-
二恶英(dioxins)是一类具有相似结构和性质的氯代芳香烃族杂环化合物的统称,包括多氯代二苯并-对-二恶英(polychlorinated dibenzo-p-dioxins,PCDDs)和多氯代二苯并呋喃(polychlorinated dibenzofurans,PCDFs),共有210个同族体. PCDD/Fs作为典型的非故意产生的持久性有机污染物(UP-POPs),其来源包括自然源和人为源两大类,前者包括火山爆发、森林火灾等一些自然过程,后者包括固体废弃物焚烧、钢铁生产、有色金属生产、含氯化学品生产和纸浆漂白等工业过程. 由于环境中的PCDD/Fs主要来源于人类活动,自然排放的PCDD/Fs极少,故针对PCDD/Fs的研究主要围绕人为源展开[1-2].
研究显示,2004年我国PCDD/Fs大气排放量为5042 g毒性当量(TEQ),之后一段时间未见官方统计数据,但有研究指出2016年我国PCDD/Fs大气排放量为10366 g TEQ[3-4],尽管不同研究中对排放因子和生产强度的选择差异较大,导致PCDD/Fs大气排放量的计算存在一定差异[5],但金属生产、固体废弃物焚烧等工业污染源导致的PCDD/Fs排放量占大气总排放量的90%以上[4]. 因此积极削减工业源排放的PCDD/Fs是其污染防治的关键,也是我国履行《关于持久性有机污染物的斯德哥尔摩公约》,推动国内经济高质量发展和生态文明建设的必然选择.
2010年我国加强大气污染物防治,工业废气治理投资快速增长,并于2014年达到峰值[6]. 但截止2018年,我国除固体废弃物焚烧行业外的其他行业专门针对UP-POPs控制的措施十分有限,且相关工作多停留在实验室研究阶段[7],与2010年的研究状况几近相似[8]. 减少工业污染源UP-POPs的排放仍然是我国POPs污染控制面临的最大挑战[7].
尽管目前对PCDD/Fs的工业排放源已有大量研究报道,但对于不同工业的PCDD/Fs排放特征、污染控制措施及其成效评估的文献综述仍然相对较少,且近年来随着工业的发展,不同工业PCDD/Fs排放特征和排放量也发生了一定的变化,因此,有必要进一步对比以前和近年来PCDD/Fs排放特征、控制措施变化. 根据联合国环境规划署(UNEP)在2013年提出的《鉴别及量化PCDD/Fs类排放标准工具包》以及其他研究对不同行业PCDD/Fs的排放因子及排放量的核算结果[9-12],本文选取固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置固体废弃物这四类排放因子较大、生产强度较高的行业为主要研究对象,系统总结了固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置四类重要工业源PCDD/Fs排放的相关研究进展,阐述了不同行业PCDD/Fs排放特征及及其变化趋势,比较分析了这四类重要行业针对PCDD/Fs排放采取的控制技术及其效果,在此基础上对工业生产过程中PCDD/Fs污染控制技术的发展方向进行了展望. 本文可为更加深入了解工业排放PCDD/Fs的研究现状及其污染控制技术提供参考.
工业过程二恶英的排放特征及其控制技术
Dioxin emission characteristics and control technologies in industrial processes
-
摘要: 工业排放是环境中二恶英(PCDD/Fs)最主要的人为排放源. 2010年我国九部委联合发布PCDD/Fs污染防治指导意见,之后出台多项政策要求对主要行业持久性有机污染物(POPs)开展污染防治. 在一系列防治措施下,PCDD/Fs的工业排放水平有所下降,整体取得良好成效. 本文针对固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置四类主要行业的PCDD/Fs排放研究进展进行综述,阐述了不同行业PCDD/Fs排放量、排放特征及其变化趋势,比较分析了目前四类主要行业针对PCDD/Fs排放的控制技术及其效果,并对烟气中PCDD/Fs污染控制技术的发展方向进行了展望. 本文可为更加深入地了解工业排放PCDD/Fs的研究现状以及污染控制技术提供参考.Abstract: Industrial emissions are the main sources of anthropogenic polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in the environment. In 2010, nine ministries and commissions of China jointly issued the Guidance on the Strengthening of Dioxin Pollution Prevention, and then issued many policy documents for pollution prevention and control of persistent organic pollutants (POPs) in major industries. Under a series of control measures, the industrial emission of PCDD/Fs has been reduced in recent years. In this review, we summarized the research progress on PCDD/Fs emission in solid waste incineration, iron and steel smelting, non-ferrous metal smelting and coordinated disposal of cement kiln. The emission levels , emission characteristics and temporal trend of PCDD/Fs from these different industries were discussed, the control technologies and their effects to PCDD/Fs emission in four major industries were also evaluated. The development about PCDD/Fs control measures in flue gas was finally prospected. This review may enhance understanding the industrial emissions of PCDD/Fs and their control effects.
-
Key words:
- industrial emissions /
- dioxins /
- emission characteristics /
- control technology.
