-
微藻的细胞结构简单、生长繁殖速度快,在自然水体中广泛存在[1-2],水中的C、N、P等物质可以作为微藻的生长基质,微藻利用进行C、N、P等物质生长繁殖. 微藻作为结构最简单的低等植物,培养较容易,环境适应能力和生存能力极强. 在生长繁殖过程对水中C、N、P等物质进行同化同时实现污水的净化[3]. 微藻中常用于污水处理的微藻种类大多是光合自养型,且为单细胞绿藻,它们对许多污水都具有耐受性,且油脂或碳水化合物的积累潜力较高[4]. 此外,微藻细胞中可积累大量甘油三脂(TAGs),使其成为生物柴油的重要来源[5].
微藻去除氮磷的理论早在1957年就有学者提出[6]. 污水中氮的主要以氨氮、硝酸盐、亚硝酸盐、有机氮的形式存在. 微藻利用细胞膜的同化作用吸收无机氮,利用 ATP、硝酸盐还原酶的作用,将硝酸盐转化成亚硝酸盐,在亚硝酸盐还原酶催化作用下,亚硝酸盐还原为铵盐,还原后的铵盐成为碳骨架的组成部分,最后藻细胞将其合成为氨基酸或者蛋白质[7]. 微藻对污水中磷的去除主要是吸收水中的无机磷,或pH等条件变化使磷酸盐产生沉淀进而被微藻吸附或沉降,主要利用磷的形式为
${\rm{H}}_2{\rm{PO}}_4^- $ 和${\rm{HPO}}_4^{2-}$ [8].已经有很多的研究表明,微藻不仅可以对市政污水进行有效去除,而且菌藻共生可以促进微藻生长[9-11]. Ma等[11]的研究结果表明,初始藻类浓度对细菌的生长的影响较大,细菌的存在对藻类的生长方式有显著影响,可在培养初期提高藻类生物量和营养去除率表明藻类培养初期藻类与细菌之间存在共生关系. Wang等[12]筛选出Exiguobacterium和Bacillus licheniformis和小球藻用于净化养猪废水,结果表明,共培养细菌可能会分泌一些代谢产物作为酶激活剂,并且微藻和细菌之间的酶学可能存在协调机制使得菌藻共生去除污水中TN、TP、氨氮等具有更好的效果. Huo等[13]研究了小球藻和醋生产废水中细菌共培养去除氮磷和生物量积累,结果表明菌藻共生显著提高了TN、TP等的去除率,但平均生长速率有所下降. Wang等[14]的研究表明,菌藻共培养不仅提高了微藻的脂质含量,还导致脂肪酸和蛋白质的组成发生变化. Kong等[15]的研究结果表明,菌藻共培养条件下,1 g·L−1葡萄糖可促进藻生物量的积累和光合色素的合成,5 g·L−1葡萄糖可促进脂质的积累而抑制叶绿素的合成. 然而,目前在该领域中使用微藻细菌的仍处于早期阶段[14,16-17].
在本研究中,在相同的光照条件下,在不同类型污水中进行菌藻共培养,测定栅藻的生长速率、光合作用效率、蛋白质、碳水化合物和总脂含量、官能团分析等,分析栅藻在不同条件菌藻共培养的差异和影响. 对污水中微藻的氮磷利用率进行进一步分析.
目前相关领域大多数研究主要对利用微藻改善污水水质,培养环境主要是利用人工污水培养基或灭菌污水,而利用实际生活污水处理与微藻培养制备生物柴油耦合研究较少,对微藻培养后菌群结构变化研究较少[9].
本文测定了菌藻共培养末期的菌群结构多样性,通过数据对比分析了影响栅藻生长和油脂合成的优势菌属.
