-
土壤中的镉(Cd)具有强烈的移动速度和危害性[1-3]。Cd在生物体内极易蓄积,具有生殖发育毒性、神经毒性、致癌性等多种严重毒害性[4]。川芎植物的根茎可用于治疗经闭痛经、瘾瘕腹痛等,有很高的经济和药用价值。近年来,由于川芎主产区土壤Cd含量较高从而导致其用药部位(根部)Cd超标的问题,严重影响了川芎的用药安全,制约其对外出口。因此,解决川芎用药部位Cd含量超标的问题迫在眉睫。
向土壤中添加改良剂可以有效降低土壤重金属活性,抑制重金属的迁移[5-6]。团聚体是土壤的一种基本的物理和功能元素,重金属在土壤环境中的积累、迁移和有效性与土壤团聚体的性质密切相关[7]。研究团聚体内重金属的分布可以揭示改良剂降低重金属有效性的机制。Wolfgang等[8]在研究中发现了土壤重金属Cd主要富集在0.02—0.25 mm的团聚体粒级中。土壤团聚体作为土壤结构的基本组成单位,对探究土壤重金属的分布规律和其潜在影响机制有着非常重要的作用。
改良剂对镉污染土壤团聚体稳定性和川芎镉积累的影响
Effects of soil aggregates stability on the cadmium accumulation and growth of Ligusticum chuanxiong Hort. in cadmium-contaminated soil
-
摘要: 为探究土壤改良剂的施用对团聚体稳定性及川芎镉积累的影响,本文基于川芎主产地种植园镉污染土壤设置田间试验,通过施加不同剂量改良剂1(轻质碳酸钙、石灰石、钙基膨润土、纳米磷酸二氢钾、生物炭、硅酸钠、凹凸棒)0.5 t·hm−2(T1-低)、1.5 t·hm−2(T1-中)、5.0 t·hm−2(T1-高)和改良剂2(重质碳酸钙、钙基膨润土、纳米磷酸二氢钾、生物炭、硅酸钠、凹凸棒)0.5 t·hm−2(T2-低)、1.5 t·hm−2(T2-中)、5.0 t·hm−2(T2-高),研究其对土壤团聚体的稳定性、有效态Cd含量以及川芎根部Cd含量与其生物量的影响。结果表明,在添加两种不同改良剂之后,土壤团聚体稳定性得到提升;土壤有效态Cd以及川芎根部Cd含量都有显著降低。对比空白处理,T2-高和T2-低处理效果最好,使得土壤有效态Cd和川芎根部Cd分别降低了51.43%和56.13%;并且生物量有所提升,T2-低处理效果最好,增幅为53.50%。根据相关性分析,发现土壤团聚体稳定性显著影响了川芎根部Cd积累。本实验结果,可为土壤改良剂施加过程中生物积累效应相关潜在机制的研究提供参考。Abstract: To search the correlation between soil aggregates stability and the cadmium(Cd) accumulation and growth of Ligusticum chuanxiong Hort., this study took the soil of the main producing area of Ligusticum chuanxiong Hort.in Sichuan Province as the research object. The concentration of 0.5 t·hm−2, 1.5 t·hm−2 and 5.0 t·hm−2 of soil amendment 1 (precipitated calcium carbonate, limestone, calcium bentonite, nano potassium dihydrogen phosphate, biochar, sodium silicate, attapulgite) and soil amendment 2(heavy calcium carbonate, calcium bentonite, nano potassium dihydrogen phosphate, biochar, sodium silicate, attapulgite) were studied respectively to see what effects the modified soil have on the Cd accumulation and growth of Ligusticum chuanxiong Hort. The results showed that the stability of soil aggregates was improved after adding two different amendments. The content of available Cd in soil and root of Ligusticum chuanxiong Hort. decreased significantly. Compared with blank treatment, T2-high and T2-low treatments had the best effect, which reduced soil available Cd and root Cd by 51.43% and 56.13%, respectively. In addition, the biomass was improved, and the T2-low treatment had the best effect, increasing by 53.50%. According to correlation analysis, it was found that soil aggregate stability significantly affected Cd accumulation in root of Ligusticum chuanxiong Hort. The results of this experiment can provide a reference for the study of potential mechanisms related to bioaccumulation effect during the application of soil amendments.
