-
有机磷酸酯(organophosphate esters, OPEs)作为阻燃剂和增塑剂被广泛应用于塑料、泡沫、电子产品和建筑材料中[1-3]. OPEs一般通过物理混合添加到材料中,易通过挥发、浸出、磨损释放到环境中[4],因此广泛存在于各种环境介质中,包括大气[5]、水[6]、土壤[7]、鱼[8],甚至人的头发[9]、尿液[10]和母乳[11]. OPEs可通过皮肤接触、灰尘摄入、呼吸、摄食进入人体,表现出多种毒害效应,包括神经毒性、肾毒性、生殖毒性、致癌性、内分泌干扰性等[12-14]. 邻苯二甲酸酯(phthalates, PAEs)作为增塑剂广泛应用于建材、塑料制品中,改善材料的柔韧性和可塑性[15-16]. PAEs在大气[17]、沉积物[18]、水体[19]、土壤[20]及人体[21]中也被广泛检出. 研究表明,PAEs具有内分泌干扰性,可以干扰内源性激素的合成[22]. 由于两种化合物对生态系统和公众健康的潜在风险,其环境行为已引起普遍关注.
半挥发性有机物(SVOCs)的大气采样可分为主动和被动采样[23],主动采样利用抽气泵采集污染物[24],具有时间短、速度快、准确等优点,但造价贵、体积大、需要电源,不利于多点同时采样. 被动采样器(PAS)利用聚氨酯泡沫(PUF)等对有机物具有较高分配系数的吸附材料,通过空气与材料间的浓度梯度将有机物吸附到材料上[25],具有造价低、无需电源、对空气扰动小、多点同时监测、能反映时间加权平均浓度等优点[26-27],但采样过程中易受到风速等环境因素的干扰,不同采样点间采样速率存在差异. 因此,如何准确获得被动采样器的采样速率是确保其准确定量的关键.
目前PUF-PAS采样速率的评估方法有两种. 一种是基于主动采样校正的采样速率. 通过采样时间内PUF中污染物的日累积量和主动采样测定的大气污染物浓度得到该污染物的采样速率Ra [28],但不能校正不同环境条件下采样速率的差异. 另一种方法是在PUF部署前加入效能参考物(DCs或称PRCs),用以校正风速的环境因素对采样速率造成的影响. 基于PUF中DCs的损失率,计算采样速率RDC,也是目前应用较多的一种方法[29]. 该方法假设PUF对污染物吸收和其替代物释放过程传质方向相反但速率常数相同[30-31]. DCs逸失率在20%—80%之间才能获得相对准确的采样速率[32], 且作DCs的物质通常为同位素标记物,价格昂贵.
当前SVOCs的土-气交换研究主要有两种方法:一种是逸度模型计算法,即通过计算污染物土壤逸度(fs)和大气逸度(fa)的比值关系来判断污染物在两相间的迁移趋势[33-34],但该方法不适用于理化参数缺乏的新型污染物;同时土壤中真实参与土-气交换过程的污染物含量难以准确获取,当污染物浓度较低时,由于环境参数变化带来的不确定性会对最终的结果产生较大影响. 另一种是根据监测的近地面空气中污染物浓度梯度,对土壤-大气交换趋势进行量化,例如近地面空气被动采样器[35-36];相比逸度计算法,该方法能够更直观地反映污染物的垂直浓度分布,表征污染物的土-气交换方向,但也存在被动采样速率不准、受环境因素影响大等问题,需要对采样速率进行校正,以获得较为准确的浓度和趋势.
本研究利用主动采样和添加DCs联合校正采样速率的方法,研究一种可监测土壤垂直方向污染物浓度梯度的新型PUF被动采样器对OPEs和PAEs的采样速率,可以在一定程度上节约了DCs的添加成本,同时解决了主动采样器对空气的扰动和难以同时多点部署以及风速变化影响被动采样速率的不足,弥补了单一校正方法的缺陷,使得浓度结果更加准确,并用于表征近地面大气中OPEs和PAEs的垂直浓度分布,以期获得准确的污染物土-气交换趋势.
