-
四环素(TC)常被用作饲料添加剂应用于畜牧业及水产养殖业[1-2],因在动物体内吸收率较低,常以原药和代谢产物的形式随粪尿排出体外,造成水体及土壤环境污染[3]. 目前,常规的处理工艺无法有效去除废水中抗生素,因此导致TC能够在不同的水源甚至饮用水中被检测到[4-5]. TC在地表水中的浓度可达μg∙L−1级别[6],尽管浓度较低,但同样能增强细菌耐药性,从而对生态环境和人类健康造成潜在威胁[7-8].
地表水中的可溶性有机物可通过光化学反应产生H2O2[9],而水体中H2O2与有机污染物的氧化还原反应有密切关系,能够影响化学物质的降解转化和生态效应[10]. 水中的Cu2+、Fe2+等过渡金属离子可催化H2O2分解为∙OH(E0=2.80 V)[11],而自然水体的沉淀物中广泛存在过渡金属氧化物,能够缓慢的释放出金属离子催化H2O2产生活性物质形成类Fenton反应降解水中有机物[12]. 水合氧化铁(HFO)广泛分布于沉积物和土壤中[13],具有很强的亲水性、较高的表面羟基密度和电子传输[14] 等特性. 现有关于HFO对水中污染物的去除研究多集中于吸附作用方面[15-16],鲜有关于水合氧化铁在水环境中催化H2O2降解抗生素污染物方面的报道.
本研究以HFO为材料,模拟其催化H2O2降解TC反应过程,优化反应条件并探索HFO/H2O2体系的潜在氧化机制,同时采用超高效液相色谱串联质谱(LC-TOF-MS/MS)的分析结果,鉴定TC代谢转化产物并提出了TC可能的降解途径. 研究结果可为探讨自然水体中HFO催化降解TC提供理论参考,也可为含TC废水处理提供技术支撑.
水合氧化铁催化类Fenton反应降解水中四环素
Degradation of tetracycline in aqueous solution via a Fenton-like reaction catalyzed by hydrous ferric oxide
-
摘要: 环境中抗生素污染及其降解过程是当前研究的热点问题,为探讨自然过程中铁氧化物(水合氧化铁,HFO)在氧化剂(过氧化氢,H2O2)存在条件下对四环素(TC)的降解作用及TC代谢途径,采用湿沉淀法合成HFO,研究了其催化H2O2高效降解水中TC的效果,同时通过X射线衍射(XRD)、N2吸附-脱附、光电子能谱仪(XPS)、傅立叶红外-拉曼光谱仪(FTIR)等手段对样品进行了表征,阐明了HFO催化H2O2降解TC的机理. 结果表明,HFO具有介孔结构,HFO/H2O2体系可在180 min内去除水中90%的TC,3次连续循环后去除率保持75%,表现出良好的催化活性和稳定性;HFO在催化过程中部分Fe—O官能团转变成Fe—OH官能团,∙
${\rm{O}}_2^-$ 为主要活性物质;TC降解过程中出现9种中间产物,说明TC主要是通过羟基化、去甲基、去酰胺基和开环等途径被降解成小分子化合物.-
关键词:
- 水合氧化铁 /
- 非均相Fenton反应 /
- 四环素 /
- 降解途径
Abstract: Antibiotic pollution in the aquatic environment and the degradation pathways of antibiotic has become a hot topic. Hydrous ferric oxide (HFO) was synthesized by wet precipitation method to simulate the catalytic degradation of tetracycline (TC) with H2O2. The physicochemical properties of the HFO were characterized by XRD, N2 adsorption-desorption isotherm, XPS, and FTIR to explore the degradation mechanism. The results showed that HFO exhibited a mesoporous structure. The removal rate of TC in HFO/H2O2 system within 180 min reached 90%, and the degradation rates of TC remained 75% after 3 cycles. The main active species of HFO/H2O2 system was ·${\rm{O}}_2^- $ , which was confirmed by electron spin resonance (ESR) analysis and radical trapping experiments. Nine intermediate products were identified via the liquid chromatography tandem mass spectrometry (LC-TOF-MS) analysis during TC degradation process which indicated that hydroxylation, demethylation, deamidate and break of benzene ring were the main pathways for the degradation of TC. -
-
[1] 孙晓雯, 李振炫, 黄利东, 等. 邻苯二甲酸及丙二酸对方解石吸附四环素的影响 [J]. 环境化学, 2019, 38(12): 2746-2756. doi: 10.7524/j.issn.0254-6108.2019011506 SUN X W, LI Z X, HUANG L D, et al. Effect of organic dicarboxylic acid on the adsorption of tetracycline by calcite [J]. Environmental Chemistry, 2019, 38(12): 2746-2756(in Chinese). doi: 10.7524/j.issn.0254-6108.2019011506
[2] 詹杰, 魏树和. 四环素在土壤和水环境中的分布及其生态毒性与降解 [J]. 生态学报, 2015, 35(9): 2819-2825. ZHAN J, WEI S H. The distribution and eco-toxicology of tetracycfine in soil and water environment and its degradation: A review [J]. Acta Ecologica Sinica, 2015, 35(9): 2819-2825(in Chinese).