-
Key words:
- soil aggregates /
- ligusticum chuanxiong Hort. /
- available cadmium /
- biomass
-
表 1 改良剂对土壤化学性质的影响
Table 1. Effects of amendments on soil chemical properties
处理
TreatmentpH 有机质/(g·kg−1)
Organic matter速效磷/(mg·kg−1)
Available phosphorus有效态Cd/(mg·kg−1)
Available cadmium对 照 5.83±0.25 c 31.87±2.82 d 21.42±1.15 f 0.525±0.02 a T1-低 6.17±0.23 bc 35.47±2.39 c 34.34±0.95 e 0.475±0.02 b T1-中 6.15±0.23 bc 36.39±2.06 bc 36.68±0.98 c 0.375±0.02 c T1-高 6.42±0.35 ab 37.22±2.46 abc 38.24±0.74 c 0.300±0.03 e T2-低 6.61±0.09 a 36.43±1.07 bc 36.52±0.26 d 0.375±0.38 c T2-中 6.21±0.18 abc 39.45±1.20 ab 41.01±0.52 b 0.255±0.01 d T2-高 6.63±0.06 a 40.25±0.73 a 42.83±0.62 a 0.255±0.26 d 表 2 改良剂对土壤结构的影响
Table 2. Effects of amendments on soil structure
处理
Treatment容重/(g·cm−3)
Bulk Density比重/(g·cm−3)
Proportion孔隙率/%
Porosity对 照 1.41±0.15 a 2.59±0.25 a 44.10±1.77 c T1-低 1.32±0.11 b 2.46±0.13 ab 46.47±1.60 b T1-中 1.27±0.10 bc 2.42±0.10 b 47.46±1.33 ab T1-高 1.26±0.08 bc 2.35±0.13 bc 46.19±1.26 b T2-低 1.23±0.11 c 2.36±0.16 bc 47.90±2.03 ab T2-中 1.26±0.12 bc 2.33±0.10 c 45.79±4.57 b T2-高 1.20±0.14 c 2.32±0.13 c 48.09±4.68 a 表 3 土壤改良剂对川芎根部Cd含量和川芎生物量的影响
Table 3. Effects of soil conditioner on Cd content and biomass of Ligusticum chuanxiong hort
处理
Treatment根部Cd/(mg·kg−1)
Root Cd生物量/(g·pot−1)
Biomass对 照 2.12±0.04 a 17.85±1.75 d T1-低 1.16±0.05 c 20.61±2.03 c T1-中 1.12±0.03 d 20.81±1.03 c T1-高 1.08±0.04 e 24.76±2.41 b T2-低 0.93±0.03 f 27.40±1.54 a T2-中 1.24±0.04 b 20.42±6.22 c T2-高 0.95±0.03 f 27.26±3.75 a 表 4 川芎生物量和根部Cd与土壤指标之间的相关性分析
Table 4. Correlation analysis of rhizoma chuanxiong biomass, root Cd and soil index
川芎生物量
Ligusticum chuanxiong Hort biomass川芎根部Cd
Ligusticum chuanxiong Hort root CdR P R P pH 0.980** < 0.001 −0.855* 0.014 有效态Cd −0.578 0.174 0.658 0.108 有机质 0.930** 0.002 −0.902** 0.005 速效磷 0.811* 0.027 −0.970** < 0.001 硝态氮 0.756* 0.050 −0.755* 0.050 分形维数(干筛) −0.686 0.089 0.863* 0.012 分形维数(湿筛) −0.741 0.057 0.802* 0.030 -
[1] 唐咏, 王萍萍, 张宁. 植物重金属毒害作用机理研究现状 [J]. 沈阳农业大学学报, 2006, 37(4): 551-555. doi: 10.3969/j.issn.1000-1700.2006.04.002 TANG Y, WANG P P, ZHANG N. Researches in heavy metal toxicity mechanism in plant [J]. Journal of Shenyang Agricultural University, 2006, 37(4): 551-555(in Chinese). doi: 10.3969/j.issn.1000-1700.2006.04.002
[2] 程杰, 高压军. 镉毒害对小麦生理生态效应的研究进展 [J]. 水土保持研究, 2006, 13(6): 218-221, 227. doi: 10.3969/j.issn.1005-3409.2006.06.069 CHENG J, GAO Y J. Progress in studies on cadmium toxicity to psysiology and ecology effect of wheat [J]. Research of Soil and Water Conservation, 2006, 13(6): 218-221, 227(in Chinese). doi: 10.3969/j.issn.1005-3409.2006.06.069
[3] MORENO J L, HERNÁNDEZ T, GARCIA C. Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil [J]. Biology and Fertility of Soils, 1999, 28(3): 230-237. doi: 10.1007/s003740050487 [4] 刘莉莉, 林岚, 殷霄, 等. 镉毒性研究进展 [J]. 中国职业医学, 2012, 39(5): 445-447. LIU L L, LIN L, YIN X, et al. Research progress on cadmium toxicity [J]. China Occupational Medicine, 2012, 39(5): 445-447(in Chinese).
