-
邻苯二甲酸酯(phthalate esters,PAEs)作为增塑剂,被大量添加在塑料、涂料、化肥和化妆品等商品中. 根据信息处理服务公司(Information handling services,IHS)的一份报告,2014年全球生产和消费的增塑剂为840万吨,其中PAEs类占了70%[1]. 预计2017—2022年全球对PAEs的需求将以年均1.3%的速度增长[2]. 目前,PAEs在中国每年的生产量和消费量大约为130万吨,占全球总量的20%[3]. 鉴于PAEs不是通过稳定的化学键与产品结合,此类化合物很容易通过多种方式释放到环境中,例如工业和市政废水排放、固体废物处置和浸出、产品使用过程中的迁移和挥发[4-6]. 研究表明全球大多数人群均已暴露于PAEs中,并且已在人体血清和脂肪中发现PAEs的存在[7]. 人体暴露于PAEs的主要途径为食物和饮用水的摄入[8-9],其中饮用水作为每日必须摄入的介质,其中含有的PAEs对人体的影响近年来受到了广泛关注[5,10-11].
邻苯二甲酸二甲酯(dinethyl phthalate,DMP)、邻苯二甲酸二乙酯(diethyl phthalate,DEP)、邻苯二甲酸二丁酯(di-n-phthalate,DBP)、邻苯二甲酸丁苄酯(butylbenzyl phthalate,BBP)、邻苯二甲酸二(2-乙基己基)酯(di(2-ethylhexyl)phthalate,DEHP)和邻苯二甲酸二辛酯(di-n-octyl phthalate,DNOP)已被联合国列入优先管控污染物[12],DMP、DBP和DEHP也已被列入我国水环境优先控制污染物黑名单,但均未列入我国2017年和2020年出台的两批《优先控制化学品名录》中. 我国《地表水环境质量标准》(GB3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《城市供水水质标准》(CJ/T206-2005)中也规定了部分PAEs的限值. DEHP由于存在最多的健康和环境问题,已被归类为国际癌症研究机构(IARC)确定的可能对人类致癌的物质[13]. 尽管近几年来,PAEs在各类饮用水环境中的检出引起了人们的重视,研究范围涉及水源水、自来水和瓶装水等样品,但针对江苏省沿江城市居民住宅自来水的研究几近空白.
本研究选取江苏省不同区域居民自来水中的PAEs作为研究对象,分析PAEs的污染特征,检验加热煮沸过程对自来水中的PAEs是否具有去除效果,评估经口摄入的人体健康风险,以期为全省饮用水健康安全管控提供科学支撑.
-
于2017年3月至4月,分别采集江苏省沿江8市(南京、无锡、常州、苏州、南通、扬州、镇江、泰州)居民住宅自来水,采样点位如图1所示. 每个城市选取5户居民进行取样(n=40),采样体积为2 L,所有水样均置于棕色玻璃瓶中,4 ℃避光保存,并于24 h内运回实验室分析. 为了研究加热煮沸过程对水中PAEs的去除效果,从每个城市选取两份水样在实验室煮沸,冷却至室温后保存待测(n=16).
-
超高效液相色谱/串联质谱(Waters Acquity/TQD),Masslynx工作站,ODS液相色谱柱(waters, BEH C18, 50 mm×2.1 mm, 1.7 μm);Milli-Q超纯水器(美国Millipore公司);HLB玻璃材质固相萃取柱(200mg/5cc,Waters,美国).
6种PAEs(DMP、DEP、DBP、BBP、DEHP和DNOP)混合标准品储备液,质量浓度为100 μg·mL−1(德国Dr. Ehrenstorfer公司),纯度在98.5%—99.5%之间;替代标准物氘代邻苯二甲酸二正丁酯(d4-DBP)和内标物氘代邻苯二甲酸二乙酯(d4-DEP),质量浓度均为100 μg·mL−1(美国Accustandard公司),实验用甲醇、正己烷、乙腈、丙酮等试剂均为农药级或LC-MS级.
