-
近年来,国内外大力推广新能源汽车。磷酸铁锂作为理想的动力电池正极材料,被广泛应用于新能源汽车动力电池的制造 [1-5]。磷酸铁锂电池业已成为新能源汽车行业动力电池的主流品种。动力电池使用年限一般为3—5年,随着新能源汽车销量的稳步增长和磷酸铁锂电池用量的不断上升,磷酸铁锂电池的报废量将逐年增加[6-8],开发废旧磷酸铁锂电池资源化、高值化利用技术尤为迫切。目前,废旧磷酸铁锂电池资源化的工艺主要侧重于锂的回收提取,缺乏对剩余磷酸铁高值化利用的有效途径[9].
我国是纺织品生产和出口第一大国,印染行业的发展导致了印染废水大量排放等问题。在印染行业使用的众多有机染料中,偶氮染料的使用量占80%左右。偶氮染料具有色度高、难降解的特点,其废水处理技术一直是研究的热点[10-11]。多相光助-芬顿技术是一种高效降解水中有机污染物的方法,其优点是能够避免铁离子的二次污染、拓宽适用的pH值范围,在染料等难降解废水处理技术开发中倍受关注[12-14]。该技术开发的核心是高效、稳定多相催化剂的研制。国内外众多学者对铁氧化物、铁硫化物和铁负载型等铁基催化剂多相光助-芬顿催化过程的讨论最为深入[15-16]。研究表明[17],在铁基催化剂光助-芬顿催化过程中,多相催化剂不仅是引发均相芬顿反应铁离子的源,而且是铁离子以固相形式回收的汇。通过调控多相催化剂上铁离子的释放过程,能够明显促进体系对难降解有机污染物的矿化效率[18]。目前,促进多相催化剂上铁离子释放的方法主要有络合法[15]和还原法[19]等两大类。络合法促进多相催化剂释放的是络合态的铁离子,而还原法能够使多相催化剂直接释放亚铁离子,因而对芬顿反应增效能力更为显著[19]。通过添加强还原能力的试剂,可以使催化剂表面的FeⅢ直接化学还原为FeⅡ,进而促进催化剂亚铁离子的释放 [20-22]。相比较而言,利用苯醌等光敏性物质光照产生水合电子的还原法,不仅能促进催化剂亚铁离子的转化和释放,而且可以为体系中·OH的生成提供新的途径,体系对有机污染物的降解能力更强[23]。
磷酸铁和磷酸亚铁的溶度积常数分别为1.3×10−22和1×10−36 [24],利用可见光下苯醌类化合物产生的光生水合电子 [25-26],可以将磷酸铁还原成磷酸亚铁,有望促进亚铁离子的释放并引发均相芬顿反应降解有机污染物;利用磷酸铁难溶性的特点,可以将均相芬顿反应转化的铁离子以固体形式再次回收并循环利用。将磷酸铁作为芬顿反应铁源的开发,是对其高值化利用的一种有效途径,但迄今为止,其芬顿反应过程中催化剂铁离子源汇机制的研究鲜见报道。
本文探讨了可见光下苯醌类化合物对磷酸铁释放亚铁离子的影响,以偶氮染料橙Ⅱ作为探针分子,考察了可见光下苯醌类化合物诱导磷酸铁芬顿反应降解橙Ⅱ的效率,分析了橙Ⅱ降解过程中铁离子和亚铁离子之间的转化以及羟基自由基浓度的变化,探明了可见光下苯醌诱导磷酸铁芬顿反应铁离子的源汇机制。通过这些研究,开发了磷酸铁用于有机废水处理高值化利用的途径,为废旧磷酸铁锂电池的资源化利用提供理论依据。
可见光下苯醌类化合物诱导磷酸铁芬顿反应的铁离子源汇机制
Iron-ion source and sink mechanism for Fenton reaction based on iron phosphate induced by benzoquinones under visible light
-
摘要: 构建了可见光下苯醌类化合物诱导磷酸铁产生芬顿反应的体系,分析了苯醌类化合物对磷酸铁释放亚铁离子的影响,比较了苯醌类化合物诱导磷酸铁芬顿反应降解橙Ⅱ的效率,研究了橙Ⅱ降解过程中铁离子和亚铁离子之间的转化以及羟基自由基浓度的变化,讨论了可见光下苯醌类化合物诱导磷酸铁芬顿反应铁离子的源汇机制。结果表明,可见光下苯醌类化合物诱导的磷酸铁是芬顿反应铁离子的间接铁源和直接铁汇。当可见光-磷酸铁-过氧化氢体系分别添加2-氯-1,4-苯醌、苯醌和对二甲基醌,溶液中亚铁离子浓度峰值(对应时间)从基础实验的0.86 mg·L−1 (120 min)分别提高到2.06 mg·L−1 (40 min)、1.61 mg·L−1 (40 min)和1.04 mg·L−1 (120 min);铁离子引发的芬顿反应能极大提高橙Ⅱ的脱色率和矿化率:反应60 min时,橙Ⅱ脱色率分别是99.5%、98.1%和77.7%;反应180 min时,橙Ⅱ矿化率分别为78.8%、77.6%和52.4%;反应结束时,总铁离子的浓度会大幅降低至0.2 mg·L−1左右,能避免铁离子的二次污染。另外,可见光下苯醌诱导磷酸铁芬顿反应循环降解橙Ⅱ的结果表明,铁离子释放和回收过程具有较高的重现性;FT-IR和XPS图谱表明,磷酸铁在循环使用后具有较高的结构和化学重现性。本研究开发了磷酸铁用于有机废水处理高值化利用的途径,为废旧磷酸铁锂电池的资源化利用提供理论依据。