-
表 1 我国PCDD/Fs的主要排放源及其排放量
Table 1. Main emission sources of dioxins and their emissions in China
排放源
Emission source排放因子/(ng·t−1 I-TEQ)
Emission factor年排放量/(g TEQ)
Annual emission参考文献
References大气Atmosphere 总量Total 固体废弃物焚烧 生活垃圾 — 125.8 338 [3] 危险废物 — 57.27 243.27 医疗废物 — 427.4 1176.3 总计(2004) — 610.47 1757.57 生活垃圾 1728 — — [24] 27—225 — — [25] 12200 217 — [23] 56—607 — — [60] 危险废物 70—3270 — — [60] 工业废物 302500 103 — [23] 医疗废物 97800 272 — [23] 780—473930 — — [26] 1923.6 0.466 — [20] 总计(2013) — 1280 — [61] 总计(2016) — 2469 — [4] 钢铁生产 铁矿石烧结 — 1522.5 1523.4 [3] 钢铁冶炼 — 150.9 1125.4 铸铁生产 — 10.7 97 炼焦 239.2 252.6 总计(2004) — 1923.31 2998.4 铁矿石烧结 1582.95 — — [30] 772.2—827.9 — — [37] 1330—7610 [38] 180±220 [36] 电弧炉 1245.85 — — [30] 270±23 [36] 3160 — — [37] 177—869 — — [38] 炼焦 160.09 — — [30] 28.9(WHO) — — [62] 总计(2011) — 6817 — [63] 总计(2012) — 618 — [64] 总计(2015) — 1216.83 — [35] 总计(2016) — 5333 — [4] 总计(2018) — 2240 — [30] 有色金属生产 铜生产 — 403 1133.8 [3] 铝生产 — 133.5 365.5 铅生产 — 13.4 17.4 其他 — 12.99 51.85 总计(2004) — 562.89 1568.55 铜生产 38.5、651(WHO) — — [49] 14.2 — — [50] 铝生产 1240.2 — — 铅生产 3140.0 — — 锌生产 166.0 — — 再生铜 241719—1707200 — — [37] 14802 37.5 — [65-66] 24451.3 — — [50] 再生铝 147819—434840 — — [37] 84.8—2720 — — [38] 再生铅 4297 — — [37] 镁生产 412(WHO) — — [49] 废旧导线回收 5569(WHO) — — [49] 水泥窑协同处置 水泥窑(2004) — 365.3 365.3 [3] 水泥窑 5000 0.02g — [57-58] 水泥窑 0.01—1.35 mg — — [55] 上述四类总计(2004) — 3461.97 6437.22 [3] 所有污染源总计(2004) — 5042.4 10236.8 [3] 注:“—”:表示未提及;其他:包锌、黄铜和青铜、镁等未提及的有色金属生产; 表 2 PCDD/Fs的全过程控制方法
Table 2. Whole process control method of PCDD/Fs
表 3 不同行业烟气PCDD/Fs排放控制标准
Table 3. PCDD/Fs emission control standard for different industries
表 4 工业烟气PCDD/Fs控制技术
Table 4. Collaborative dioxin control technology for industrial flue gas
工业类型
Industrial Type空气污染控制装置
Air pollution control devices(APCDs)进口
Before出口
After效率
Efficiency参考文献
Reference固体废弃物焚烧 生活垃圾焚烧 SDS+DS+AC+BF+SCR 0.2253 0.0028 98.76% [89] SNCR+SDS+AC+BF — 0.0365 — [98] — 0.076—0.153 — [107] — 0.007—0.095 — [25] SDS+AC+BF+SCR — 0.41 — [108] — 0.06 — [108] 热交换+SDS+AC+BF 2.58 0.0246 99% [109] 急冷+SDS+AC+BF — 0.45 — [94] SDS+AC+BF — 0.078 — [110] — 0.008—0.12 91.7%—99.3% [93] — 0.026 — [94] — 0.099 — [98] DS+AC+BF — 0.0844 — [38] WDS+AC+BF — 0.082 — [98] AC+BF — 0.239 — [38] CY+SDS+BF — 0.54 — [111] WDS+BF — 0.50 — [94] SDS+BF — 1.33 — [94] CY+ESP 16.137 0.946 94.14% [112] CY+ESP+BF 0.23 1.948 -747% [112] 0.436 5.018 -1051% [112] 危险废物焚烧 VS+CY+AC+BF 113 0.054(WHO) 99.95% [90] SDS+AC+BF — 0.01—11.91 — [92] AC+BF — 0.225 — [38] 医疗废弃物焚烧 SDS+AC+BF+WDS 5.32 0.07 98.68% [91] DS+AC+BF — 1.64 — [38] SDS+AC+BF — 0.07—12.21 — [92] SDS+BF — 0.07 — 钢铁生产 电弧炉炼钢 BF — 0.17 — [113] — 0.148—0.757 — [38] — 0.34 — [37] ESP+脱硫 — 0.003—0.557 — [36] 烧结 ESP+WFGD 2.3±0.56 0.99±0.53 — [99] ESP+SFGD 0.32—0.69 0.022—0.2 — [99] WFGD+WESP — 0.15 — [103] 钢铁生产 烧结 ESP+SCR — 0.137—0.657 — [38] ESP — 0.233 — [38] — 0.005—0.48 — [37] BF — 0.006—0.057 — [36] 炼焦 BF — (4.9—89.3)×10−3 (WHO) — [33] — 0.00870 — [38] — (0.0039—0.03)×10−3 — [114] 有色金属生产 再生铜 BF — 0.310 — [38] — 0.84 — [115] — 0.004—0.37 — [46] — 0.009—1.29 — [47] 再生锌 GS或ESP+BF — 0.48 — [103, 115] 再生铅 BF
ESP+GS+BF— 0.05 — BF+WDS+DS — 0.037 — [37] 再生铝 AC+BF — 0.1 — [45] BF — (5.68—44)×10−3 — [38] — 2.05 — [37] WDS — 0.88 — [37] 水泥窑 水泥窑协同处置 ESP — 5.9×10−3 — [115,103] — (9.3—49.3)×10−3 — [116] — 0.01—0.19 — [55] BF — 0.076 — [106] — (17.8—90.8) ×10−3 — [116] — 0.01—0.46 — [55] WDS — 0.04 — [55] 单位:ng·m−3 I-TEQ:“—”:未提及;WDS:湿法除尘器;CY:旋风除尘器;VS:文丘里洗涤器;WFGD:湿法脱硫;SFGD:半干法脱硫;WESP:湿法静电除尘;GS:重力沉降
unit:ng·m−3 I-TEQ;“—”:Not Reported;WDS:Wet dust collector;CY:Cyclone dust collector;VS:Venturi scrubber;WFGD:Wet flue gas desulfurization;SFGD:Semi-dry desulphurization;WESP:Wet electrostatic precipitator;GS:Gravity settling -
[1] FIEDLER H. Sources of PCDD/PCDF and impact on the environment [J]. Chemosphere, 1996, 32(1): 55-64. doi: 10.1016/0045-6535(95)00228-6 [2] GUL N, KHAN B, KHAN H, et al. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in municipal waste dumping site, incinerator and brick kiln residues: evaluation for potential risk assessment [J]. Arabian Journal of Geosciences, 2021, 14(9): 1-10. [3] 郑明辉, 孙阳昭, 刘文彬. 中国二噁英类持久性有机污染物排放清单研究[M]. 北京: 中国环境科学出版社, 2008:9-30. ZHENG M H, SUN Y Z, LIU W B. Mission inventory of dioxin persistent organic pollutants in China[M]. Beijing: China Environmental Science Press, 2008:9-30(in Chinese).