-
取1L水样,加入回收率指示物(d4-DBP),以10 mL·min -1的流速通过HLB固相萃取柱. 上样前依次用10 mL乙醚、5 mL乙腈和5 mL超纯水活化萃取柱. 水样过柱后,用高纯氮气吹干HLB小柱,再用体积95:5的乙醚-乙腈溶液进行洗脱,收集洗脱液,氮吹浓缩至近干,用乙腈定容至1 mL,加入内标化合物(d4-DEP)后置于进样瓶中,等待进样.
-
本研究采用超高效液相色谱/串联质谱仪(Waters Acquity/TQD)、BEH C18色谱柱(50 mm×2.1 mm,1.7 μm)对目标化合物进行定性和定量分析. 进样量为10 μL,流动相为水(A相,含0.2%甲酸)和甲醇(B相),流速为0.4 mL·min−1,色谱柱温度为40 ℃,流动相梯度设置如下: 0 min,A相比例为90%,保持2 min; 2—12 min,A相比例由90%降为0%,保持4 min; 16—18 min,A相比例恢复至60%. 质谱采用电喷雾离子源(ESI),正离子扫描方式,多离子反应监测(MRM)模式,监测条件见表1. 离子源温度120 ℃,毛细管电压4.0 kV,去溶剂温度400 ℃.
-
实验过程中发现采用液质联用分析PAEs时,存在较大的系统空白干扰,为解决该问题,参考已有研究方法并进行优化完善[14]:在液相输液泵和进样阀之间加入一根吸附分配柱,通过六通阀切换,流动相经过该分配柱后,进入定量环,将定量环中样品带入色谱柱进行分离分析; 由于色谱系统产生的干扰经过吸附分配柱后可以进行短暂的吸附保留,再进入色谱柱,而定量环中的样品则直接经过色谱柱被吸附保留. 因此,系统产生的干扰和目标化合物可以产生出峰时间差,从而减少误差干扰.
实验过程中避免使用塑料和橡胶器皿,所使用的玻璃容器均在马弗炉中400 ℃高温烘烤4 h后经正己烷、丙酮和乙腈清洗. 所有水样均添加回收率标样,每5份样品添加1个程序空白. 自来水中6种PAEs的加标回收率范围为86.5%—109%. 以3倍空白水样加标样测定结果的标准偏差计算各种物质的方法检出限(detection limit,DL),6种PAEs化合物的DL范围为0.1—0.5 μg·L−1.
-
本研究采用美国环保署(USEPA)推荐的水环境健康风险评价模型,分别评估了通过饮用水途径暴露的DEHP致癌风险和∑PAEs非致癌风险. 通过饮用水摄入的日均PAEs剂量(CDI)可以通过公式(1)计算:
式中, CDI为每天通过饮水摄入的PAEs平均剂量(mg·kg−1·d−1); C为饮用水中PAEs的含量(mg·L−1); IR为每日饮用水的摄入量(取2 L·d−1); BW为人均体重(取60 kg).
通过饮用水途径暴露的DEHP致癌风险(RDEHP)通过公式(2)计算:
式中,SF为经口摄入致癌斜率因子,DEHP的SF值为0.014 kg·d·mg−1.
PAEs非致癌风险采用危险指数(HI)进行评估,通过公式(3)计算:
式中,RfD为法规或指南中给出的PAEs非致癌危害的参考剂量(mg·kg−1·d−1),DEP、BBP、DBP、DNOP和DEHP的RfD分别为0.8、0.2、0.1、0.01、0.02 mg·kg−1·d−1,DMP缺少RfD参考剂量数据,HI小于1表示处于安全范围.
-
江苏省8个城市居民自来水水样中PAEs检出率为100%,PAEs含量如图2所示,∑PAEs检出范围为4.10—14.23 μg·L−1,平均值为(8.43±2.76)μg·L−1,其中镇江市自来水中∑PAEs含量最高,达到(10.76±2.10)μg·L−1,苏州市其次((9.39±2.08)μg·L−1),泰州市最低((7.14±3.39)μg·L−1).