Abstract: A new Fenton system was constructed based on iron phosphate induced by benzoquinones (2-Chloro-1,4-benzoquinone, 1,4-Benzoquinone or 2,5-Dimethylquinone) under visible light. The effects of benzoquinones on ferrous ion release from iron phosphate and degradation efficiency of Orange Ⅱ through Fenton process were analyzed in detail. During Orange Ⅱ degradation, the transformation between iron and ferrous ions and the change concentration of hydroxyl radical were detected. The iron-ion source and sink mechanism for Fenton reaction was further investigated. The results showed that iron phosphate was the indirect source and direct sink of iron ions induced by benzoquinones under visible light. When 2-Chloro-1,4-benzoquinone, 1,4-Benzoquinone and 2,5-Dimethylquinone were added to the visible light-iron phosphate-hydrogen peroxide system, the peak values of ferrous ion concentration (corresponding time) was increased from 0.86 mg·L−1 (120 min) to 2.06 mg·L−1 (40 min), 1.61 mg·L−1 (40 min) and 1.04 mg·L−1 (120 min), respectively. Then the decolorization and mineralization rates of Orange Ⅱ could be greatly enhanced through Fenton process using iron ion as catalyst. After 60 min treatment, the decolorization rates of Orange Ⅱ were increased to 99.5%, 98.1% and 77.7%, respectively; after 180 min treatment, the mineralization rates of Orange Ⅱwere up to 78.8%, 77.6% and 52.4%, respectively. In addition, the concentration of total iron ions was decreased to about 0.2 mg·L−1 after treatment, therefor the secondary contamination of iron ions could be avoided. Furthermore, the iron release and recovery process has high reproducibility. Importantly, Fourier transform infrared and X-ray photoelectron spectroscopy showed that iron phosphate had high structural and chemical reproducibility after reaction. This study developed a way of high-value utilization of iron phosphate for organic wastewater treatment, which provided a theoretical support for comprehensive utilization of waste lithium iron phosphate batteries.