[4] 陈露露, 黄韬, 陈凯杰, 等. 我国PCDD/Fs网格化大气排放清单[J]. 环境科学, 2020, 41(2): 510-519. CHEN L L, HUANG T, CHEN K J, et al. Gridded atmospheric emission inventory of PCDD/Fs in China(in Chinese).
[5] HUANG Y, CHEN Y, LI Y, et al. Atmospheric emissions of PCDDs and PCDFs in China from 1960 to 2014[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127320. [6] 中华人民共和国国家统计局. 中国统计年鉴-2021[M]. 北京: 中国统计出版社, 2021. National Bureau of Statistics, PRC. China Statistical Yearbook, 2021[M]. Beijing: China Statistics Press, 2021(in Chinese).
[7] 刘国瑞, 郑明辉, 孙轶斐, 等. 工业过程中持久性有机污染物排放特征[M]. 北京: 科学出版社, 2018:1. LIU G R, ZHENG M H, SUN Y F, et al. Emission characteristics of persistent organic pollutants from industrial processes[M]. Beijing: Science press, 2018:1(in Chinese).
[8] TIAN B, HUANG J, WANG B, et al. Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China [J]. Chemosphere, 2012, 89(4): 409-415. doi: 10.1016/j.chemosphere.2012.05.069 [9] YANG L L, ZHAO Y Y, SHI M W, et al. Brominated dioxins and furans in a cement kiln co-processing municipal solid waste [J]. Journal of Environmental Sciences, 2019, 79: 339-345. doi: 10.1016/j.jes.2018.12.009 [10] YANG Y P, YANG L L, WANG M X, et al. Concentrations and profiles of persistent organic pollutants unintentionally produced by secondary nonferrous metal smelters: Updated emission factors and diagnostic ratios for identifying sources [J]. Chemosphere, 2020, 255: 126958. doi: 10.1016/j.chemosphere.2020.126958 [11] UNEP. The Stockholm Convention on Persistent Organic Pollutants. Geneva, Switzerland[M]. United Nations Environmental Programme, 2013. [12] XHROUET C, de PAUW E. Formation of PCDD/Fs in the sintering process: Influence of the raw materials [J]. Environmental Science & Technology, 2004, 38(15): 4222-4226. [13] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes [J]. Chemosphere, 1995, 31(9): 4099-4117. doi: 10.1016/0045-6535(95)80011-9 [14] LI H M, ZHANG N, GUO X, et al. Summary of flue gas purification and treatment technology for domestic waste incineration [J]. IOP Conference Series:Earth and Environmental Science, 2020, 508(1): 012016. doi: 10.1088/1755-1315/508/1/012016 [15] MAGUHN J, KARG E, KETTRUP A, et al. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: Effects of dynamic process control measures and emission reduction devices [J]. Environmental Science & Technology, 2003, 37(20): 4761-4770. [16] NIU Y Q, WEN L P, GUO X, et al. Co-disposal and reutilization of municipal solid waste and its hazardous incineration fly ash [J]. Environment International, 2022, 166: 107346. doi: 10.1016/j.envint.2022.107346 [17] HAN Y, LIU W B, LI H F, et al. Gas-particle partitioning of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in flue gases from municipal solid waste incinerators [J]. Aerosol and Air Quality Research, 2017, 17(11): 2847-2857. doi: 10.4209/aaqr.2017.09.0308 [18] 竹涛, 种旭阳, 王若男, 等. 生活垃圾焚烧飞灰处理技术研究进展 [J]. 洁净煤技术, 2022, 28(7): 189-201. doi: 10.13226/j.issn.1006-6772.21080202 ZHU T, CHONG X Y, WANG R N, et al. Research progress on the treatment technology of municipal solid waste incineration fly ash [J]. Clean Coal Technology, 2022, 28(7): 189-201(in Chinese). doi: 10.13226/j.issn.1006-6772.21080202
[19] 中华人民共和国国家统计局. 中国统计年鉴-2011[M]. 北京: 中国统计出版社, 2011. National Bureau of Statistics, PRC. China Statistical Yearbook, 2011[M]. Beijing: China Statistics Press, 2011(in Chinese).
[20] LI J F, LV Z W, DU L, et al. Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs [J]. Environmental Pollution, 2017, 221: 437-444. doi: 10.1016/j.envpol.2016.12.009 [21] WANG L, LEE W, LEE W, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxinsydibenzofurans [J]. The Science of the Total Environment, 2003, 302: 185-198. doi: 10.1016/S0048-9697(02)00306-6 [22] ZHU J X, HIRAI Y, YU G, et al. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in China and chemometric analysis of potential emission sources [J]. Chemosphere, 2008, 70(4): 703-711. doi: 10.1016/j.chemosphere.2007.06.053 [23] LI C, YANG L L, LIU X Y, et al. Bridging the energy benefit and POPs emission risk from waste incineration [J]. The Innovation, 2021, 2(1): 100075. doi: 10.1016/j.xinn.2020.100075 [24] NI Y W, ZHANG H J, FAN S, et al. Emissions of PCDD/Fs from municipal solid waste incinerators in China [J]. Chemosphere, 2009, 75(9): 1153-1158. doi: 10.1016/j.chemosphere.2009.02.051 [25] ZHU F, LI X F, LU J W, et al. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China [J]. Chemosphere, 2018, 200: 23-29. doi: 10.1016/j.chemosphere.2018.02.092 [26] GAO H C, NI Y W, ZHANG H J, et al. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China [J]. Chemosphere, 2009, 77(5): 634-639. doi: 10.1016/j.chemosphere.2009.08.017 [27] 李凡. 我国医疗废物管理法律制度探析[D]. 兰州: 西北民族大学, 2022:2. LI F. On the legal system of medical waste management in China[D]. Lanzhou: Northwest Minzu University, 2022:2(in Chinese).
[28] 王艳, 张俊林, 周丽. 新冠肺炎疫情环境下医疗废物的信息化储运策略 [J]. 环境工程, 2021, 39(4): 134-139. doi: 10.13205/j.hjgc.202104021 WANG Y, ZHANG J L, ZHOU L. Strategy of information storage and transportation of medical waste in epidemic situation [J]. Environmental Engineering, 2021, 39(4): 134-139(in Chinese). doi: 10.13205/j.hjgc.202104021
[29] 孙文强. 钢铁制造流程中物质流与能量流优化及其协同运行基础研究[D]. 沈阳: 东北大学, 2013:1. SUN W Q. Fundamental research on optimization and synergy of material flow and energy flow in steel manufacturing process[D]. Shenyang: Northeastern University, 2013:1(in Chinese).
