-
砷(arsenic)是一种广泛存在于自然界中的有毒有害元素[1]. 人体砷暴露主要来源于受污染的食物和水的摄入. 长期的砷暴露会带来癌症、皮肤病、血管疾病、糖尿病等健康风险[2-4]. 砷的毒性具有形态依赖性,其形态主要包括无机态的砷酸盐(arsenate, As(Ⅴ))、亚砷酸盐(arsenite, As(Ⅲ)),以及有机态的一甲基砷酸盐(monomethylated arsenic, MMA)、二甲基砷酸盐(dimethylated arsenic, DMA)、砷甜菜碱(arsenobetaine, AsB)、砷胆碱(arsenocholine, AsC)、砷糖和砷脂等[5]. 世界卫生组织国际癌症研究机构公布的致癌物清单中,砷和无机砷化合物为一类致癌物, MMA和DMA为潜在的致癌物质;无机砷可以抑制酶的活性,因此比有机砷具有更大的毒性[6];As(Ⅲ)的易迁移性、活性和毒性都远远高于As(Ⅴ),而AsB、AsC、砷糖等有机砷几乎没有毒性[7]. 因此,需结合砷形态来科学地评估食品中砷的健康风险.
寿司(sushi)是一种起源于日本,以海苔卷和米饭为主要原料,结合生鱼片、肉松、芥末、甜虾等配料而制成的吃食[8]. 食品添加剂联合专家委员会(JECFA)第72次会议相关数据显示,海藻、鱼类、贝类、香菇和食用真菌、稻米和米制品及一些肉制品中总砷含量较高[9],是人类膳食砷摄入的主要来源. 海苔作为寿司的主要原料之一,是传统的海产加工品,由新鲜条斑紫菜(Pyropia yezoensis)经清洗、切割、干燥和调味而成. 海藻中砷的含量和形态因种类不同而存在差异,如褐藻(Hijiki)是一种广泛用于亚洲烹饪的可食用海藻,总砷含量高且大多数是无机形式[10]. 此外,水稻由于容易吸收和积累砷,对人类健康构成重大威胁[11]. 鉴于寿司主要食材即是海苔和米饭,可能存在一定的砷污染和人体健康危害问题,然而目前对寿司中砷人体暴露风险的研究仍缺乏.
本实验在南京市场随机选购20份寿司产品,分别测定海苔、米饭以及整个寿司卷中总砷的含量,并采用高效液相色谱-电感耦合等离子体质谱联用技术测定代表性样品中砷的形态,旨在揭示食用寿司的人体健康危害.
市售寿司中砷的人体健康风险
Human health risk of arsenic in commercial sushi
-
摘要: 砷是一种在自然界中广泛存在的有毒有害污染物,摄入受污染的食物是人体砷暴露的重要途径. 食品添加剂联合专家委员会(Joint FAO/WHO Expert Committee on Food Additives,JECFA)第72次会议指出,海苔、米饭和米制品是总砷含量较高的食物. 寿司是一种日本传统美食,近年来颇受中国大众喜爱,其主要食材即是海苔和米饭,可能存在一定的砷污染和人体健康危害问题. 本研究从我国南京市20家店面采集了共20份寿司样品,测定样品中总砷含量,并对部分样品进行砷形态分析,进而评估市售寿司中砷的人体健康风险. 对寿司进行食物成分分类,发现海苔、米饭和其他馅料的鲜重在整个寿司中的重量占比平均值分别为3.31%±0.88%、69.48%±9.57%、27.20%±10.10%;海苔、米饭和整个寿司样品(n = 20)中总砷的含量分别为3.14—27.18、0.10—0.85、0.34—1.57 mg·kg−1,平均值分别为(9.67±6.65)、(0.31±0.22)、(0.63±0.27)mg·kg−1. 对4份寿司及对应成分海苔和米饭进行砷形态分析,发现海苔中砷主要为低毒的砷甜菜碱(arsenobetaine,AsB)、二甲基砷酸盐(dimethylated arsenic,DMA)、砷糖(arsenosugar),占比分别为8.02%±6.57%、37.40%±12.70%和54.59%±17.31%,未检测出高毒性的无机砷;米饭中除了含有低毒性的DMA(22.44%±5.79%)外,含有高毒性的亚砷酸盐(arsenite,As(Ⅲ),49.15%±9.52%)、二甲基一巯基砷(dimethylated monothioarsenate,DMMTA,12.48%±2.36%)和砷酸盐(arsenate,As(Ⅴ),11.59%±9.65%);整个寿司样品包含了海苔和米饭的特征砷形态,包括AsB(10.32%±7.91%)、DMA(34.40%±22.04%)、砷糖(32.87%±22.87%)、As(Ⅲ)(15.94%±9.19%)、As(Ⅴ)(2.44%±4.87%)等. 基于寿司中砷含量和形态,成人每天通过食用寿司导致的无机砷摄入量平均为( 0.21±0.09) μg·kg−1·d−1 bw,远低于世界卫生组织规定的BMDL0.5的基准剂量3 μg·kg−1·d−1 bw,表明食用寿司的癌症风险较低. 