DBP在所有水样中均有检出,且平均含量最高((2.10±1.65)μg·L−1),17.5%的自来水样品中DBP浓度超过《生活饮用水规范》(GB5749-2006)限值(3 μg·L−1). 所有自来水样品中DEHP浓度均未超过《生活饮用水规范》(GB5749-2006)与世界卫生组织(WHO)《饮用水水质准则》限值(8 μg·L−1)或美国瓶装水中的标准限值(6 μg·L−1)[15],说明江苏省部分城市居民自来水已受到PAEs污染,存在一定的潜在健康风险,该结论与我国其他已有研究结果相似[16-17]. 然而,根据美国环保署1997年出台的饮用水法规和健康建议,由于DEHP致癌性,美国对DEHP的最终管理目标是零暴露风险[18]. 同时有研究表明,长期饮用含有微量PAEs的水,即使其含量满足饮用水标准,也可能对人体健康造成危害[19-20]. 从组成成分来看,DBP和DMP是造成自来水中PAEs含量差异的最主要因素.
表2列出了全球其他国家和地区饮用水中PAEs的污染情况,本研究结果与沙特阿拉伯(0.2—30.8 μg·L−1)和墨西哥(0.6—45.1 μg·L−1)等国家瓶装水中PAEs的含量相近[5],比葡萄牙(0.02—0.35 μg·L−1)、法国(0.03—0.35 μg·L−1)和伊朗(0.07—0.52 μg·L−1)等西方国家自来水中浓度高近两个数量级[11,21-22],比我国天津市居民饮用水((2.41±0.39)μg·L−1)高一个数量级[23],但低于河南省的研究结果(0.24—82.2 μg·L−1)[24],这与河南饮用水取样点位受到污染河流水平扩散、垂直渗透和雨水溶解有关. 已有研究表明江苏居民自来水中PAEs来源广泛,包括水源水赋存、生产过程带入和塑料管道析出等[25].
图3比较了自来水与煮沸后冷却至室温的水样中PAEs的浓度,结果与其他研究类似[32],加热或煮沸后的自来水中,PAEs含量有所下降,但下降程度有限,其中DBP平均降低程度最高(21.6%),其次是BBP(18.6%),DNOP最低(9.1%). 值得注意的是,有研究报道,若将开水立刻倒入塑料杯,高温会加速塑料中PAEs的析出,导致饮用水中PAEs含量显著升高[23].
-
江苏省不同地区通过饮用水摄入导致的DEHP致癌风险如图4所示,所有自来水和煮沸冷却水中DEHP的致癌风险均低于USEPA推荐的健康风险可接受最大水平(1×10−6),其中苏州、南通和泰州水样中DEHP致癌风险较高. 煮沸后的自来水在一定程度上降低了DEHP的致癌风险,降幅达到78%. 但在高温情况下DEHP会从塑料包装中迁移至水体,导致DEHP的致癌风险有超过1×10−6的可能[23,33],另外随着储存时间的增加,水中DEHP的含量也会随之上升[22]. 因此,长期饮用存放在高温环境中的瓶装水,例如高温天气车内长时间放置的瓶装水,对人体健康危害极大,应引起高度重视.
-
5种PAEs(DEP、BBP、DBP、DNOP和DEHP)的非致癌风险采用危险指数如图5和表3所示. 结果显示,江苏省8个城市自来水中∑PAEs的HI范围在8.26×10−3(无锡市)—3.25×10−2(南通市),均远小于1,表明江苏省不同地区自来水中PAEs摄入对人体造成的非致癌健康风险可忽略不计. 煮沸后的自来水PAEs非致癌风险与致癌风险变化情况类似,均有不同程度的降低,该结果与Wang[23]和Li[20]在天津市和黄海沿海城市的研究结果一致. DBP在自来水中占总非致癌风险的47.3%,而BBP和DEHP仅占1.60%和1.58%,该结果与天津市自来水中PAEs的非致癌风险占比(DEHP占比最大)有较大差别[23],主要原因是尽管DEHP毒性最大,但在江苏省8个城市自来水样中DEHP的含量相对较低,因此对∑PAEs非致癌风险贡献较小.