-
Key words:
- iron phosphate /
- light-assisted Fenton reaction /
- benzoquinones /
- Orange Ⅱ /
- hydroxyl radical
-
图 1 苯醌类化合物对可见光-磷酸铁-过氧化氢体系中橙Ⅱ脱色(a)及铁离子(b)和亚铁离子浓度(c)的影响([Benzoquinones]=0.2 mmol∙L−1, [Orange Ⅱ]=0.2 mmol∙L−1, pH=3.0, T=30 ℃, FePO4=1 g·L−1, LED灯白光=10 W, H2O2=10 mmol·L−1)
Figure 1. Effects of benzoquinones on Orange Ⅱ decolorization (a) and ferric (b) and ferrous ions concentrations (c) in visible light-iron phosphate-hydrogen peroxide system
-
[1] FORTE F, PIETRANTONIO M, PUCCIARMATI S, et al. Lithium iron phosphate batteries recycling: An assessment of current status [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(19): 2232-2259. doi: 10.1080/10643389.2020.1776053 [2] DELACOURT C, POIZOT P, TARASCON J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J]. Nature Materials, 2005, 4(3): 254-260. doi: 10.1038/nmat1335 [3] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles [J]. Nature, 2019, 575(7781): 75-86. doi: 10.1038/s41586-019-1682-5 [4] TIAN X H, ZHOU Y K, TU X F, et al. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries [J]. Journal of Power Sources, 2017, 340: 40-50. doi: 10.1016/j.jpowsour.2016.11.049 [5] FREITAS M B J G, CELANTE V G, PIETRE M K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits [J]. Journal of Power Sources, 2010, 195(10): 3309-3315. doi: 10.1016/j.jpowsour.2009.11.131 [6] HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger [J]. Journal of Power Sources, 2016, 320: 257-266. doi: 10.1016/j.jpowsour.2016.04.104 [7] LI L, LU J, REN Y, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries [J]. Journal of Power Sources, 2012, 218: 21-27. doi: 10.1016/j.jpowsour.2012.06.068 [8] ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery: A critical review [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. doi: 10.1080/10643389.2013.763578 [9] WANG W, WU Y F. An overview of recycling and treatment of spent LiFePO4 batteries in China [J]. Resources, Conservation and Recycling, 2017, 127: 233-243. doi: 10.1016/j.resconrec.2017.08.019 [10] LAW J C F, LEUNG K S Y. Redox mediators and irradiation improve Fenton degradation of acesulfame [J]. Chemosphere, 2019, 217: 374-382. doi: 10.1016/j.chemosphere.2018.11.032 [11] DI Y W, LIU L, MA H C, et al. Bi doping into Ti/Co3O4 NWs (nanowires) for improved photoelectrochemical decolorization of dyeing wastewater (reactive brilliant blue KN-R) [J]. Journal of Materials Science:Materials in Electronics, 2020, 31(12): 9504-9513. doi: 10.1007/s10854-020-03492-7 [12] KHAJONE V B, BHAGAT P R. Synthesis of polymer-supported Brønsted acid-functionalized Zn-porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation [J]. Research on Chemical Intermediates, 2020, 46(1): 783-802. doi: 10.1007/s11164-019-03990-2 [13] ZHAO Y P, HU J Y. Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2 [J]. Applied Catalysis B:Environmental, 2008, 78(3/4): 250-258. [14] 林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展 [J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401 LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes [J]. Environmental Chemistry, 2021, 40(5): 1305-1318(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
[15] 苗笑增, 戴慧旺, 陈建新, 等. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验 [J]. 环境科学, 2018, 39(3): 1202-1211. MIAO X Z, DAI H W, CHEN J X, et al. Experiment to enhance catalytic activity of α-FeOOH in heterogeneous UV-Fenton system by addition of oxalate [J]. Environmental Science, 2018, 39(3): 1202-1211(in Chinese).
[16] 邓曹林, 王京刚, 王颖, 等. 石墨烯改性Al-MCM-41介孔分子筛负载铁芬顿催化剂降解苯酚 [J]. 环境化学, 2015, 34(6): 1185-1192. doi: 10.7524/j.issn.0254-6108.2015.06.2014110301 DENG C L, WANG J G, WANG Y, et al. Fenton catalytic degradation of phenol by using iron-loaded graphene modified mesoporous Al-MCM-41 catalyst [J]. Environmental Chemistry, 2015, 34(6): 1185-1192(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.06.2014110301
[17] 付军, 余艳鸽, 赵昱东, 等. 模拟日光-非均相Fenton光催化降解喹啉 [J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706 FU J, YU Y G, ZHAO Y D, et al. Simulated sunlight-heterogeneous Fenton degradation of quinoline in wastewater [J]. Environmental Chemistry, 2017, 36(5): 1072-1082(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