[30] 汤铃, 贾敏, 伯鑫, 等. 中国钢铁行业排放清单及大气环境影响研究 [J]. 中国环境科学, 2020, 40(4): 1493-1506. doi: 10.3969/j.issn.1000-6923.2020.04.014 TANG L, JIA M, BO X, et al. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry [J]. China Environmental Science, 2020, 40(4): 1493-1506(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.014
[31] SHEN J, YANG L L, LIU G R, et al. Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review [J]. Science of the Total Environment, 2021, 773: 145692. doi: 10.1016/j.scitotenv.2021.145692 [32] 杨秋婷. 电弧炉炼钢过程中氯代和溴代二恶英的排放特征研究[D]. 北京: 钢铁研究总院, 2021:4. YANG Q T. Study on emission profile of PCDD/fs and PBDD/fs in the electric arc furnace steelmaking process[D]. Beijing: General Iron and Steel Research Institute, 2021:4(in Chinese).
[33] LIU G R, ZHENG M H, LIU W B, et al. Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry [J]. Environmental Science & Technology, 2009, 43(24): 9196-9201. [34] YANG Q T, YANG L L, SHEN X J, et al. Organic pollutants from electric arc furnaces in steelmaking: A review [J]. Environmental Chemistry Letters, 2021, 19(2): 1509-1523. doi: 10.1007/s10311-020-01128-0 [35] GAO C K, GAO W G, SONG K H, et al. Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China: A bottom-up approach [J]. Resources, Conservation and Recycling, 2019, 143: 184-200. doi: 10.1016/j.resconrec.2018.12.032 [36] 杨艳艳, 谢丹平, 付建平, 等. 钢铁生产行业二噁污染特征变化及其排放因子 [J]. 环境科学, 2022, 43(8): 3990-3997. YANG Y Y, XIE D P, FU J P, et al. Pollution characteristics and emission factors of PCDD/fs from iron and steel industry [J]. Environmental Science, 2022, 43(8): 3990-3997(in Chinese).
[37] ZOU C, HAN J L, FU H Q. Emissions of PCDD/Fs from steel and secondary nonferrous productions [J]. Procedia Environmental Sciences, 2012, 16: 279-288. doi: 10.1016/j.proenv.2012.10.039 [38] WANG J B, HUNG C H, HUNG C H, et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries [J]. Journal of Hazardous Materials, 2009, 161(2/3): 800-807. [39] 阿不力克木·亚森. 八钢高炉入炉原料的冶金性能及配料优化研究[D]. 西安: 西安建筑科技大学, 2004:1-26. Yasen A. Research on metallurgical performance of blast furnace burden in bayi iron and steel company[D]. Xi'an: Xi'an University of Architecture and Technology, 2004:1-26(in Chinese).
[40] 朱苗勇. 现代冶金工艺学-钢铁冶金卷[M]. 2版. 北京: 冶金工业出版社, 2016:108. ZHU M Y. Modern Metallurgical Technology -- Iron and Steel Metallurgy Volume (2nd edition)[M]. Beijing: Metallurgical Industry Press, 2016:108(in Chinese).
[41] 李小克. 铁矿粉价铁比与铁水成本的统计关系 [J]. 金属材料与冶金工程, 2013, 41(5): 31-34. doi: 10.3969/j.issn.1005-6084.2013.05.007 LI X K. The statistic relationship between the price-iron ratios of iron ore powder and the molten iron cost [J]. Metal Materials and Metallurgy Engineering, 2013, 41(5): 31-34(in Chinese). doi: 10.3969/j.issn.1005-6084.2013.05.007
[42] LI H F, LIU W B, TANG C, et al. Emissions of 2, 3, 7, 8-substituted and non-2, 3, 7, 8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans from secondary aluminum smelters [J]. Chemosphere, 2019, 215: 92-100. doi: 10.1016/j.chemosphere.2018.10.004 [43] 孟聪, 岳波, 孟棒棒, 等. 进口再生铜冶炼烟气中二噁英的生成特性 [J]. 环境化学, 2021, 40(8): 2462-2472. doi: 10.7524/j.issn.0254-6108.2020122502 MENG C, YUE B, MENG B B, et al. Formation characteristics of PCDD/Fs in imported secondary copper smelting flue gas [J]. Environmental Chemistry, 2021, 40(8): 2462-2472(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122502
[44] 李家玲, 张正洁. 再生铝生产过程中二噁英成因及全过程污染控制技术 [J]. 环境保护科学, 2013, 39(2): 42-46. doi: 10.3969/j.issn.1004-6216.2013.02.011 LI J L, ZHANG Z J. Causes of dioxin generation during secondary aluminum production process and the whole process pollution control technology [J]. Environmental Protection Science, 2013, 39(2): 42-46(in Chinese). doi: 10.3969/j.issn.1004-6216.2013.02.011
[45] COLLINA E, BORTOLAMI M, FRANZONI F, et al. PCDD/F and dioxin-like PCB minimization: A 13-year experimental study along the flue gas cleaning system of a secondary aluminium refining plant [J]. Chemosphere, 2017, 181: 409-417. doi: 10.1016/j.chemosphere.2017.04.097 [46] LI H F, LIU W B, TANG C, et al. Emission profiles and formation pathways of 2, 3, 7, 8-substituted and non-2, 3, 7, 8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans in secondary copper smelters [J]. The Science of the Total Environment, 2019, 649: 473-481. doi: 10.1016/j.scitotenv.2018.08.279 [47] HU J C, ZHENG M H, NIE Z Q, et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy [J]. Chemosphere, 2013, 90(1): 89-94. doi: 10.1016/j.chemosphere.2012.08.003 [48] NIE Z Q, ZHENG M H, LIU W B, et al. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China [J]. Chemosphere, 2011, 85(11): 1707-1712. doi: 10.1016/j.chemosphere.2011.09.016 [49] 聂志强. 有色金属冶炼过程中UP-POPs的生成与排放研究[D]. 北京: 中国科学院大学, 2012:91.
NIE Z Q.Formation and emission of UP-POPS during smelting processes in nonferrous metallurgical facilites[D].Beijing:Chinese academy of sciences,2012:91(in Chinese).[50] YU B W, JIN G Z, MOON Y H, et al. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea [J]. Chemosphere, 2006, 62(3): 494-501. doi: 10.1016/j.chemosphere.2005.04.031 [51] 中华人民共和国国家统计局. 中国统计年鉴-2005[M]. 北京: 中国统计出版社, 2005. National Bureau of Statistics, PRC. China Statistical Yearbook, 2005[M]. Beijing: China Statistics Press, 2005(in Chinese).