除了通过饮用水的暴露方式,PAEs还可以通过食物摄入和皮肤接触等途径对人体健康造成负面影响. 此外,自来水中可能存重金属、农药、消毒副产物和个人护理产品等多种污染物,它们之间的协同效应可能会对人体健康产生多重负面影响. 因此,建议进一步研究并持续监测这些化学物质在不同条件下的自来水和瓶装水中的赋存特征,以期更好地管控生态环境健康风险.
-
(1)江苏省8个城市40份居民自来水中均检出了PAEs,检出范围为4.10—14.23 μg·L−1,其中镇江市自来水中PAEs的含量最高. 与其他国家和地区相比,本研究区域自来水中PAEs含量处于中等偏上水平,其污染来源有待进一步明确.
(2)与自来水相比,煮沸后冷却至室温的水样在一定程度上降低了PAEs浓度和此类化合物的致癌风险与非致癌风险.
(3)研究区域内DEHP致癌风险指数小于最大可接受风险水平(1×10−6),∑PAEs的非致癌风险指数远小于1,但部分水样中DBP含量超过《生活饮用水规范》(GB5749-2006)限值,存在潜在的生态环境健康风险.
江苏省自来水中邻苯二甲酸酯的污染特征及风险评估
Pollution characteristics and health risk assessment of phthalate esters in tap water from Jiangsu Province
-
摘要: 为了解江苏省不同地区自来水中邻苯二甲酸酯(phthalate esters,PAEs)污染特征与风险水平,采用固相萃取-超高效液相色谱-三重四极杆质谱联用(SPE-UPLC-MS/MS)定性定量分析法,对江苏省沿江8市40户居民自来水中6种优控PAEs进行检测,分析了PAEs的污染水平,并开展人体健康风险评估. 结果表明,PAEs在40份水样中均有检出,∑PAEs检出范围为4.10—14.23 μg·L−1,平均值为(8.43±2.76)μg·L−1. DBP和DMP是自来水中PAEs的主要组成成分,约占∑PAEs总浓度的50%,其中DBP检出率为100%. 与全球其他国家和地区相比,江苏省居民自来水中PAEs浓度处于中等偏上水平. 加热煮沸过程可以降低自来水中PAEs浓度,但程度有限. 健康风险评估结果显示,研究区域内DEHP的致癌风险指数均小于最大可接受风险水平(1×10−6),∑PAEs的非致癌风险指数处于8.18×10−3—1.92×10−2,远小于1. 江苏省沿江8市居民自来水已受到不同程度的PAEs污染,且有部分点位DBP浓度超过《生活饮用水规范》(GB5749-2006)限值(3 μg·L−1),存在潜在的健康风险.Abstract: Jiangsu were overall high compared with other countries and regions around the world. Heating and boiling process could reduce the PAEs content in tap water, but to a limited extent. The results of the health risk assessment showed that the carcinogenic risk indexes of DEHP in this study area were overall below the maximum acceptable risk level of 1×10−6. The non-carcinogenic risk indexes of ∑PAEs were in the range of 8.18×10−3—1.92×10−2, much lower than 1. To conclude, tap water from 8 cities along the Yangtze River in Jiangsu Province has been polluted by PAEs by varying degrees. In addition, the concentration of DBP at some points has exceeded the limit (3 μg·L−1) of ‘Standard for Drinking Water Quality’(GB5749-2006), which has posed a potential health risk to human beings.
-
Key words:
- phthalate esters /
- tap water /
- health risk assessment /
- Jiangsu Province.
-
邻苯二甲酸酯(Phthalates,PAEs)是重要的工业添加剂之一,主要用作塑料产品制造和加工的增塑剂[1]. PAEs与塑料分子之间没有化学键作用,仅通过范德华力(分子间力)连接在一起,相互作用较弱,因此很容易从塑料制品中泄露进入环境[2]. PAEs危害很大,不仅其生殖毒性类似于雌性激素, 还具有致畸致癌致突变的三致毒性, 可通过呼吸、饮食和皮肤接触进入人体, 危害人体健康[3]. 近年来,随着工业生产的迅速发展和塑料制品的广泛使用,PAEs已成为全球学界最关注的新兴有机污染物之一[4-6].