菌藻共培养对栅藻去除生活污水中氮磷和脂质积累的影响
Effects of co-culture on removal of nitrogen, phosphorus and lipid accumulation in domestic sewage by Desmodesmus
-
摘要: 对栅藻分别进行自养和菌藻共培养. 自养利用BG11液体培养基,菌藻共培养则采用生活污水,对生活污水I和生活污水Ⅱ进行高压灭菌和未灭菌处理. 测定栅藻的生长、去除污水中氮磷能力、甘油三酯积累、光合作用和菌群多样性等. 结果显示,自养比菌藻共培养表现出更高的生长速率和更多的色素含量,但菌藻共培养条件下有更高的氮磷去除和油脂积累. 特别是生活污水Ⅱ中,甘油三酯浓度比自养提高了140.05 mg·L−1、107.65 mg·L−1,总脂含量分别提高了6.62%、19.46%,但在自养情况下碳水化合物含量达到了45.05%. 菌藻共培养中氮磷的去除率较高,其中氨氮的去除率均达到了90%以上. 利用高通量测序对未灭菌污水的菌群多样性进行测定,结果显示,YG-2群落丰富度和物种多样性最高,对于抵抗外界环境变化较有利. 主导菌群为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes),有助于污染物的降解. 脂质积累较多的污水中菌群物种组成相对丰度在脂肪酸合成起始途径、脂肪酸延伸饱和、霉菌酸盐生物合成等脂肪酸生物合成的二级途径都较大,说明细菌对脂肪酸合成起到一定的促进作用.Abstract: The palisade was autotrophic and co-cultured with bacteria and Desmodesmus sp. respectively. Autotrophic uses BG11 liquid culture medium, and co-culture of bacteria and Desmodesmus sp. uses domestic sewage, which is autoclaved and unsterilized for domestic sewage I and sewageII. The growth, nitrogen and phosphorus removal capacity, triglyceride accumulation, photosynthesis and microbial diversity of palisade Desmodesmus sp. were measured. The results showed that autotrophic culture showed higher growth rate and more pigment content than co-culture of bacteria and Desmodesmus sp. , but there was higher nitrogen and phosphorus removal and oil accumulation under co-culture of bacteria and Desmodesmus sp. . Especially in the domestic sewage II, the triglyceride concentration increased by 140.05 mg·L−1 and 107.65 mg·L−1 compared with autotrophic, and the total fat content increased by 6.62% and 19.46% respectively, but the carbohydrate content reached 45.05% under autotrophic conditions. The removal rate of nitrogen and phosphorus was higher in the co-culture of bacteria and Desmodesmus sp. , and the removal rate of ammonia nitrogen reached more than 90%. High throughput sequencing was used to determine the microbial diversity of the unsterilized sewage. The results showed that YG-2 had the highest community richness and species diversity, which was favorable for resisting the changes of the external environment. The dominant bacteria are Proteobacteria and Bacteroidetes, which are conducive to the degradation of pollutants. The relative abundance of species composition of bacteria in sewage with large lipid accumulation is relatively large in the secondary pathway of fatty acid biosynthesis, such as the starting pathway of fatty acid synthesis, the extension saturation of fatty acid, and the mycotic acid salt biosynthesis, which indicates that bacteria play a certain role in promoting fatty acid synthesis.
-
表 1 不同的污水处理类型及处理方式
Table 1. Different sewage treatment types and treatment methods
编号
Number培养基成分
Medium composition处理方式
Processing methodP-0 BG11液体培养基 — SG-1 生活污水I 沉淀+过滤+灭菌 SG-2 生活污水I 沉淀+过滤 SC-1 生活污水I 沉淀+灭菌 SC-2 生活污水I 沉淀 YG-1 生活污水Ⅱ 沉淀+过滤+灭菌 YG-2 生活污水Ⅱ 沉淀+过滤 YC-1 生活污水Ⅱ 沉淀+灭菌 YC-2 生活污水Ⅱ 沉淀 注:沉淀污水为污水经过12 h静沉取上清液部分;过滤为沉淀上清液污水过0.45 μm滤膜;灭菌为高压灭菌. 表 2 不同污水类型的水质指标
Table 2. Water quality indicators of different sewage types
水质指标
Water quality index总氮/(mg·L)
TN总磷/(mg·L−1)
TP氨氮/(mg·L−1)
NH4+-N总有机碳/(mg·L−1)
TOC氢离子浓度指数
pHN/P摩尔比
The molar ratio of N/PSG-1 34.45±1.56 2.07±0.75 1.16±0.29 279.35±0.10 5.16±0.11 36.73 SG-2 35.17±1.36 1.97±0.24 1.48±0.17 302.15±0.14 7.99±0.15 39.40 SC-1 41.81±2.35 1.41±0.25 0.74±0.13 289.90±0.17 8.8±0.14 65.45 SC-2 42.01±1.86 1.41±0.22 1.67±0.27 296.00±0.19 7.38±0.10 65.76 YG-1 157.00±4.22 17.78±1.04 67.05±0.69 351.50±0.13 10.01±0.12 19.49 YG-2 155.57±3.76 17.20±0.88 127.45±0.96 314.05±0.14 8.43±0.14 19.96 YC-1 132.76±1.77 10.96±1.40 83.25±1.90 266.30±0.12 10.03±0.15 26.74 YC-2 130.11±3.04 13.15±1.09 136.36±1.38 161.35±0.10 8.18±0.12 21.84 表 3 栅藻的碳水化合物、蛋白质、总脂含量、叶绿素a含量
Table 3. Carbohydrate, protein, total lipid content and chlorophyll a content of Desmodesmus sp.