基于新型被动采样校正技术的塑化剂大气垂直浓度梯度研究
Atmospheric vertical distribution of plasticizers based on a new passive air sampling calibration method
-
摘要: 改进了垂直浓度梯度被动采样器和采样速率校正方法,并利用其考察有机磷酸酯(OPEs)和邻苯二甲酸酯(PAEs)两种塑化剂在土壤垂直方向上的采样速率、浓度分布及土-气交换趋势. 为了更准确地获得采样速率,利用主动采样和添加效能参考物质(DCs)联合校正被动采样速率;得到OPEs和PAEs经主动-DCs联合校正的采样速率分别为0.27—3.16 m3·d−1和0.23—3.25 m3·d−1. 基于主动-DCs联合校正得到的污染物浓度相比单独主动校正的结果差异显著,进而导致化合物土-气扩散趋势发生显著变化. 部分物质如TIBP、TCEP、TCIPP、TPHP、TPPO、DMP、DEP等甚至出现从沉降到挥发的趋势反转. 由于引入DCs校正了环境因素的影响,因此主动-DCs联合校正的被动采样速率能够获得更准确的污染物环境浓度和交换趋势.Abstract: The vertical passive air sampler and its sampling rate calibration method were improved. The sampling rates, distributions and soil-air exchange trends of organophosphate esters (OPEs) and phthalates (PAEs) in the vertical direction of soil surface were studied. In order to obtain a more accurate result, the sampling rate was calculated by a joint calibration using both active sampling and performance reference compounds (DCs). Sampling rates of OPEs and PAEs calibrated by the joint calibration of active sampling-DCs were in the range of 0.27—3.16 m3·d−1 and 0.23—3.25 m3·d−1, respectively. Significant differences were found between the concentrations of compounds obtained by calibration of active sampling-DCs and by only active sampling, as well as their air-soil exchange trends. Some compounds, such as TIBP, TCEP, TCIPP, TPHP, TPPO, DMP and DEP, even showed a reverse air-soil exchange trend from deposition to volatilization. The method using active sampling-DCs joint calibration can obtain more accurate passive air sampling rates, concentrations and exchange trends of contaminants, since the addition of DCs corrects the influence of environmental factors.
-
Key words:
- OPEs /
- PAEs /
- passive air sampling /
- DCs /
- sampling rate.
-
表 1 利用13C12-PCBs的DCs计算采样速率R的参数及结果
Table 1. Parameters and results of sampling rate RDC calculated by the DCs of 13C12-PCBs
DCs KOA K’PUF-A 天数/d
Days高度/cm
Height /CDC,0 a$C^{\rm{corr} }_{\rm{DC} }$ RDC /(m3·d−1) 采样速率实验 13C12-PCB28 7.99 81.4 40 40 71%±1% 1.94±0.08 13C12-PCB52 8.26 120 40 40 73%±1% 2.52±0.13 浓度梯度实验 13C12-PCB28 7.99 81.4 40 5 83%±3% 1.00±0.20 13C12-PCB28 7.99 81.4 40 10 74%±4% 1.57±0.26 13C12-PCB28 7.99 81.4 40 20 67%±1% 2.15±0.03 13C12-PCB28 7.99 81.4 40 40 66%±4% 2.20±0.31 13C12-PCB28 7.99 81.4 40 130 62%±1% 2.52±0.04 a 经稳定DC(13C12-PCB209)校正后的回收率. a Recovery calibrated by the stable DC (13C12-PCB209). 表 2 基于主动采样校正的被动采样速率RA
Table 2. Passive air sampling rate RA based on the active sampling calibration
化合物缩写
Compound abbreviation化合物名称
Compound nameCAS KOA 采样速率RA /(m3·d−1)
Sampling rate RATIBP 磷酸三异丁酯 126-71-6 7.55[41] 2.63 TNBP 磷酸三正丁酯 126-73-8 7.44[42] 1.99 TCEP 磷酸三氯乙酯 115-96-8 7.88[43] 2.76 TCIPP 磷酸三氯异丙酯 13674-84-5 8.52[43] 0.60 TDCIPP 磷酸三二氯异丙酯 13674-87-8 10.0[43] 2.63 TBOEP 磷酸三(2-丁氧基)乙酯 78-51-3 11.34[43] 2.01 TPHP 磷酸三苯酯 115-86-6 10.14[43] 1.19 EHDPP 2-乙基己基二苯基磷酸酯 1241-94-7 10.68[43] 2.44 TEHP 磷酸三辛基酯 78-42-2 11.06[43] 2.44 a TPPO 三苯基氧化膦 791-28-6 11.0[41] 1.90 TMPP 磷酸三甲苯酯 512-56-1 12.0[44] 1.90 b DMP 邻苯二甲酸二甲酯 131-11-3 6.88[43] 2.67 DEP 邻苯二甲酸二乙酯 84-66-2 7.40[43] 1.79 DIBP 邻苯二甲酸二异丁酯 84-69-5 8.31[43] 0.77 c DNBP 邻苯二甲酸二正丁酯 84-74-2 8.70[43] 0.77 BBzP 邻苯二甲酸丁基苄酯 85-68-7 9.64[43] 1.34 d DEHA 己二酸二辛酯 103-23-1 10.8[45] 1.34 DCHP 邻苯二甲酸二环己酯 84-61-7 11.59[46] 0.50 DEHP 邻苯二甲酸二(2-乙基己)酯 117-81-7 11.40[43] 0.73 DNOP 邻苯二甲酸二正辛酯 117-84-0 11.86[43] 0.73 e DEHT 对苯二甲酸二(2-乙基己)酯 6422-86-2 10.53[47] 0.73e a 基于EHDPP的速率; b 基于TPPO的速率; c基于DNBP的速率; d基于DEHA的速率; e基于DEHP的速率.