[52] 嵇鹰, 蒲奋飞, 刘博鑫, 等. 水泥窑协同处置含锌粉尘对水泥熟料性能及环境安全性的影响 [J]. 环境工程学报, 2022, 16(3): 946-953. JI Y, PU F F, LIU B X, et al. Effect of cement kiln co-processing of Zinc-containing powders on clinker performance and leaching [J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 946-953(in Chinese).
[53] LIU G R, ZHAN J Y, ZHENG M H, et al. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations [J]. Journal of Hazardous Materials, 2015, 299: 471-478. doi: 10.1016/j.jhazmat.2015.07.052 [54] YE W W, CAI P T, ZHAN M X, et al. Dioxin emission and distribution from cement kiln co-processing of hazardous solid waste [J]. Environmental Science and Pollution Research International, 2022, 29(35): 53755-53767. doi: 10.1007/s11356-022-19675-0 [55] ZOU L L, NI Y W, GAO Y, et al. Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China [J]. Chemosphere, 2018, 195: 491-497. doi: 10.1016/j.chemosphere.2017.12.114 [56] ZHAO Y Y, ZHAN J Y, LIU G R, et al. Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material [J]. Journal of Hazardous Materials, 2017, 330: 135-141. doi: 10.1016/j.jhazmat.2017.02.018 [57] 张婧, 倪余文, 张海军, 等. 水泥窑除尘器捕集灰中PCDD/Fs、PCBs和PCNs的分布特征 [J]. 环境科学, 2009, 30(2): 568-573. doi: 10.3321/j.issn:0250-3301.2009.02.043 ZHANG J, NI Y W, ZHANG H J, et al. Patterns of PCDD/Fs, PCBs and PCNs homologues in fly ash from cement kilns [J]. Environmental Science, 2009, 30(2): 568-573(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.043
[58] KARADEMIR A. Health risk assessment of PCDD/F emissions from a hazardous and medical waste incinerator in Turkey [J]. Environment International, 2004, 30(8): 1027-1038. doi: 10.1016/j.envint.2004.05.008 [59] 王昕, 刘晨, 颜碧兰, 等. 国内外水泥窑协同处置城市固体废弃物现状与应用 [J]. 硅酸盐通报, 2014, 33(8): 1989-1995. doi: 10.16552/j.cnki.issn1001-1625.2014.08.028 WANG X, LIU C, YAN B L, et al. Statue and application of abroad and home co-processing of municipal solid waste by cement kiln [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 1989-1995(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2014.08.028
[60] QIU J, TANG M H, PENG Y Q, et al. Characteristics of PCDD/Fs in flue gas from MSWIs and HWIs: Emission levels, profiles and environmental influence [J]. Aerosol and Air Quality Research, 2020, 20(10): 2085-2097. doi: 10.4209/aaqr.2019.11.0610 [61] 王梦京. 铁矿石烧结行业脱硫工艺对多种UP-POPs协同减排研究[D]. 上海: 上海应用技术大学, 2016:54. WANG M J. UP-POPs emissions from sintering plants synergistically controlled by the desulfurization process[D]. Shanghai: Shanghai Institute of Technology, 2016:54(in Chinese).
[62] 刘国瑞. 炼焦过程中典型UP-POPs的生成和排放研究[D]. 北京: 中国科学院大学, 2010:76. LIU G R. Formation and Emission of Selected UP-POPs during Coking Processes[D]. Beijing: University of Chinese Academy of Sciences, 2010:76(in Chinese).
[63] WANG K, TIAN H Z, HUA S B, et al. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics [J]. The Science of the Total Environment, 2016, 559: 7-14. doi: 10.1016/j.scitotenv.2016.03.125 [64] WU X C, ZHAO L J, ZHANG Y X, et al. Primary air pollutant emissions and future prediction of iron and steel industry in China [J]. Aerosol and Air Quality Research, 2015, 15(4): 1422-1432. doi: 10.4209/aaqr.2015.01.0029 [65] BA T, ZHENG M H, ZHANG B, et al. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China [J]. Environmental Science & Technology, 2010, 44(7): 2441-2446. [66] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China [J]. Chemosphere, 2009, 75(9): 1173-1178. doi: 10.1016/j.chemosphere.2009.02.052 [67] ZHAO B, ZHENG M H, JIANG B. Dioxin emissions and human exposure in China: A brief history of policy and research [J]. Environmental Health Perspectives, 2011, 119(3): a112-a113. [68] FU J Y, CAI P T, ZHAN M X, et al. Formation and control of dioxins during thermal desorption remediation of chlorine and non-chlorine organic contaminated soil [J]. Journal of Hazardous Materials, 2022, 436: 129124. doi: 10.1016/j.jhazmat.2022.129124 [69] 陈彤. 城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究[D]. 杭州: 浙江大学, 2006:134. CHEN T. Mechanism and exPerimental study on PCDD/Fs fonrration and control during munieiPal solid wastes incineration[D]. Hangzhou: Zhejiang University, 2006:134(in Chinese).
[70] 龙红明, 丁龙, 钱立新, 等. 烧结烟气中NOx和二噁的减排现状及发展趋势 [J]. 化工进展, 2022, 41(7): 3865-3876. LONG H M, DING L, QIAN L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876(in Chinese).