样品
Sample总脂/%
Total lipids蛋白质/%
Protein碳水化合物/%
Carbohydrate叶绿素a/%
Chl aP-0 20.46±1.23 19.05±2.13 45.05±2.01 5.99±1.20 SG-1 20.12±2.31 16.21±1.01 28.35±0.67 3.18±0.93 SG-2 21.24±2.10 18.43±3.20 30.82±1.76 6.09±1.45 SC-1 20.46±2.43 17.62±4.15 40.41±2.01 4.86±1.12 SC-2 21.12±1.30 18.15±2.14 25.38±2.31 3.73±1.31 YG-1 27.08±1.45 19.41±1.12 13.92±4.24 3.56±0.49 YG-2 39.92±3.10 23.08±2.05 21.58±1.06 5.59±1.11 YC-1 21.46±2.11 19.79±2.05 20.65±2.32 3.87±0.85 YC-2 27.22±3.23 21.38±1.56 12.98±2.01 5.58±0.24 表 4 藻类分析FTIR分析主要光谱带特征吸收峰[38]
Table 4. Characteristic absorption peaks of main spectral bands in FTIR analysis of algae[38]
序号
Number峰位/cm−1
Peak position官能团
Functional group组分
Component分析
Analysis1 2970—2960 υasCH3 脂类 甲基基团 2 2930—2920 υasCH2 脂类 亚甲基基团 3 2875—2850 υCH2,CH3 脂类 脂肪酸中甲基和亚甲基基团 4 1655—1638 υC=O 蛋白质(酰胺I) 蛋白质,也有可能包含烯烃和芳香烃化合物中的
C=C伸缩振动5 1545—1540 δN-H,δC-H 蛋白质(酰胺Ⅱ) 蛋白质 表 5 不同样品的生物多样性指数
Table 5. Biodiversity indices of different samples
样品
SampleChao1 Observed species Shannon Simpson Pielou’s evenness Good’s coverage SG-2 356.597 326.6 2.17292 0.486781 0.260191 0.998645 SC-2 1288.91 1150.3 5.41534 0.897742 0.532599 0.99439 YG-2 3482.29 3450.2 8.69133 0.984484 0.739533 0.994759 YC-2 3113.53 3108.5 8.52242 0.9838 0.734564 0.998024 -
[1] ROCHAIX J D. Chlamydomonas reinhardtii[M]//Brenner's Encyclopedia of Genetics. Amsterdam: Elsevier, 2013: 521-524. [2] 田朝玉, 叶晓, 华威, 等. 基于污水处理的微藻培养研究进展 [J]. 环境工程, 2016, 34(3): 1-5. doi: 10.13205/j.hjgc.201603001 TIAN C Y, YE X, HUA W, et al. Research progress of microalgae cultivation using wastewater resources [J]. Environmental Engineering, 2016, 34(3): 1-5(in Chinese). doi: 10.13205/j.hjgc.201603001
[3] 朱新曼, 尹儿琴, 刘友春, 等. 微藻处理污水的可行性研究 [J]. 山东农业大学学报(自然科学版), 2019, 50(3): 509-512. ZHU X M, YIN E Q, LIU Y C, et al. Study on the feasibility treating wastewater by Chlamydomonas reinhardtii [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2019, 50(3): 509-512(in Chinese).
[4] 杨晶晶. 利用斜生栅藻处理废水中氮磷的研究[D]. 太原: 太原理工大学, 2018. YANG J J. Study on removal of nitrogen and Phosphorus in wastewater based on Scenedesmus obliquus[D]. Taiyuan: Taiyuan University of Technology, 2018(in Chinese).
