-1889(in Chinese). doi: 10.11821/dlxb201909013
|
[38] |
MING X X, GROVES C, WU X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a Karst World Heritage site [J]. Science of the Total Environment, 2020, 735: 138907. doi: 10.1016/j.scitotenv.2020.138907
|
[39] |
GIBRILLA A, FIANKO J R, GANYAGLO S, et al. Nitrate contamination and source apportionment in surface and groundwater in Ghana using dual isotopes (15N and 18O-NO3) and a Bayesian isotope mixing model [J]. Journal of Contaminant Hydrology, 2020, 233: 103658. doi: 10.1016/j.jconhyd.2020.103658
|