[3] CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste [J]. Journal of Environmental Quality, 2009, 38(3): 1086-1108. doi: 10.2134/jeq2008.0128 [4] 丁剑楠, 刘舒娇, 邹杰明, 等. 太湖表层水体典型抗生素时空分布和生态风险评价 [J]. 环境科学, 2021, 42(4): 1811-1819. DING J N, LIU S J, ZOU J M, et al. Spatiotemporal distributions and ecological risk assessments of typical antibiotics in surface water of Taihu Lake [J]. Environmental Science, 2021, 42(4): 1811-1819(in Chinese).
[5] WANG L F, LI H, DANG J H, et al. Occurrence, distribution, and partitioning of antibiotics in surface water and sediment in a typical tributary of Yellow River, China [J]. Environmental Science and Pollution Research, 2021, 28(22): 28207-28221. doi: 10.1007/s11356-021-12634-1 [6] CHEN Y Y, MA Y L, YANG J, et al. Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway [J]. Chemical Engineering Journal, 2017, 307: 15-23. doi: 10.1016/j.cej.2016.08.046 [7] WANG M J, SONG Y M, ZHANG H J, et al. Insights into the mutual promotion effect of graphene oxide nanoparticles and tetracycline on their transport in saturated porous media [J]. Environmental Pollution, 2021, 268: 115730. doi: 10.1016/j.envpol.2020.115730 [8] JI L L, WAN Y Q, ZHENG S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption [J]. Environmental Science & Technology, 2011, 45(13): 5580-5586. [9] COOPER W J, ZIKA R G, PETASNE R G, et al. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight [J]. Environmental Science & Technology, 1988, 22(10): 1156-1160. [10] 魏西会, 刘素美, 张经, 等. 天然水体中微量过氧化氢的测定方法 [J]. 海洋科学, 2008, 32(10): 96-100. WEI X H, LIU S M, ZHANG J, et al. Measurement methods of hydrogen peroxide determination in natural waters [J]. Marine Sciences, 2008, 32(10): 96-100(in Chinese).
[11] 彭建彪, 张耀宗, 张亚, 等. 一种席夫碱铜配合物催化过氧化氢氧化降解三氯生 [J]. 环境化学, 2019, 38(5): 977-984. PENG J B, ZHANG Y Z, ZHANG Y, et al. Oxidative removal of triclosan with hydrogen peroxide catalyzed by a Schiff base Cu(Ⅱ)-complex [J]. Environmental Chemistry, 2019, 38(5): 977-984(in Chinese).
[12] 王徐越, 孙振亚, 谢裕兴, 等. “光催化铁循环”作用对自组装TiO2-FeOOH复合膜活性的影响 [J]. 环境化学, 2018, 37(11): 2555-2564. doi: 10.7524/j.issn.0254-6108.2018010204 WANG X Y, SUN Z Y, XIE Y X, et al. “Photocatalysis Iron Cycling” effect on the photocatalytic activity of self-assembled TiO2-FeOOH nano-films [J]. Environmental Chemistry, 2018, 37(11): 2555-2564(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010204
[13] ZHANG H L, ELSKENS M, CHEN G X, et al. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs [J]. Chemosphere, 2019, 225: 352-359. doi: 10.1016/j.chemosphere.2019.03.068 [14] WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016 [15] WENG Y T, VEKEMAN J, ZHANG H L, et al. Unravelling phosphate adsorption on hydrous ferric oxide surfaces at the molecular level [J]. Chemosphere, 2020, 261: 127776. doi: 10.1016/j.chemosphere.2020.127776 [16] HAN M F, WANG Y W, ZHAN Y H, et al. Efficiency and mechanism for the control of phosphorus release from sediment by the combined use of hydrous ferric oxide, calcite and zeolite as a geo-engineering tool [J]. Chemical Engineering Journal, 2022, 428: 131360. doi: 10.1016/j.cej.2021.131360 [17] GU C, KARTHIKEYAN K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(8): 2660-2667. [18] HOFMANN A, PELLETIER M, MICHOT L, et al. Characterization of the pores in hydrous ferric oxide aggregates formed by freezing and thawing [J]. Journal of Colloid and Interface Science, 2004, 271(1): 163-173. doi: 10.1016/j.jcis.2003.11.053 [19] 马黎, 赵丽, 王世敏, 等. 分级微纳结构TiO2空心球的制备及其在DSSC中的应用 [J]. 中国科学:化学, 2012, 42(7): 1022-1028. doi: 10.1360/032011-584 MA L, ZHAO L, WANG S M, et al. Preparation of TiO2 hollow spheres with hierarchical micro/nano architectures and its application in dye sensitized solar cells [J]. Scientia Sinica Chimica), 2012, 42(7): 1022-1028(in Chinese). doi: 10.1360/032011-584