[5] ZHOU X P, GE H M, XIA L, et al. Evaluation of oil-producing algae as potential biodiesel feedstock [J]. Bioresource Technology, 2013, 134: 24-29. doi: 10.1016/j.biortech.2013.02.008 [6] OSWALD W J, GOTAAS H B, GOLUEKE C G, et al. Algae in waste treatment (with discussion) [J]. Sewage and Industrial Wastes, 1957, 29(4): 437-457. [7] CAI T, PARK S Y, LI Y B. Nutrient recovery from wastewater streams by microalgae: Status and prospects [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 360-369. doi: 10.1016/j.rser.2012.11.030 [8] 甄茜, 蔡婕, 郭行, 等. 微藻在废水脱氮除磷中的应用 [J]. 水处理技术, 2017, 43(8): 7-12. doi: 10.16796/j.cnki.1000-3770.2017.08.002 ZHEN X, CAI J, GUO X, et al. Application of microalgae in removing nitrogen and Phosphorus from wastewater [J]. Technology of Water Treatment, 2017, 43(8): 7-12(in Chinese). doi: 10.16796/j.cnki.1000-3770.2017.08.002
[9] 涂仁杰, 金文标, 韩松芳, 等. 细菌对城市污水中小球藻生长和油脂积累的影响 [J]. 环境科学, 2017, 38(10): 4279-4285. doi: 10.13227/j.hjkx.201703054 TU R J, JIN W B, HAN S F, et al. Effects of bacteria on the growth of and lipid accumulation in Chlorella pyrenoidosa cultivated in municipal wastewater [J]. Environmental Science, 2017, 38(10): 4279-4285(in Chinese). doi: 10.13227/j.hjkx.201703054
[10] MOHD UDAIYAPPAN A F, HASAN H A, TAKRIFF M S, et al. Microalgae-bacteria interaction in palm oil mill effluent treatment [J]. Journal of Water Process Engineering, 2020, 35: 101203. doi: 10.1016/j.jwpe.2020.101203 [11] MA X C, ZHOU W G, FU Z Q, et al. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system [J]. Bioresource Technology, 2014, 167: 8-13. doi: 10.1016/j.biortech.2014.05.087 [12] WANG Y Y, WANG S Y, SUN L Q, et al. Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification [J]. Algal Research, 2020, 47: 101840. doi: 10.1016/j.algal.2020.101840 [13] HUO S H, KONG M, ZHU F F, et al. Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: Enhancement of nutrients removal and influence of algal biomass generation [J]. Algal Research, 2020, 45: 101744. doi: 10.1016/j.algal.2019.101744 [14] LIANG Z J, LIU Y, GE F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis [J]. Chemosphere, 2013, 92(10): 1383-1389. doi: 10.1016/j.chemosphere.2013.05.014 [15] KONG W, SONG H, CAO Y, et al. The characteristics of biomass production lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation [J]. African Journal of Biotechnology, 2011, 10: 11620-11630. [16] de GODOS I, VARGAS V A, BLANCO S, et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation [J]. Bioresource Technology, 2010, 101(14): 5150-5158. doi: 10.1016/j.biortech.2010.02.010 [17] ZHU S N, HUO S H, FENG P Z. Developing designer microalgal consortia: A suitable approach to sustainable wastewater treatment[M]//Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Singapore: Springer Singapore, 2019: 569-598. [18] CHEN W, ZHANG C W, SONG L R, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae [J]. Journal of Microbiological Methods, 2009, 77(1): 41-47. doi: 10.1016/j.mimet.2009.01.001 [19] ANDERSEN J E T. The standard addition method revisited [J]. TrAC Trends in Analytical Chemistry, 2017, 89: 21-33. doi: 10.1016/j.trac.2016.12.013 [20] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [21] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. [22] MSANNE J, XU D, KONDA A R, et al. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169 [J]. Phytochemistry, 2012, 75: 50-59. doi: 10.1016/j.phytochem.2011.12.007 [23] CHEVALIER P, de la NOÜE J. Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters [J]. Biotechnology Letters, 1985, 7(6): 395-400. doi: 10.1007/BF01166210 [24] ZHU J Y, RONG J F, ZONG B N. Factors in mass cultivation of microalgae for biodiesel [J]. Chinese Journal of Catalysis, 2013, 34(1): 80-100. doi: 10.1016/S1872-2067(11)60497-X [25] GAO F, LI C, YANG Z H, et al. Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor [J]. Journal of Chemical Technology & Biotechnology, 2016, 91(10): 2713-2719. [26] RUIZ-MARIN A, MENDOZA-ESPINOSA L G, STEPHENSON T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater [J]. Bioresource Technology, 2010, 101(1): 58-64. doi: 10.1016/j.biortech.2009.02.076 [27] WANG J H, ZHANG T Y, DAO G H, et al. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies [J]. Applied Microbiology and Biotechnology, 2017, 101(7): 2659-2675. doi: 10.1007/s00253-017-8184-x [28] SUKAČOVÁ K, TRTÍLEK M, RATAJ T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment [J]. Water Research, 2015, 71: 55-63. doi: 10.1016/j.watres.2014.12.049 [29] GUO H, YAO J T, SUN Z M, et al. Effect of temperature, irradiance on the growth of the green Alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta) [J]. Journal of Applied Phycology, 2015, 27(2): 879-885. doi: 10.1007/s10811-014-0358-7 [30] LI T, YANG F F, XU J, et al. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions [J]. Algal Research, 2020, 45: 101753. doi: 10.1016/j.algal.2019.101753 [31] PAPAGEORGIOU G C, Govindjee. Chlorophyll a Fluorescence: A Signature of Photosynthesis[M]. [M]. Springer, 2005 [32] ABREU A P, FERNANDES B, VICENTE A A, et al. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source [J]. Bioresource Technology, 2012, 118: 61-66. doi: 10.1016/j.biortech.2012.05.055 [33] ALAM M A, WAN C, GUO S L, et al. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7 [J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 29-33. doi: 10.1016/j.jbiosc.2013.12.021 [34] WAGNER H, LIU Z X, LANGNER U, et al. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae [J]. Journal of Biophotonics, 2010, 3(8/9): 557-566. [35] DEAN A P, SIGEE D C, ESTRADA B, et al. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae [J]. Bioresource Technology, 2010, 101(12): 4499-4507. doi: 10.1016/j.biortech.2010.01.065 [36] MAYERS J J, FLYNN K J, SHIELDS R J. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy [J]. Bioresource Technology, 2013, 148: 215-220. doi: 10.1016/j.biortech.2013.08.133 [37] STEHFEST K, TOEPEL J, WILHELM C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae [J]. Plant Physiology and Biochemistry, 2005, 43(7): 717-726. doi: 10.1016/j.plaphy.2005.07.001 [38] MURDOCK J N, WETZEL D L. FT-IR microspectroscopy enhances biological and ecological analysis of algae [J]. Applied Spectroscopy Reviews, 2009, 44(4): 335-361. doi: 10.1080/05704920902907440 [39] CAUSEY B D. Parametric estimation of the number of classes in a population [J]. Journal of Applied Statistics, 2002, 29(6): 925-934. doi: 10.1080/02664760220136221 [40] SHANNON C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x [41] SIMPSON E H. Measurement of diversity [J]. Nature, 1949, 163(4148): 688. doi: 10.1038/163688a0 [42] PIELOU E C. The measurement of diversity in different types of biological collections [J]. Journal of Theoretical Biology, 1966, 13: 131-144. doi: 10.1016/0022-5193(66)90013-0 [43] GOOD I J. The population frequencies of species and the estimation of population parameters [J]. Biometrika, 1953, 40(3/4): 237-264. doi: 10.2307/2333344 [44] MAO Y P, XIA Y, ZHANG T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing [J]. Bioresource Technology, 2013, 128: 703-710. doi: 10.1016/j.biortech.2012.10.106 [45] ZHU I, GETTING T. A review of nitrate reduction using inorganic materials [J]. Environmental Technology Reviews, 2012, 1(1): 46-58. doi: 10.1080/09593330.2012.706646 [46] FENG C J, ZHANG Z J, WANG S M, et al. Characterization of microbial community structure in a hybrid biofilm-activated sludge reactor for simultaneous nitrogen and phosphorus removal[J]. Journal of Environmental Biology, 2013, 34(2 Spec No): 489-499. [47] SHEN Z Q, ZHOU Y X, HU J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support [J]. Journal of Hazardous Materials, 2013, 250/251: 431-438. doi: 10.1016/j.jhazmat.2013.02.026 [48] LEI Y J, TIAN Y, ZHANG J, et al. Microalgae cultivation and nutrients removal from sewage sludge after ozonizing in algal-bacteria system [J]. Ecotoxicology and Environmental Safety, 2018, 165: 107-114. doi: 10.1016/j.ecoenv.2018.08.096