[71] HE H, GUO X H, JIN L Z, et al. The effect of adjusting sinter raw mix on dioxins from iron ore co-sintering with municipal solid waste incineration fly ash [J]. Energies, 2022, 15(3): 1136. doi: 10.3390/en15031136 [72] JI Z Y, HUANG B B, GAN M, et al. Dioxins control as co-processing water-washed municipal solid waste incineration fly ash in iron ore sintering process[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127138. [73] NEUER-ETSCHEIDT K, NORDSIECK H O, LIU Y B, et al. PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes [J]. Environmental Science & Technology, 2006, 40(1): 342-349. [74] XIONG S J, PENG Y Q, LU S Y, et al. PCDD/Fs from a large-scale municipal solid waste incinerator under transient operations: Insight formation pathways and optimal reduction strategies [J]. Journal of Environmental Management, 2022, 314: 114878. doi: 10.1016/j.jenvman.2022.114878 [75] ADELODUN A A. Influence of operation conditions on the performance of non-thermal plasma technology for VOC pollution control [J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 41-55. doi: 10.1016/j.jiec.2020.08.026 [76] QIN Y, GU J, CAI W T, et al. Catalytic oxidation of chlorobenzene and PCDD/Fs over V2O5-WO3/TiO2: Insights into the component effect and reaction mechanism [J]. Environmental Science and Pollution Research International, 2022, 29(28): 42809-42821. doi: 10.1007/s11356-022-18768-0 [77] TANG M H, YE Q L, DU C C, et al. PCDD/F removal at low temperatures over vanadium-based catalyst: Insight into the superiority of mechanochemical method [J]. Environmental Science and Pollution Research International, 2022, 29(5): 7042-7052. doi: 10.1007/s11356-021-15477-y [78] MA Y F, LAI J W, LI X D, et al. Field study on PCDD/F decomposition over VOx/TiO2 catalyst under low-temperature: Mechanism and kinetics analysis [J]. Chemical Engineering Journal, 2022, 429: 132222. doi: 10.1016/j.cej.2021.132222 [79] TRINH M M, CHANG M B. Transformation of mono- to octa- chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process [J]. Chemical Engineering Journal, 2022, 427: 130907. doi: 10.1016/j.cej.2021.130907 [80] ALVARADO R, RAMOS-BERDULLAS N, MANDADO M. On the adsorption affinity of graphene and white graphene sheets by dioxin-like pollutants [J]. International Journal of Quantum Chemistry, 2021, 121(9): e26591. [81] LONG Y P, SU Y T, XUE Y H, et al. V2O5-WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: Insights into the arsenic effect [J]. Environmental Science & Technology, 2021, 55(13): 9317-9325. [82] 环境保护部、国家质量监督检验检疫总局. 生活垃圾焚烧污染物控制标准: GB18485—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Standard for pollution control on the municipal solid waste incineration: GB18485-2014[S]. Beijing: China Environmental Science Press, 2014(in Chinese).
[83] 国家环境保护总局、国家质量监督检验检疫总局. 危险废物焚烧污染控制标准: GB 18484—2001[S]. 北京: 中国环境科学出版社, 2001. State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of PPC. Pollution control standard for hazardous waste incineration: GB 18484—2001[S]. Beijing: China Environmental Science Press, 2001 (in Chinese).
[84] 环境保护部、国家质量监督检验检疫总局. 火葬场大气污染物排放标准: GB 13801-2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for crematory : GB13801-2015[S]. Beijing: China Environmental Science Press, 2015(in Chinese).
[85] 环境保护部、国家质量监督检验检疫总局. 炼钢工业大气污染物排放标准: GB 28664—2012[S]. 北京: 中国环境科学出版社, 2012. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for steel smelt industry: GB 28664—2012[S]. Beijing: China Environmental Science Press, 2012(in Chinese).
[86] 环境保护部、国家质量监督检验检疫总局. 钢铁烧结、球团工业大气污染物排放标准: GB 28662—2012[S]. 北京: 中国环境科学出版社, 2012. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for sintering and pelletizing of iron and steel industry: GB 28662—2012[S]. Beijing: China Environmental Science Press, 2012(in Chinese).
[87] 环境保护部、国家质量监督检验检疫总局. 再生铜、铝、铅、锌工业污染物排放标准: GB 31574—2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standards of pollutants for secondary copper, aluminum, lead and Zink industry: GB 31574—2015[S]. Beijing: China Environmental Science Press, 2015(in Chinese).
[88] 环境保护部、国家质量监督检验检疫总局. 水泥窑协同处置固体废物污染控制标准: GB 30485—2013[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Standard for pollution control on co-processing of solid wastes in cement kiln: GB30485-2013[S]. Beijing: China Environmental Science Press, 2014(in Chinese).
[89] WEI J X, LI H, LIU J G. Phase distribution of PCDD/Fs in flue gas from municipal solid waste incinerator with ultra-low emission control in China [J]. Chemosphere, 2021, 276: 130166. doi: 10.1016/j.chemosphere.2021.130166 [90] LIN S L, WU J L, CHEN W H, et al. Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system[J]. Journal of Hazardous Materials, 2022, 423(Pt A) : 127032. [91] MA Y F, LIN X Q, CHEN T, et al. Field study on the emission characteristics of micro/trace pollutants and their correlations from medical waste incineration [J]. Energy & Fuels, 2020, 34(12): 16381-16388. [92] 陈佳, 陈彤, 王奇, 等. 中国危险废物和医疗废物焚烧处置行业二噁英排放水平研究 [J]. 环境科学学报, 2014, 34(4): 973-979. doi: 10.13671/j.hjkxxb.2014.0158 CHEN J, CHEN T, WANG Q, et al. PCDD/Fs emission levels of hazardous and medical waste incineration in China [J]. Acta Scientiae Circumstantiae, 2014, 34(4): 973-979(in Chinese). doi: 10.13671/j.hjkxxb.2014.0158
[93] LI Y C, YANG Y, YU G, et al. Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China [J]. Chemosphere, 2016, 158: 17-23. doi: 10.1016/j.chemosphere.2016.05.037 [94] LIU W B, TIAN Z Y, LI H F, et al. Mono- to Octa-chlorinated PCDD/Fs in stack gas from typical waste incinerators and their implications on emission [J]. Environmental Science & Technology, 2013, 47(17): 9774-9780. [95] TIAN H H, OUYANG N. Preliminary investigation on dioxins emission from MWS incinerators [J]. Environmental Chemistry, 2003, 22(3): 255-258. [96] YING Y X, XU L, LIN X Q, et al. Influence of different kinds of incinerators on PCDD/Fs: a case study of emission and formation pathway [J]. Environmental Science and Pollution Research, 2023,30: 5903-5916. [97] 雷鸣. 小型农村生活垃圾热处理炉二噁英及重金属的排放特性及控制研究[D]. 广州: 华南理工大学, 2017:110. LEI M. Emission characteristics and control of PCDD/Fs and heavy metals from small-scale thermal treatment furnace for disposing rural domestic solid waste [D]. Guangzhou: South China University of Technology, 2017:110(in Chinese).