[20] 蒋琦, 姜哲昊, 陈荣, 等. Fe(Ⅲ)-Salen功能化纳米Fe3O4复合材料的合成及其对三氯苯的催化降解性能 [J]. 环境化学, 2017, 36(8): 1744-1751. doi: 10.7524/j.issn.0254-6108.2017010901 JIANG Q, JIANG Z H, CHEN R, et al. Preparation of Fe(Ⅲ)-Salen-functionalized nano-Fe3O4 magnetic composite and its catalytic degradation of 2, 4, 6-trichlorophenol [J]. Environmental Chemistry, 2017, 36(8): 1744-1751(in Chinese). doi: 10.7524/j.issn.0254-6108.2017010901
[21] ZANG J, WU T T, SONG H H, et al. Removal of tetracycline by Hydrous ferric oxide: Adsorption kinetics, isotherms, and mechanism [J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4580. doi: 10.3390/ijerph16224580 [22] SHI Y J, XING S F, WANG X H, et al. Changes of the reactor performance and the properties of granular sludge under tetracycline (TC) stress [J]. Bioresource Technology, 2013, 139: 170-175. doi: 10.1016/j.biortech.2013.03.037 [23] GUAN R P, YUAN X Z, WU Z B, et al. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate [J]. Separation and Purification Technology, 2019, 212: 223-232. doi: 10.1016/j.seppur.2018.11.019 [24] 孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响 [J]. 复合材料学报, 2021, 38(8): 2595-2604. doi: 10.13801/j.cnki.fhclxb.20201019.002 SUN J, XU Z Y, ZHAO P G, et al. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer-supported composite adsorbents [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2595-2604(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201019.002
[25] ZHU W X, WANG J D, WANG Y L, et al. Study on sulfadimethoxine removal from aqueous solutions by hydrous ferric oxides [J]. Water Science and Technology, 2016, 74(5): 1136-1142. doi: 10.2166/wst.2016.246 [26] GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B [J]. Chemical Engineering Journal, 2017, 321: 222-232. doi: 10.1016/j.cej.2017.03.117 [27] CAI C, KANG S P, XIE X J, et al. Efficient degradation of bisphenol A in water by heterogeneous activation of peroxymonosulfate using highly active cobalt ferrite nanoparticles [J]. Journal of Hazardous Materials, 2020, 399: 122979. doi: 10.1016/j.jhazmat.2020.122979 [28] WANG W, ZHU Q, QIN F, et al. Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid [J]. Chemical Engineering Journal, 2018, 333: 226-239. doi: 10.1016/j.cej.2017.08.065 [29] PU M J, NIU J F, BRUSSEAU M L, et al. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole [J]. Chemical Engineering Journal, 2020, 394: 125044. doi: 10.1016/j.cej.2020.125044 [30] PENG X M, WU J Q, ZHAO Z L, et al. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe-Nx sites [J]. Chemical Engineering Journal, 2022, 427: 130803. doi: 10.1016/j.cej.2021.130803 [31] LI J, ZHU J L, FANG L Z, et al. Enhanced peroxymonosulfate activation by supported microporous carbon for degradation of tetracycline via non-radical mechanism [J]. Separation and Purification Technology, 2020, 240: 116617. doi: 10.1016/j.seppur.2020.116617 [32] XIN S S, MA B R, LIU G C, et al. Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light [J]. Journal of Environmental Management, 2021, 285: 112093. doi: 10.1016/j.jenvman.2021.112093 [33] DU C Y, ZHANG Z, TAN S Y, et al. Construction of Z-scheme g-C3N4/MnO2/GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation [J]. Environmental Research, 2021, 200: 111427. doi: 10.1016/j.envres.2021.111427