a based on rate of EHDPP; b based on rate of TPPO; c based on rate of DNBP; d based on rate of DEHA; e based on rate of DEHP.表 3 不同高度PUF中化合物基于主动-DCs联合校正的被动采样速率Rs
Table 3. Passive sampling rate Rs of chemicals in PUF samples from different heights based on the joint calibration of active sampling-DCs
Rs/ (m3·d−1) 5 cm 10 cm 20 cm 40 cm 130 cm TIBP 1.20 1.88 2.57 2.63 3.01 TNBP 0.91 1.42 1.94 1.99 2.28 TCEP 1.26 1.97 2.70 2.76 3.16 TCIPP 0.27 0.43 0.59 0.60 0.69 TDCIPP 1.20 1.87 2.56 2.63 3.01 TBOEP 0.91 1.43 1.96 2.01 2.30 TPHP 0.54 0.85 1.16 1.19 1.36 EHDPP a 1.11 1.74 2.39 2.44 2.80 TEHP 1.11 1.74 2.39 2.44 2.80 TPPO 0.87 1.36 1.86 1.90 2.18 TMPP b 0.87 1.36 1.86 1.90 2.18 DMP 1.22 1.91 2.61 2.67 3.06 DEP 0.82 1.28 1.75 1.79 2.05 DIBP c 0.35 0.55 0.76 0.77 0.89 DNBP 0.35 0.55 0.76 0.77 0.89 BBzP d 0.61 0.96 1.31 1.34 1.53 DEHA 0.61 0.96 1.31 1.34 1.53 DCHP 0.23 0.36 0.49 0.50 0.58 DEHP 0.33 0.52 0.72 0.73 0.84 DNOP e 0.33 0.52 0.72 0.73 0.84 DEHT e 0.33 0.52 0.72 0.73 0.84 a 基于EHDPP的速率; b 基于TPPO的速率; c基于DNBP的速率; d基于DEHA的速率; e基于DEHP的速率.
a based on rate of EHDPP; b based on rate of TPPO; c based on rate of DNBP; d based on rate of DEHA; e based on rate of DEHP. -
[1] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [2] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70. [3] HOFFMAN K, BUTT C M, WEBSTER T F, et al. Temporal trends in exposure to organophosphate flame retardants in the United States [J]. Environmental Science & Technology Letters, 2017, 4(3): 112-118. [4] PANG L, YANG H Q, YANG P J, et al. Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography-tandem mass spectrometry [J]. Food Chemistry, 2017, 229: 445-451. doi: 10.1016/j.foodchem.2017.02.103 [5] MÖLLER A, STURM R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the Polar Regions: Evidence for global occurrence [J]. Environmental Science & Technology, 2012, 46(6): 3127-3134. [6] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286 [7] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China [J]. Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013 [8] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020 [9] HE C, WANG X Y, TANG S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? [J]. Environmental Science & Technology, 2018, 52(21): 12765-12773. [10] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b [11] ZHANG X L, ZOU W, MU L, et al. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China [J]. Journal of Hazardous Materials, 2016, 318: 686-693. doi: 10.1016/j.jhazmat.2016.07.055 [12] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323. doi: 10.1289/ehp.0901332 [13] YUAN S L, LI H, DANG Y, et al. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna [J]. Aquatic Toxicology, 2018, 195: 58-66. doi: 10.1016/j.aquatox.2017.12.009 [14] SAILLENFAIT A M, NDAW S, ROBERT A, et al. Recent biomonitoring reports on phosphate ester flame retardants: A short review [J]. Archives of Toxicology, 2018, 92(9): 2749-2778. doi: 10.1007/s00204-018-2275-z [15] KIMBER I, DEARMAN R J. An assessment of the ability of phthalates to influence immune and allergic responses [J]. Toxicology, 2010, 271(3): 73-82. doi: 10.1016/j.tox.2010.03.020 [16] STAPLES C A, PETERSON D R, PARKERTON T F, et al. The environmental fate of phthalate esters: A literature review [J]. Chemosphere, 1997, 35(4): 667-749. doi: 10.1016/S0045-6535(97)00195-1 [17] XIE Z Y, EBINGHAUS R, TEMME C, et al. Occurrence and air-sea exchange of phthalates in the Arctic [J]. Environmental Science & Technology, 2007, 41(13): 4555-4560. [18] NET S, DUMOULIN D, EL-OSMANI R, et al. Case study of PAHs, Me-PAHs, PCBs, phthalates and pesticides contamination in the Somme river water, France [J]. International Journal of Environmental Research, 2014, 8(4): 1159-1170. [19] GAO D W, LI Z, WEN Z D, et al. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China [J]. Chemosphere, 2014, 95: 24-32. doi: 10.1016/j.chemosphere.2013.08.009 [20] LÜ H, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: A review [J]. Environmental Research, 2018, 164: 417-429. doi: 10.1016/j.envres.2018.03.013 [21] MEEKER J D, SATHYANARAYANA S, SWAN S H. Phthalates and other additives in plastics: Human exposure and associated health outcomes [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 2097-2113. doi: 10.1098/rstb.2008.0268 [22] MCLACHLAN J A, SIMPSON E, MARTIN M. Endocrine disrupters and female reproductive health [J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2006, 20(1): 63-75. [23] MELYMUK L, BOHLIN P, SÁŇKA O, et al. Current challenges in air sampling of semivolatile organic contaminants: Sampling artifacts and their influence on data comparability [J]. Environmental Science & Technology, 2014, 48(24): 14077-14091. [24] 朱青青, 刘国瑞, 张宪, 等. 大气中持久性有机污染物的采样技术进展 [J]. 生态毒理学报, 2016, 11(2): 50-60. ZHU Q Q, LIU G R, ZHANG X, et al. Progress on the sampling techniques of persistent organic pollutants in atmosphere [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 50-60(in Chinese).
[25] GÓRECKI T, NAMIEŚNIK J. Passive sampling [J]. TrAC Trends in Analytical Chemistry, 2002, 21(4): 276-291. doi: 10.1016/S0165-9936(02)00407-7 [26] KLÁNOVÁ J, KOHOUTEK J, HAMPLOVÁ L, et al. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations [J]. Environmental Pollution, 2006, 144(2): 393-405. doi: 10.1016/j.envpol.2005.12.048 [27] WENNRICH L, POPP P, HAFNER C. Novel integrative passive samplers for the long-term monitoring of semivolatile organic air pollutants [J]. Journal of Environmental Monitoring, 2002, 4(3): 371-376. doi: 10.1039/b200762m [28] CHAEMFA C, BARBER J L, GOCHT T, et al. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides [J]. Environmental Pollution, 2008, 156(3): 1290-1297. doi: 10.1016/j.envpol.2008.03.016 [29] BIRGÜL A, KURT-KARAKUS P B, ALEGRIA H, et al. Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment [J]. Chemosphere, 2017, 168: 1345-1355. doi: 10.1016/j.chemosphere.2016.11.124 [30] MOECKEL C, HARNER T, NIZZETTO L, et al. Use of depuration compounds in passive air samplers: Results from active sampling-supported field deployment, potential uses, and recommendations [J]. Environmental Science & Technology, 2009, 43(9): 3227-3232. [31] SÖDERSTRÖM H S, BERGQVIST P A. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds [J]. Environmental Science & Technology, 2004, 38(18): 4828-4834. [32] GOUIN T, HARNER T, BLANCHARD P, et al. Passive and active air samplers as complementary methods for investigating persistent organic pollutants in the great lakes basin [J]. Environmental Science & Technology, 2005, 39(23): 9115-9122. [33] HARNER T, BIDLEMAN T F, JANTUNEN L M, et al. Soil-air exchange model of persistent pesticides in the United States cotton belt [J]. Environmental Toxicology and Chemistry, 2001, 20(7): 1612-1621. [34] PARNIS J M, MACKAY D. Multimedia Environmental Models[M]. Third edition. | Boca Raton, FL: CRC Press, 2020. [35] MEIJER S N, SHOEIB M, JANTUNEN L M M, et al. Air−Soil exchange of organochlorine pesticides in agricultural soils. 1. field measurements using a novel in situ sampling device [J]. Environmental Science & Technology, 2003, 37(7): 1292-1299. [36] ZHANG Y Z, DENG S X, LIU Y N, et al. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air [J]. Environmental Pollution, 2011, 159(3): 694-699. doi: 10.1016/j.envpol.2010.12.002 [37] BARTKOW M E, BOOIJ K, KENNEDY K E, et al. Passive air sampling theory for semivolatile organic compounds [J]. Chemosphere, 2005, 60(2): 170-176. doi: 10.1016/j.chemosphere.2004.12.033 [38] SHOEIB M, HARNER T. Characterization and comparison of three passive air samplers for persistent organic pollutants [J]. Environmental Science & Technology, 2002, 36(19): 4142-4151. [39] BOHLIN P, AUDY O, ŠKRDLÍKOVÁ L, et al. Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): A critical evaluation of performance and limitations of polyurethane foam (PUF) disks [J]. Environmental Science. Processes & Impacts, 2014, 16(3): 433-444. [40] STRANDBERG B, SUNESSON A L, SUNDGREN M, et al. Field evaluation of two diffusive samplers and two adsorbent media to determine 1, 3-butadiene and benzene levels in air [J]. Atmospheric Environment, 2006, 40(40): 7686-7695. doi: 10.1016/j.atmosenv.2006.08.005 [41] WANG Q Z, ZHAO H X, WANG Y, et al. Determination and prediction of octanol-air partition coefficients for organophosphate flame retardants [J]. Ecotoxicology and Environmental Safety, 2017, 145: 283-288. doi: 10.1016/j.ecoenv.2017.07.040 [42] YAMAN B, DUMANOGLU Y, ODABASI M. Measurement and modeling the phase partitioning of organophosphate esters using their temperature-dependent octanol-air partition coefficients and vapor pressures [J]. Environmental Science & Technology, 2020, 54(13): 8133-8143. [43] RODGERS T F M, OKEME J O, PARNIS J M, et al. Novel Bayesian method to derive final adjusted values of physicochemical properties: Application to 74 compounds [J]. Environmental Science & Technology, 2021, 55(18): 12302-12316. [44] SÜHRING R, WOLSCHKE H, DIAMOND M L, et al. Distribution of organophosphate esters between the gas and particle phase-model predictions vs measured data [J]. Environmental Science & Technology, 2016, 50(13): 6644-6651. [45] SALTHAMMER T, GRIMME S, STAHN M, et al. Quantum chemical calculation and evaluation of partition coefficients for classical and emerging environmentally relevant organic compounds [J]. Environmental Science & Technology, 2022, 56(1): 379-391. [46] DODSON R E, CAMANN D E, MORELLO-FROSCH R, et al. Semivolatile organic compounds in homes: Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors [J]. Environmental Science & Technology, 2015, 49(1): 113-122. [47] SALTHAMMER T, SCHRIPP T. Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs [J]. Atmospheric Environment, 2015, 106: 467-476. doi: 10.1016/j.atmosenv.2014.09.050 [48] TSAPAKIS M, STEPHANOU E G. Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere [J]. Environmental Science & Technology, 2007, 41(23): 8011-8017. [49] ZHANG Z G, LIN G L, LIN T, et al. Occurrence, behavior, and fate of organophosphate esters (OPEs) in subtropical paddy field environment: A case study in Nanning City of South China [J]. Environmental Pollution, 2020, 267: 115675. doi: 10.1016/j.envpol.2020.115675 [50] CAO D D, LV K, GAO W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2019, 169: 383-391. doi: 10.1016/j.ecoenv.2018.11.038 [51] HE M J, LU J F, WEI S Q. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, Western China: Concentrations, composition profiles, partition and human exposure [J]. Environmental Pollution, 2019, 244: 388-397. doi: 10.1016/j.envpol.2018.10.085 [52] HE M J, LU J F, WANG J, et al. Phthalate esters in biota, air and water in an agricultural area of western China, with emphasis on bioaccumulation and human exposure [J]. Science of the Total Environment, 2020, 698: 134264. doi: 10.1016/j.scitotenv.2019.134264 [53] CHEN Y, LV D, LI X H, et al. PM2.5-bound phthalates in indoor and outdoor air in Beijing: Seasonal distributions and human exposure via inhalation [J]. Environmental Pollution, 2018, 241: 369-377. doi: 10.1016/j.envpol.2018.05.081 [54] LIU D, LIN T, SHEN K J, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities [J]. Environmental Science & Technology, 2016, 50(18): 9846-9854. [55] OUYANG X Z, XIA M, SHEN X Y, et al. Pollution characteristics of 15 gas- and particle-phase phthalates in indoor and outdoor air in Hangzhou [J]. Journal of Environmental Sciences, 2019, 86: 107-119. doi: 10.1016/j.jes.2019.05.008 [56] HUCKINS J N, PETTY J D, LEBO J A, et al. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices [J]. Environmental Science & Technology, 2002, 36(1): 85-91.