[98] 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二噁英排放特性研究 [J]. 环境科学学报, 2018, 38(5): 1983-1988. YU M F, FU J Y, ZHAN M X, et al. The research of PCDD/Fs emission characteristics in flue gas from municipal solid waste incinerations [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1983-1988(in Chinese).
[99] WANG M J, LIU W B, HOU M F, et al. Mono- to octachlorinated polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from sintering plants synergistically controlled by the desulfurization process [J]. Environmental Science & Technology, 2016, 50(10): 5207-5215. [100] 王凤炜, 付建英, 林晓青, 等. 钢铁冶炼行业二噁英排放特性和厂区内大气中二噁英分布规律 [J]. 环境科学学报, 2018, 38(4): 1404-1409. doi: 10.13671/j.hjkxxb.2017.0461 WANG F W, FU J Y, LIN X Q, et al. The emission characteristics of dioxins from steel industry and distribution of dioxins in the atmosphere of plant [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1404-1409(in Chinese). doi: 10.13671/j.hjkxxb.2017.0461
[101] 唐娜, 李馥琪, 罗伟铿, 等. 废物焚烧及工业金属冶炼烟气中二噁英的排放水平及同系物分布 [J]. 安全与环境学报, 2018, 18(4): 1496-1502. TANG N, LI F Q, LUO W K, et al. Concentrations and congener distributions of PCDD/Fs in the flue gas from combustion and metallurgical processing [J]. Journal of Safety and Environment, 2018, 18(4): 1496-1502(in Chinese).
[102] ZHAN M X, MA Y F, CHEN T, et al. PCDD/Fs characteristics in flue gas and surrounding environment of iron and steel smelting industry [J]. Environmental Science and Pollution Research International, 2021, 28(11): 14092-14104. doi: 10.1007/s11356-020-11650-x [103] SONG S, ZHOU X, GUO C Q, et al. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109608. doi: 10.1016/j.ecoenv.2019.109608 [104] 环境保护部、国家质量监督检验检疫总局. 水泥工业大气污染物排放标准: GB 4915—2013[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for cement industry: GB 4915—2013[S]. Beijing: China Environmental Science Press, 2014(in Chinese).
[105] 肖海平, 茹宇, 李丽, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中二噁英的迁移和降解特性 [J]. 环境科学研究, 2017, 30(2): 291-297. XIAO H P, RU Y, LI L, et al. Migration and degradation characteristics of dioxins during the process of cement kiln co-processing of municipal solid waste incineration fly ash [J]. Research of Environmental Sciences, 2017, 30(2): 291-297(in Chinese).
[106] CHEN T, ZHAN M X, LIN X Q, et al. Emission and distribution of PCDD/Fs and CBzs from two co-processing RDF cement plants in China [J]. Environmental Science and Pollution Research International, 2016, 23(12): 11845-11854. doi: 10.1007/s11356-016-6403-0 [107] HUANG Y Q, LU J W, XIE Y S, et al. Process tracing of PCDD/Fs from economizer to APCDs during solid waste incineration: re-formation and transformation mechanisms [J]. Waste Management, 2021, 120: 839-847. doi: 10.1016/j.wasman.2020.11.007 [108] MA Y F, LIN X Q, CHEN Z L, et al. Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China [J]. Chemosphere, 2020, 239: 124614. doi: 10.1016/j.chemosphere.2019.124614 [109] 张漫雯, 冯桂贤, 黄蓉, 等. 国产活性炭喷射去除大型城市生活垃圾焚烧发电厂烟气中的二恶英 [J]. 环境工程学报, 2015, 9(11): 5531-5536. doi: 10.12030/j.cjee.20151164 ZHANG M W, FENG G X, HUANG R, et al. Removal of dioxin in flue gas from a large-scale MSWI by domestic activated carbon injection [J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5531-5536(in Chinese). doi: 10.12030/j.cjee.20151164
[110] ZHANG G, HAI J, CHENG J. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China [J]. Waste Management, 2012, 32(6): 1156-1162. doi: 10.1016/j.wasman.2012.01.024 [111] 孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京: 化学工业出版社, 2013. SUN L, ZHANG X D. Principle and technology of biomass pyrolysis and gasification[M]. Beijing: Chemical Industry Press, 2013(in Chinese).
[112] CHOI K I, LEE D H, OSAKO M, et al. The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators [J]. Chemosphere, 2007, 66(6): 1131-1137. doi: 10.1016/j.chemosphere.2006.06.019 [113] 陆勇, 田洪海, 周志广, 等. 电弧炉炼钢过程中二噁英类的排放浓度和同类物分布 [J]. 环境科学研究, 2009, 22(3): 304-308. LU Y, TIAN H H, ZHOU Z G, et al. Concentrations and congener profiles of dioxins in stack gas and fly ash samples from an electric arc furnace [J]. Research of Environmental Sciences, 2009, 22(3): 304-308(in Chinese).