在我国,PAEs的消费量超过每年87万吨,占聚氯乙烯生产中增塑剂用量的90%[7],预计消费量还会增加[8]. PAEs目前使用较多的主要有14种[9],其中邻苯二甲酸(2-乙基己基)酯(di-(2-ethylhexyl)-phthalate,DEHP)是农业土壤和蔬菜中最常检测到的PAEs化合物之一,其浓度在环境介质中高于大多数其他PAEs化合物[10],是我国优先控制的PAEs污染物[11]. 邻苯二甲酸二丁酯(dibutylphthalate,DBP)是PAEs化合物中一种重要的增塑剂,在饮用水、地表水、室内外空气粉尘、河底沉积物和土壤中频频检出[12-13]. 蔡全英等[14]分析了我国内地和香港城市污泥中6种优先控制PAEs,其质量浓度为10.465—114.166 mg·kg−1. 张鸿郭等[15]分析了广州填埋场周边土壤中的DEHP、DBP和DEP等优先控制PAEs,其质量浓度为44.25—216.63 mg·kg−1. 由于土壤中的PAEs会通过各种途径流入水中,因此亟需研究一种有效去除水及土壤环境介质中PAEs的方法. 水中PAEs的去除方法包括吸附法[16]、生物降解法[17]、高级氧化法[18]等. Shaida等[19]以低碳高硅酸盐廉价煤为原料,通过壳聚糖的羟基与硅酸盐基团相互连接,制备了富矿物质煤与壳聚糖的复合物,该复合物在pH值为5.8时对邻苯二甲酸二乙酯(diethyl phthalate,DEP)的吸附率达到了91.1%. 魏丽琼等[20]研究了4种植物各自单作和分别间作对土壤中PAEs的降解,结果表明黑麦草和苏丹草对DEHP污染土壤的修复效率分别可以达到53.63%和50.55%. 晏晓旭等[21]使用Fe0在室温条件下活化过硫酸钠(persulfate sodium,PS)产生硫酸根自由基,3.5 h后邻苯二甲酸二甲酯(dimethyl phthalate,DMP)的去除率达到了50%. 其中高级氧化法的处理效率较高,PS是化学氧化修复技术中常用的氧化剂[22],具有较好的水溶性和稳定性,经活化后可分解生成硫酸盐自由基,其氧化能力较强,可以氧化大多数的有机污染物[23]. 活化PS的方式有很多,热活化过硫酸盐氧化技术是一种十分清洁的活化技术,相比于碱活化、金属活化、活性炭活化等方式,热活化不会对环境引入新的化学污染物,并且是在众多活化方式中较容易产生SO4·−的方式. [24].
目前,热活化PS降解去除PAEs的效果和机理尚不明确. 本文通过热活化PS的方式降解去除水中的PAEs,研究了污染物初始浓度、过硫酸钠活化温度及用量、助溶剂的添加量对PAEs降解去除的影响,分析了DBP的降解产物,为PS降解去除环境介质中DBP提供理论和实践依据.
1. 材料及方法(Materials and methods)
1.1 主要仪器与试剂
主要仪器:高效液相色谱仪(HPLC,型号1260,美国安捷伦)、气相色谱质谱联用仪(GC/MS,型号8890/5977B,美国安捷伦)、涡旋仪(型号SCI-FS,美国赛洛捷克)和水浴锅(型号HWS-26,上海一恒).
试剂:邻苯二甲酸二丁酯(C16H22O4,分析纯,阿拉丁)、邻苯二甲酸二(2-乙基己基)酯(C24H38O4,分析纯,阿拉丁)、过硫酸钠(Na2S2O8,分析纯,麦克林)、甲醇(CH3OH,色谱纯,赛默飞世尔)、乙腈(C2H3N,色谱纯,赛默飞世尔)、二氯甲烷(CH2Cl2,农残级,上海星可)、无水硫酸钠(Na2SO4,分析纯,麦克林)和氯化钠(NaCl,分析纯,麦克林).