本研究对南京市场销售的寿司样品进行砷含量、砷形态测定以及开展健康风险评价,对理解食用寿司导致的砷暴露和健康风险具有重要意义.Abstract: Arsenic (As) is a toxic element that exists widely in the environment, with food consumption being an important route of human As exposure. According to the Joint FAO/WHO Expert Committee on Food Additives (JECFA) No. 72, nori, rice, and rice products tend to contain high As concentrations. Sushi is a traditional Japanese food, which has gained popularity in the Chinese population in recent years. With nori and rice being the main ingredients, sushi may contain a considerable amount of As and pose health risk to human health. In this study, a total of 20 sushi samples were collected from 20 stores in Nanjing, China. Total As concentration and species in samples (n = 20 and 4) were measured to assess the health risk associated with sushi consumption. Dividing sushi into different ingredients, we observed that nori, rice, and other fillings contributed to 3.31%±0.88%, 69.48%±9.57%, and 27.20%±10.10% of fresh weight of sushi, respectively. Arsenic concentrations in the nori, rice, and the whole sushi samples were 3.14—27.18, 0.10—0.85, 0.34—1.57 mg·kg−1, with average of (9.67±6.65), (0.31±0.22), (0.63±0.27) mg·kg−1, respectively. Speciation analysis showed that As in the nori mainly occurred as low toxicity arsenobetaine (AsB), dimethylated arsenic (DMA), and arsenosugar, which contributed to 8.02%±6.57%, 37.40%±12.70%, and 54.59%±17.31% of total As, with inorganic As being not detected. In addition to DMA (22.44%±5.79%), the rice contained high toxicity arsenite (As(Ⅲ), 49.15%±9.52%), dimethylated monothioarsenate (DMMTA, 12.48%±2.36%), and arsenate (As(Ⅴ), 11.59%±9.65%). Consisting of nori and rice, sushi contained all As species observed in nori and rice, including AsB (10.32%±7.91%), DMA (34.40%±22.04%), arsenosugar (32.87%±22.87%), As(Ⅲ) (15.94% ± 9.19%), and As(Ⅴ) (2.44%±4.87%). Based on As concentration and species, health risk associated with sushi consumption was assessed. The estimated daily intake of inorganic As for adults was averagely (0.21±0.09) µg·kg−1·d−1 bw, which was far lower than the BMDL0.5 baseline dose of 3 µg·kg−1·d−1 bw proposed by the World Health Organization, indicating that eating sushi had a low cancer risk. In this study, As concentration, As species, and health risk of sushi samples collected from Nanjing market were studied, advancing our understanding of As exposure and health risk associated with sushi consumption.
-
Key words:
- sushi /
- nori /
- rice /
- arsenic /
- health risk assessment.