[114] 孙鹏程, 李晓璐, 成钢, 等. 焦炉烟气中二噁英类物质排放水平研究 [J]. 环境科学, 2014, 35(7): 2515-2519. doi: 10.13227/j.hjkx.2014.07.012 SUN P C, LI X L, CHENG G, et al. Preliminary investigation on emission of PCDD/Fs and DL-PCBs through flue gas from coke plants in China [J]. Environmental Science, 2014, 35(7): 2515-2519(in Chinese). doi: 10.13227/j.hjkx.2014.07.012
[115] YANG Y P, WU G L, JIANG C, et al. Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction [J]. Environmental Pollution, 2020, 260: 113946. doi: 10.1016/j.envpol.2020.113946 [116] CHEN T, GUO Y, LI X D, et al. Emissions behavior and distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from cement kilns in China [J]. Environmental Science and Pollution Research International, 2014, 21(6): 4245-4253. doi: 10.1007/s11356-013-2356-8 [117] ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: A review [J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [118] LEE Y, CUI M, CHOI J, et al. Treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans contaminated soil using S2O82− with ferrous ion and heat as activating methods [J]. Chemical Engineering Journal, 2020, 384: 123299. doi: 10.1016/j.cej.2019.123299 [119] PENG Y Q, LU S Y, LI X D, et al. Formation, measurement, and control of dioxins from the incineration of municipal solid wastes: Recent advances and perspectives [J]. Energy & Fuels, 2020, 34(11): 13247-13267. [120] WANG M J, LI Q Q, LIU W B, et al. Monochlorinated to octachlorinated polychlorinated dibenzo-p-dioxin and dibenzofuran emissions in sintering fly ash from multiple-field electrostatic precipitators [J]. Environmental Science & Technology, 2018, 52(4): 1871-1879. [121] WANG M J, LI Q Q, LIU W B. Effects of desulfurization processes on polybrominated dibenzop-dioxin and dibenzofuran emissions from iron ore sintering [J]. Environmental Science & Technology, 2018, 52(10): 5764-5770. [122] DENG D Y, QIAO J Q, LIU M Q, et al. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism [J]. Journal of Hazardous Materials, 2019, 369: 279-289. doi: 10.1016/j.jhazmat.2019.01.001 [123] ZIMMERMANN R, BLUMENSTOCK M, HEGER H J, et al. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: Delayed emission effects [J]. Environmental Science & Technology, 2001, 35(6): 1019-1030. [124] CHEN T L, CHEN L H, CHEN Y H, et al. A systematic approach to evaluating environmental-economic benefits of high-gravity technology for flue gas purification and municipal solid waste incineration fly ash utilization [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106438. doi: 10.1016/j.jece.2021.106438 [125] WANG P J, YAN F, CAI J J, et al. Emission levels and phase distributions of PCDD/Fs in a full-scale municipal solid waste incinerator: The impact of wet scrubber system [J]. Journal of Cleaner Production, 2022, 337: 130468. doi: 10.1016/j.jclepro.2022.130468 [126] dal POZZO A, MURATORI G, ANTONIONI G, et al. Economic and environmental benefits by improved process control strategies in HCl removal from waste-to-energy flue gas [J]. Waste Management, 2021, 125: 303-315. doi: 10.1016/j.wasman.2021.02.059 [127] XUE Y, LIU X M. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review [J]. Chemical Engineering Journal, 2021, 420: 130349. doi: 10.1016/j.cej.2021.130349 [128] ZHAN M X, LIU Y W, YE W W, et al. Modification of activated carbon using urea to enhance the adsorption of dioxins[J]. Environmental Research, 2022, 204(Pt B): 112035. [129] HSU Y C, CHANG S H, CHANG M B. Emissions of PAHs, PCDD/Fs, dl-PCBs, chlorophenols and chlorobenzenes from municipal waste incinerator cofiring industrial waste [J]. Chemosphere, 2021, 280: 130645. doi: 10.1016/j.chemosphere.2021.130645 [130] WEI X N, LI T T. Wooden activated carbon production for dioxin removal via a two-step process of carbonization coupled with steam activation from biomass wastes [J]. ACS Omega, 2021, 6(8): 5607-5618. doi: 10.1021/acsomega.0c06032 [131] GAN M, WONG G, FAN X H, et al. Enhancing the degradation of dioxins during the process of iron ore sintering co-disposing municipal solid waste incineration fly ash [J]. Journal of Cleaner Production, 2021, 291: 125286. doi: 10.1016/j.jclepro.2020.125286 [132] LI H F, LIU W B, LU A X, et al. PCDD/Fs emissions from secondary copper production synergistically controlled by fabric filters and desulfurization [J]. Environmental Pollution, 2021, 270: 116065. doi: 10.1016/j.envpol.2020.116065 [133] LIN X Q, MA Y F, CHEN Z L, et al. Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator[J]. Environmental Pollution, 2020, 265(Pt B): 114888. [134] LUO G P, ZHANG K, PENG Y Q, et al. Pilot study on removal characteristics of multiple pollutants by the dual baghouse filter system [J]. Energies, 2022, 15(10): 3728. doi: 10.3390/en15103728 [135] LV Z Y, YU Y, REN M H, et al. Spraying polyacrylamide solution to improve the removal of particle-phase dioxins by bag filter in a full-scale municipal solid waste incineration system [J]. Chemosphere, 2021, 285: 131392. doi: 10.1016/j.chemosphere.2021.131392 [136] GUO Y Y, LUO L, ZHENG Y, et al. Low-medium temperature application of selective catalytic reduction denitration in cement flue gas through a pilot plant [J]. Chemosphere, 2021, 276: 130182. doi: 10.1016/j.chemosphere.2021.130182 [137] CAI X W, DU C M. Thermal plasma treatment of medical waste [J]. Plasma Chemistry and Plasma Processing, 2021, 41(1): 1-46. doi: 10.1007/s11090-020-10119-6 [138] ORTIZ ALMIRALL X, SOLÀ YAGÜE N, GONZALEZ-OLMOS R, et al. Photochemical degradation of persistent organic pollutants (PCDD/FS, PCBS, PBDES, DDTS and HCB) in hexane and fish oil [J]. Chemosphere, 2022, 301: 134587. doi: 10.1016/j.chemosphere.2022.134587 [139] ZHANG H J, ZHANG Y N, ZHONG Y C, et al. Novel strategies for 2, 8-dichlorodibenzo-p-dioxin degradation using ternary Au-modified iron doped TiO2 catalysts under UV-vis light illumination[J]. Chemosphere, 2022, 291(Pt 2): 132826. [140] DING X X, YANG Y T, ZENG Z Q, et al. Insight into the transformation behaviors of dioxins from sintering flue gas in the cyclic thermal regeneration by the V2O5/AC catalyst-sorbent [J]. Environmental Science & Technology, 2022, 56(9): 5786-5795. [141] LU S Y, XIANG Y F, CHEN Z L, et al. Development of phosphorus-based inhibitors for PCDD/Fs suppression [J]. Waste Management, 2021, 119: 82-90. doi: 10.1016/j.wasman.2020.09.019 [142] CHEN Z L, LIN X Q, LU S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators [J]. Chemical Engineering Journal, 2019, 359: 1391-1399. doi: 10.1016/j.cej.2018.11.039 [143] WIELGOSIŃSKI G, CZERWIŃSKA J, SZYMAŃSKA O, et al. Simultaneous NOx and dioxin removal in the SNCR process [J]. Sustainability, 2020, 12(14): 5766. doi: 10.3390/su12145766 [144] WANG X X, MA Y F, LIN X Q, et al. Inhibition on de novo synthesis of PCDD/Fs by an N-P-containing compound: Carbon gasification and kinetics [J]. Chemosphere, 2022, 292: 133457. doi: 10.1016/j.chemosphere.2021.133457 [145] CONESA J A. Sewage sludge as inhibitor of the formation of persistent organic pollutants during incineration [J]. Sustainability, 2021, 13(19): 10935. doi: 10.3390/su131910935