[5] 黎大荣, 吴丽香, 宁晓君, 等. 不同钝化剂对土壤有效态铅和镉含量的影响 [J]. 环境保护科学, 2013, 39(3): 46-49. doi: 10.3969/j.issn.1004-6216.2013.03.012 LI D R, WU L X, NING X J, et al. Effects of different passivating agents on contents of available lead and cadmium in soil [J]. Environmental Protection Science, 2013, 39(3): 46-49(in Chinese). doi: 10.3969/j.issn.1004-6216.2013.03.012
[6] 高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响 [J]. 环境科学, 2017, 38(1): 361-367. doi: 10.13227/j.hjkx.201606018 GAO R L, TANG M, FU Q L, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition [J]. Environmental Science, 2017, 38(1): 361-367(in Chinese). doi: 10.13227/j.hjkx.201606018
[7] PIRMORADIAN N, SEPASKHAH A R, HAJABBASI M A. Application of Fractal Theory to quantify Soil Aggregate Stability as influenced by Tillage Treatments [J]. Biosystems Engineering, 2005, 90(2): 227-234. doi: 10.1016/j.biosystemseng.2004.11.002 [8] WILCKE W, MOSBACH J, KOBŽA J, et al. Distribution of Al and heavy metals in bulk soil and aggregates at three sites contaminated by the emissions of a central Slovak Al smelter [J]. Water, Air, and Soil Pollution, 1998, 106(3/4): 389-402. doi: 10.1023/A:1005094624006 [9] 刘亚华, 徐文芬, 高杰, 等. 栽培川续断药材质量的综合考察 [J]. 安徽农业科学, 2010, 38(14): 7336-7338. doi: 10.3969/j.issn.0517-6611.2010.14.074 LIU Y H, XU W F, GAO J, et al. Comprehensive qualitative investigation on the cultivated dipsacu asperides materials [J]. Journal of Anhui Agricultural Sciences, 2010, 38(14): 7336-7338(in Chinese). doi: 10.3969/j.issn.0517-6611.2010.14.074
[10] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000(in Chinese).
[11] 蔡梅. 混合改良剂对土壤Cd污染的钝化修复研究[D]. 杭州: 浙江大学, 2019. CAI M. Study on remediation of Cd contaminated soils by mixed amendments[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[12] 胡文. 土壤—植物系统中重金属的生物有效性及其影响因素的研究[D]. 北京: 北京林业大学, 2008. HU W. Heavy metal bio-availability and its affecting factors in soil-plant system[D]. Beijing: Beijing Forestry University, 2008(in Chinese).
[13] 杨惟薇, 张超兰, 曹美珠, 等. 4种生物炭对镉污染潮土钝化修复效果研究 [J]. 水土保持学报, 2015, 29(1): 239-243. doi: 10.13870/j.cnki.stbcxb.2015.01.046 YANG W W, ZHANG C L, CAO M Z, et al. Immobilization and remediation of cadmium contaminated soil with four kinds of biochars [J]. Journal of Soil and Water Conservation, 2015, 29(1): 239-243(in Chinese). doi: 10.13870/j.cnki.stbcxb.2015.01.046
[14] 闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响 [J]. 农业环境科学学报, 2018, 37(9): 1842-1849. doi: 10.11654/jaes.2018-0187 YAN J P, DING X D, CUI L, et al. Effects of several modifiers and their combined application on cadmium forms and physicochemical properties of soil [J]. Journal of Agro-Environment Science, 2018, 37(9): 1842-1849(in Chinese). doi: 10.11654/jaes.2018-0187
[15] 王英杰, 邹佳玲, 杨文弢, 等. 组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控 [J]. 环境科学, 2016, 37(10): 4004-4010. doi: 10.13227/j.hjkx.2016.10.044 WANG Y J, ZOU J L, YANG W T, et al. Synergetic control of bioavailability of Pb, Cd and as in the rice paddy system by combined amendments [J]. Environmental Science, 2016, 37(10): 4004-4010(in Chinese). doi: 10.13227/j.hjkx.2016.10.044
[16] 徐颖菲, 谢国雄, 章明奎. 改良剂配合水分管理减少水稻吸收土壤中镉的研究 [J]. 水土保持学报, 2019, 33(6): 356-360. doi: 10.13870/j.cnki.stbcxb.2019.06.050 XU Y F, XIE G X, ZHANG M K. Reduction of cadmium uptake of rice plant from soil by application of amendments combined with water management [J]. Journal of Soil and Water Conservation, 2019, 33(6): 356-360(in Chinese). doi: 10.13870/j.cnki.stbcxb.2019.06.050
[17] 关明, 于菲, 许连周, 等. 玉米秸秆生物炭添加对典型黑土保水性能的影响 [J]. 黑龙江农业科学, 2019(10): 42-44. doi: 10.11942/j.issn1002-2767.2019.10.0044 GUAN M, YU F, XU L Z, et al. Effects of biochar addition from maize straw on water-holding capacity of typical black soil [J]. Heilongjiang Agricultural Sciences, 2019(10): 42-44(in Chinese). doi: 10.11942/j.issn1002-2767.2019.10.0044