1.2 实验方法
以乙腈作为助溶剂,配置一定浓度的DBP和DEHP混合母液备用(因为本实验是为研究场地污染物中PAEs的降解,将PAEs的浓度设置为50—200 mmol·L−1). 取一定量混合母液加超纯水稀释到一定浓度,然后加入一定质量的PS,涡旋振荡均匀后迅速置于不同温度的恒温水浴锅中进行反应. 实验设计如表1所示. 分别间隔一定时间取样,水样用甲醇淬灭后经0.22 μm的有机滤膜过滤,滤液用HPLC分析PAEs浓度.
表 1 PAEs降解的因素实验设计Table 1. Experimental design of factors affecting the degradation of PAEs序号Serial number 实验设计Experimental design 污染物初始浓度/(mmol·L−1)Initial concentration of pollutants PS浓度/(mmol·L−1) PS concentration 温度/℃Temperature pH 助溶剂添加量/%Cosolvent addition 备注Remarks 1 氧化方式 50 — 25 7 5 空白 50 — 80 7 5 只加热,不加PS 50 84 25 7 5 添加未活化的PS 50 84 80 7 5 水浴活化PS 2 污染物初始浓度 50 84 80 7 5 — 100 84 80 7 5 — 200 84 80 7 5 — 3 活化温度 50 84 60 7 5 — 50 84 70 7 5 — 50 84 80 7 5 — 50 84 90 7 5 — 4 PS浓度 50 42 80 7 5 — 50 84 80 7 5 — 50 126 80 7 5 — 50 168 80 7 5 — 50 210 80 7 5 — 5 pH 50 84 80 2 5 — 50 84 80 7 5 — 50 84 80 10 5 — 6 助溶剂添加量 50 84 80 7 5 — 50 84 80 7 10 — 50 84 80 7 20 — 50 84 80 7 30 — 1.3 分析方法
实验中采用HPLC和GC/MS对PAEs及其降解产物进行鉴定分析.
HPLC条件: 色谱柱为Waters Symmetry C18 柱(250 mm×4.6 mm,5 μm),流动相为甲醇/水-95/5(V∶V),流速为1.0 mL·min−1,检测波长λ=225 nm,进样体积25 μL,柱温为25 ℃.
GC/MS条件:色谱柱为DB-5MS柱(30 m×0.25 mm×0.25 μm),载气为高纯氦气,气体流速为1 mL·min−1,进样量1 μL,进样口温度280 ℃,不分流模式,炉温控制:以25 ℃·min-1升温至265 ℃,然后以6 ℃·min−1升温至285 ℃,再以10 ℃·min−1升温至320 ℃保持3 min. 离子源温度230 ℃,四极杆温度150 ℃.
DBP的初始浓度为50 mg·L−1,在最佳条件下反应30 min后,将水样倒入分液漏斗中,用少量二氯甲烷润洗样品瓶,并倒入分液漏斗,加入50 g氯化钠,再加入400 mL超纯水和50 mL二氯甲烷进行振荡萃取,静置,收集有机相,重复萃取1次. 调节水样pH<1,再次萃取1次,合并3次萃取液,经无水硫酸钠脱水后,浓缩至1 mL后用GC/MS扫描分析.
1.4 数据统计
本研究利用OriginLab 2018进行数据统计分析.
2. 结果与讨论 (Results and discussion)
2.1 热活化PS对PAEs的氧化动力学
图1显示了不同氧化方式对水中PAEs的去除影响. 结果表明,热活化PS对PAEs的去除效果最佳,其次是单独使用热降解PAEs,而单独使用PS降解PAEs效果很差;热活化PS对DBP的降解效果要好于对DEHP的降解效果. 从图1可以看出,在单独使用PS时,30 min时DBP和DHEP几乎不降解,这是因为PS在常温下十分稳定,反应速率慢,因此在常温下对有机物的降解效果较差[25]. 在单独对PAEs加热时,30 min时DBP降解了7.3%,DEHP降解了17.8%,在只加热时DEHP的降解率高于DBP,是由于DEHP比DBP更难溶于水,所以DEHP在水体温度升高时,更容易从水中释放到大气中[26]. 在热活化PS的条件下,PAEs的降解率迅速增加,DBP在30 min时的降解率达到了84.3%,DEHP的降解率达到了26.5%,降解率相较于只加热时分别增加了10.5、0.5倍. Zhang等[27]的研究结果表明,PS氧化PAEs过程主要归因于SO4·−和·OH的自由基反应. 热活化过硫酸钠对PAEs的降解率迅速增加是由于温度的升高有利于PS发挥氧化降解作用,高温条件下使更多的PS分子中—O—O—键断裂,进而产生大量的SO4·−对PAEs进行降解[28]. 因为在这个体系中存在丰富的SO4·−和·OH,促进了邻苯二甲酸酯降解所必需的电子转移反应[29]. 以DBP为例,由于热活化PS体系的花费为纯热和纯PS的体系的花费相加,纯热和纯PS的体系DBP的降解率相加为9.5%,而热活化PS体系DBP的降解率为84.3%,且在纯热和纯PS的体系下,DBP很难达到热活化所达到的降解率,因此热活化体系更加经济.