-
表 1 4种砷化物的质量浓度与峰面积的线性关系
Table 1. Linear relation between mass concentration and peak area of four arsenic species
砷形态
Arsenic species线性方程
Linear regression equation相关系数R2
Correlation coefficient亚砷酸盐As(Ⅲ) y=610.65x-139.35 0.9991 二甲基砷酸DMA y=1137.51x-222.29 0.9995 一甲基砷酸MMA y=941.02x+39.89 0.9997 砷酸盐As(Ⅴ) y=579.71x-105.93 0.9996 表 2 海苔样品中砷形态化合物检测结果(µg·kg−1)
Table 2. Test results of arsenic speciation in nori samples (µg·kg−1)
样品
SampleAs(Ⅲ) As(Ⅴ) AsB DMA MMA 砷糖-OH
Arsenosugar-OH总砷
Total arsenic回收率/%
RecoveryS02海苔 ND ND 457.9 8498.6 ND 14196.3 27175.5 85.2 S06海苔 ND ND 1117.7 4540.5 ND 2609.9 12347.1 67.0 S12海苔 ND ND 408.8 3756.8 ND 10980.0 20598.9 73.5 S14海苔 ND ND 953.7 2279.1 ND 3640.6 7957.9 86.4 表 3 米饭样品中砷形态化合物检测结果(µg·kg−1)
Table 3. Test results of arsenic speciation in rice samples (µg·kg−1)
样品
SampleAs(Ⅲ) DMA DMMTA As(Ⅴ) iAs Unknow 总砷
Total arsenic回收率/%
RecoveryS02米饭 60.5 38.4 17.9 16.9 77.4 11.2 158.3 91.5 S06米饭 50.4 20.8 15.5 26.8 77.2 ND 116.4 97.5 S12米饭 75.6 20.0 11.1 13.3 88.9 ND 127.0 94.5 S14米饭 43.3 25.8 13.4 ND 43.3 8.8 98.4 92.8 表 4 寿司样品中砷形态化合物检测结果(µg·kg−1)
Table 4. Test results of arsenic speciation in sushi samples (µg·kg−1)
样品
SampleAsB As(Ⅲ) DMA 砷糖-OH
Arsenosugar-OHAs(Ⅴ) iAs Unknow 总砷
Total arsenic回收率/%
RecoveryS02寿司 35.2 45.0 488.2 143.6 ND 45.0 24.6 1567.7 47.0% S06寿司 57.4 75.2 49.0 30.6 26.7 101.9 35.0 416.4 61.1% S12寿司 19.3 58.9 109.0 315.3 ND 58.9 ND 654.6 76.8% S14寿司 36.2 57.2 98.2 117.7 ND 57.2 ND 351.3 88.0% 注:ND, 未检出. ND, not detected. -
[1] 陈保卫, LE X C. 中国关于砷的研究进展 [J]. 环境化学, 2011, 30(11): 1936-1943. CHEN B W, LE X C. Recent progress in arsenic research in China [J]. Environmental Chemistry, 2011, 30(11): 1936-1943(in Chinese).
[2] NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem [J]. Environmental Health Perspectives, 2013, 121(3): 295-302. doi: 10.1289/ehp.1205875 [3] ANETOR J I, WANIBUCHI H, FUKUSHIMA S. Arsenic exposure and its health effects and risk of cancer in developing countries: Micronutrients as host defence [J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2007, 8(1): 13-23. [4] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management [J]. Environment International, 2019, 125: 365-385. doi: 10.1016/j.envint.2019.01.067 [5] 胥佳佳, 冯鑫, 汤静, 等. 超声辅助提取-高相液相色谱-电感耦合等离子体质谱法测定香菇中6种形态砷化合物 [J]. 食品科学, 2016, 37(24): 216-221. doi: 10.7506/spkx1002-6630-201624034 XU J J, FENG X, TANG J, et al. Arsenic speciation analysis of Lentinus edodes by ultrasonic-assisted extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Food Science, 2016, 37(24): 216-221(in Chinese). doi: 10.7506/spkx1002-6630-201624034
[6] ALEXANDER J, BENFORD D, BOOBIS A, et al. Scientific opinion on arsenic in food. EFSA panel on contaminants in the food chain (CONTAM)[J]. EFSA Journal, 2009, 7(10: 1351): 1-198. [7] 张维, 齐丽娟, 宁钧宇, 等. 砷的健康危害评估 [J]. 毒理学杂志, 2021, 35(5): 367-372,378. doi: 10.16421/j.cnki.1002-3127.2021.05.002 ZHANG W, QI L J, NING J Y, et al. Health hazard assessment of arsenic [J]. Journal of Toxicology, 2021, 35(5): 367-372,378(in Chinese). doi: 10.16421/j.cnki.1002-3127.2021.05.002
[8] 刘蕊芬. 中日两国饮食疗法(药膳)的源流与异同的研究[D]. 广州: 广州中医药大学, 2007. LIU R F. Study on the origin of and similarities and differences between Chinese and Japanese dietotherapy[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2007(in Chinese).