[18] 汪言在, 苏正安, 周明华. 北方农牧交错带表层土壤孔隙度特征及其影响因素 [J]. 草业科学, 2020, 37(7): 1249-1258. doi: 10.11829/j.issn.1001-0629.2020-0213 WANG Y Z, SU Z G, ZHOU M H. Characteristics and influence of topsoil porosity in the northern agro-pastoral ecotone [J]. Pratacultural Science, 2020, 37(7): 1249-1258(in Chinese). doi: 10.11829/j.issn.1001-0629.2020-0213
[19] FIDALSKI J, BORDIN I, ALVESCS J, et al. Grazing heights, stocking rate, soil structure, and water infiltration in a crop-livestock integration [J]. Semina Ciências Agrárias, 2021, 42(1): 123-136. [20] AULER A C, ROMANIW J, SÁ J C M, et al. Improvement on soil structure and water retention after application of industrial organic waste as a crop fertilizer [J]. Journal of Soils and Sediments, 2020, 20(7): 2771-2783. doi: 10.1007/s11368-020-02628-w [21] WU J T, LI H Q, LI F, et al. Distribution and fractionation of cadmium in soil aggregates affected by earthworms (Eisenia fetida) and manure compost [J]. Journal of Soils and Sediments, 2016, 16(9): 2286-2295. doi: 10.1007/s11368-016-1433-2 [22] LI S S, WANG M, ZHAO Z Q, et al. Alleviation of cadmium phytotoxicity to wheat is associated with Cd re-distribution in soil aggregates as affected by amendments [J]. RSC Advances, 2018, 8(31): 17426-17434. doi: 10.1039/C8RA03066A [23] RAO Z X, HUANG D Y, WU J S, et al. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant [J]. Environmental Pollution, 2018, 239: 198-204. doi: 10.1016/j.envpol.2018.04.024 [24] LI Y L, DONG S F, QIAO J C, et al. Impact of nanominerals on the migration and distribution of cadmium on soil aggregates [J]. Journal of Cleaner Production, 2020, 262: 121355. doi: 10.1016/j.jclepro.2020.121355 [25] DARAPUNENI M K, IDOWU O J, SARIHAN B, et al. Growth characteristics of summer cover crop grasses and their relation to soil aggregate stability and wind erosion control in arid southwest [J]. Applied Engineering in Agriculture, 2021, 37(1): 11-23. doi: 10.13031/aea.13972 [26] NSABIMANA G, BAO Y H, HE X B, et al. Impacts of water level fluctuations on soil aggregate stability in the Three Gorges reservoir, China [J]. Sustainability, 2020, 12(21): 9107. doi: 10.3390/su12219107 [27] STEGARESCU G, ESCUER-GATIUS J, SOOSAAR K, et al. Effect of crop residue decomposition on soil aggregate stability [J]. Agriculture, 2020, 10(11): 527. doi: 10.3390/agriculture10110527 [28] GUO L K, SHEN J, LI B, et al. Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C [J]. Science of the Total Environment, 2020, 707: 136049. doi: 10.1016/j.scitotenv.2019.136049 [29] 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响 [J]. 中国农业科学, 2013, 46(5): 950-960. doi: 10.3864/j.issn.0578-1752.2013.05.010 CHEN X F, LI Z P, LIU M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China [J]. Scientia Agricultura Sinica, 2013, 46(5): 950-960(in Chinese). doi: 10.3864/j.issn.0578-1752.2013.05.010
[30] 肖丹丹. 腐植酸对铅镉污染土壤中重金属形态及油菜抗氧化酶活性的影响[D]. 泰安: 山东农业大学, 2017. XIAO D D. Effects of humic acid on havy metal forms and antioxidant enzymes activities in soil contaminated by lead and cadmium[D]. Taian: Shandong Agricultural University, 2017(in Chinese).
[31] HUANG B, YUAN Z J, LI D Q, et al. Loss characteristics of Cd in soil aggregates under simulated rainfall conditions [J]. Science of the Total Environment, 2019, 650: 313-320. doi: 10.1016/j.scitotenv.2018.08.327 [32] LI S S, WANG M, ZHAO Z Q, et al. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates [J]. Environmental Science and Pollution Research International, 2019, 26(20): 20929-20938. doi: 10.1007/s11356-019-05431-4 [33] WANG Y L, XU Y M, LIANG X F, et al. Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil [J]. Chemosphere, 2021, 271: 129590. doi: 10.1016/j.chemosphere.2021.129590