[18] 姜自立, 李献众, 刘治庆, 等. 苯醌对聚合硅酸铁多相UV-Fenton体系的增效机制 [J]. 中国环境科学, 2020, 40(7): 2943-2951. doi: 10.3969/j.issn.1000-6923.2020.07.018 JIANG Z L, LI X Z, LIU Z Q, et al. The enhanced mechanism of benzoquinone(BQ) on poly-silicate-ferric(PSF) in heterogeneous UV-Fenton system [J]. China Environmental Science, 2020, 40(7): 2943-2951(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.018
[19] 苏晓轩, 徐国鹏, 李献众, 等. PSF多相UV-Fenton体系原儿茶酸与龙胆酸的增效对比 [J]. 中国环境科学, 2021, 41(4): 1624-1633. doi: 10.3969/j.issn.1000-6923.2021.04.015 SU X X, XU G P, LI X Z, et al. Comparison of the enhanced effect of protocatechuic acid and gentisic acid on the heterogeneous UV-Fenton system with Poly-Silicate-Ferric(PSF) as catalyst [J]. China Environmental Science, 2021, 41(4): 1624-1633(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.04.015
[20] QIN Y X, SONG F H, AI Z H, et al. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H2O2 Fenton system [J]. Environmental Science & Technology, 2015, 49(13): 7948-7956. [21] HOSOKAWA S, SHUKUYA K, SOGABE K, et al. Novel absorbance peak of gentisic acid following the oxidation reaction [J]. PLoS One, 2020, 15(4): e0232263. doi: 10.1371/journal.pone.0232263 [22] ABEDI F, RAZAVI B M, HOSSEINZADEH H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects [J]. Phytotherapy Research, 2020, 34(4): 729-741. doi: 10.1002/ptr.6573 [23] 贺俊梅, 孔令娜, 梁倩, 等. 苯醌类与苯醌亚胺类在日光/Fenton体系中的光敏性 [J]. 中国环境科学, 2016, 36(9): 2638-2644. doi: 10.3969/j.issn.1000-6923.2016.09.013 HE J M, KONG L N, LIANG Q, et al. Photosensitivity of benzoquinones and benzoquinoneimines in the sunlight/Fenton system [J]. China Environmental Science, 2016, 36(9): 2638-2644(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.09.013
[24] 袁文辉, 徐志峰. 混合电镀污泥中铬铁的选择性分离工艺 [J]. 有色金属(冶炼部分), 2016(9): 55-58. YUAN W H, XU Z F. Selective separation technology of chromium and ironfrom mixed electroplating sludge [J]. Nonferrous Metals (Extractive Metallurgy), 2016(9): 55-58(in Chinese).
[25] HALL R D, CHIGNELL C F. Steady-state near-infrared detection of singlet molecular oxygen: A Stern-Volmer quenching experiment with sodium azide [J]. Photochemistry and Photobiology, 1987, 45(4): 459-464. doi: 10.1111/j.1751-1097.1987.tb05403.x [26] CLENNAN E L, PACE A. Advances in singlet oxygen chemistry [J]. Tetrahedron, 2005, 61(28): 6665-6691. doi: 10.1016/j.tet.2005.04.017 [27] WU K Q, YI D X, ZHAO J C, et al. Photo-Fenton degradation of a dye under visible light irradiation [J]. Journal of Molecular Catalysis A:Chemical, 1999, 144(1): 77-84. doi: 10.1016/S1381-1169(98)00354-9 [28] 陈建新. 铁柱撑膨润土催化UV-Fenton降解染料的性能及其机理研究[D]. 杭州: 浙江大学, 2007: 120. CHEN J X. Study on the catalytic properties of Fe-pillared bentonite and mechanism of UV-Fenton degradation of dye[D]. Hangzhou: Zhejiang University, 2007:120(in Chinese).
[29] 王安静. 苯醌类化合物的降解特性[D]. 大连: 大连海事大学, 2018:56. WANG A J. The degradation characteristics of benzoquinones compounds[D]. Dalian, China: Dalian Maritime University, 2018:56(in Chinese).
[30] 王彦广, 吕萍, 张殊佳. 有机化学[M]. 2版. 北京: 化学工业出版社, 2009:396. WANG Y G, LU P, ZHANG S J, et al. Organic chemistry [M]. Beijing: Chemical Industry Press, 2009:396(in Chinese).
[31] GAO J, LIU Y T, XIA X N, et al. Mechanisms for photo assisted Fenton of synthesized pyrrhotite at neutral pH [J]. Applied Surface Science, 2019, 463: 863-871. doi: 10.1016/j.apsusc.2018.09.007 [32] ZENG L Y, GONG J Y, DAN J F, et al. Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism [J]. Chemosphere, 2019, 228: 232-240. doi: 10.1016/j.chemosphere.2019.04.103 [33] LI J F, LI J G, LIU X Y, et al. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment [J]. Separation and Purification Technology, 2018, 202: 149-156. doi: 10.1016/j.seppur.2018.03.055 [34] FU Y, YU S L, HAN C W. Morphology and coagulation performance during preparation of poly-silicic-ferric (PSF) coagulant [J]. Chemical Engineering Journal, 2009, 149(1/2/3): 1-10. [35] HUAI Y Y, PLACKOWSKI C, PENG Y J. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions [J]. Applied Surface Science, 2019, 488: 277-283. doi: 10.1016/j.apsusc.2019.05.236