[9] JECFA (Joint FAO/WHO Expert Committee on Food Additives). Safety evaluation of certain food additives and contaminants. WHO Food Additives Series No. 63, Prepared by the Seventy-second Meeting of JECFA[R]. World Health Organization, Geneva, 2011. [10] TAYLOR V, GOODALE B, RAAB A, et al. Human exposure to organic arsenic species from seafood [J]. Science of the Total Environment, 2017, 580: 266-282. doi: 10.1016/j.scitotenv.2016.12.113 [11] FRANSISCA Y, SMALL D M, MORRISON P D, et al. Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry [J]. Chemosphere, 2015, 138: 1008-1013. doi: 10.1016/j.chemosphere.2014.12.048 [12] U. S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils[S]. 1996. [13] CAUMETTE G, KOCH I, REIMER K J. Arsenobetaine formation in plankton: A review of studies at the base of the aquatic food chain [J]. Journal of Environmental Monitoring, 2012, 14(11): 2841-2853. doi: 10.1039/c2em30572k [14] YANG G D, ZHENG J P, CHEN L, et al. Speciation analysis and characterisation of arsenic in lavers collected from coastal waters of Fujian, south-eastern China [J]. Food Chemistry, 2012, 132(3): 1480-1485. doi: 10.1016/j.foodchem.2011.12.006 [15] 王亚, 张春华, 葛滢. 高效液相色谱-氢化物发生-原子荧光光谱法检测紫菜中的砷形态 [J]. 分析试验室, 2013, 32(5): 34-38. doi: 10.13595/j.cnki.issn1000-0720.2013.0125 WANG Y, ZHANG C H, GE Y. Determination of arsenic speciation in Porphyra using HPLC-(UV)-HG-AFS [J]. Chinese Journal of Analysis Laboratory, 2013, 32(5): 34-38(in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2013.0125
[16] MOLIN M, ULVEN S M, MELTZER H M, et al. Arsenic in the human food chain, biotransformation and toxicology - Review focusing on seafood arsenic [J]. Journal of Trace Elements in Medicine and Biology, 2015, 31: 249-259. doi: 10.1016/j.jtemb.2015.01.010 [17] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017. National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. National Food Safety Standard. Maximum Levels of Contaminants in Food: GB 2762—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[18] SUN S K, XU X J, TANG Z, et al. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain [J]. Nature Communications, 2021, 12: 1392. doi: 10.1038/s41467-021-21282-5 [19] MAWIA A M, HUI S Z, ZHOU L, et al. Inorganic arsenic toxicity and alleviation strategies in rice [J]. Journal of Hazardous Materials, 2021, 408: 124751. doi: 10.1016/j.jhazmat.2020.124751 [20] BORAK J, HOSGOOD H D. Seafood arsenic: Implications for human risk assessment [J]. Regulatory Toxicology and Pharmacology, 2007, 47(2): 204-212. doi: 10.1016/j.yrtph.2006.09.005 [21] 黄东仁. 福建省紫菜中砷的形态及含量[J]. 中国渔业质量与标准, 2015, 5(1): 52-60. HUANG D R. Arsenic speciations and their contents in Porphyra in Fujian Province[J]. Chinese Fishery Quality and Standards, 2015, 5(1): 52-60(in Chinese). HUANG D R. Arsenic speciations and their contents in Porphyra in Fujian Province[J]. Chinese Fishery Quality and Standards, 2015, 5(1): 52-60(in Chinese).
[22] YANG G D, XIE W Y, ZHU X, et al. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings [J]. Ecotoxicology and Environmental Safety, 2015, 120: 7-12. doi: 10.1016/j.ecoenv.2015.05.023 [23] WU Y C, ZHANG H, WANG K T, et al. Metabolic and residual characteristic of different arsenic species contained in laver during mouse digestion [J]. Science of the Total Environment, 2021, 793: 148434. doi: 10.1016/j.scitotenv.2021.148434 [24] DAI J, CHEN C, GAO A X, et al. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains [J]. Environmental Science & Technology, 2021, 55(13): 8665-8674. [25] DAI J, TANG Z, GAO A X, et al. Widespread occurrence of the highly toxic dimethylated monothioarsenate (DMMTA) in rice globally [J]. Environmental Science & Technology, 2022, 56(6): 3575-3586. [26] ZHANG J, BARAŁKIEWICZ D, WANG Y Z, et al. Arsenic and arsenic speciation in mushrooms from China: A review [J]. Chemosphere, 2020, 246: 125685. doi: 10.1016/j.chemosphere.2019.125685 [27] 程家丽, 任硕, 刘婷婷, 等. 2001—2017年我国部分地区蔬菜中砷和重金属累积特征及膳食暴露风险 [J]. 中国食品卫生杂志, 2018, 30(2): 187-193. doi: 10.13590/j.cjfh.2018.02.013 CHENG J L, REN S, LIU T T, et al. Accumulation and dietary exposure risk of arsenic and heavy metals in the vegetables from some areas of China, 2001-2017 [J]. Chinese Journal of Food Hygiene, 2018, 30(2): 187-193(in Chinese). doi: 10.13590/j.cjfh.2018.02.013
[28] ZHAO D, WANG J Y, YIN D X, et al. Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets [J]. Journal of Hazardous Materials, 2020, 383: 121178. doi: 10.1016/j.jhazmat.2019.121178 [29] JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of certain contaminants in food[Z]. 2017.