2.2 反应物初始浓度对PAEs降解的影响
反应物的初始浓度也会影响其降解率,图2是在不同反应物浓度下热活化PS对PAEs的去除情况. 结果表明,反应物的初始浓度越大,其降解率越低. 从图2可以看出,随着PAEs的初始浓度由50 mg·L−1增加到200 mg·L−1,30 min时DBP的降解率由84.3%降至38.9%,DEHP的降解率由26.5%降至18.1%. 随着DBP和DHEP初始浓度的升高,在相同PS添加量时降解率都出现逐渐减小的情况,但是这两种污染物的降解量随初始浓度的增加有大幅度的提升. 这是因为在不改变PS投加量的条件下,SO4·−产生量是一定的,PAEs的初始浓度越高,自由基与PAEs的碰撞几率也越高,所以提高单位体积内有机污染物的量可以增加自由基的利用率,从而提高反应效率[30].
2.3 温度对PAEs降解的影响
温度是氧化过程中的一个重要参数,因为它影响Ea和污染物的行为[31]. 图3显示了在不同温度下活化PS对PAEs降解情况. 结果表明,适当升高温度可以促进DBP和DEHP的降解. 从图3可以看出,DBP在60 ℃时30 min的降解率已经达到了62.9%,而在90 ℃时DEHP的降解率才达到了27.7%,说明在热活化PS的条件对DBP降解率明显高于DEHP,DBP在60 ℃到70 ℃降解率差距不大,在80 ℃时降解率有了大的飞跃,这时DBP的降解率达到了84.3%,而在高于80 ℃后,温度的增加对DBP去除率的提升已不显著. 与DBP相比,DEHP的降解规律有所不同,从60 ℃升温到90 ℃,DEHP的降解率从20.3%提高到37.7%,降解率的提高量低于DBP,从60 ℃升温到80 ℃时,DEHP的降解率提升不太明显,而从80 ℃上升到90 ℃,其降解率的提升有一个小的飞跃. DBP和DEHP的降解率都随着温度的升高,这说明,升高温度有利于S2O82-吸收更多的能量,从而生成更多的SO4·−,提高PAEs的降解率[32-33]. 随着温度的升高,水分子能量的增加被认为会促进反应的进行,因为液体向气体的转化会增加[34]. 从图中可以得知在兼顾DBP 去除率和经济效益的角度综合分析,其降解的最佳温度为80 ℃. 这可能是因为当温度较低时,温度能够提供足够的催化位点来激活PS产生自由基,当温度进一步增加时,PS的用量限制了催化氧化. 而DEHP所需要的温度更高可能是因为DEHP的分子量较大,水溶性较差,只有产生较多的自由基时才能更好的与DEHP接触促使其降解.
2.4 PS浓度对PAEs降解的影响
PS的初始投加量对污染物的降解也有着很大的影响. 从图4可以看出,随着PS浓度增加,PAEs的去除率也随之增加,当PS的浓度从42 mmol·L−1增加到210 mmol·L−1时,DBP的降解率从80.2%增加到89.8%,DEHP的降解率从22.3%增加到48.5%,这与Hung[35]与Xie[36]的研究结果一致,热活化PS处理污染物的降解率与PS的初始投加量呈正比关系. 当PS的浓度增加了4倍,DBP的降解率只提升了不到10%,而相同PS浓度的增加,DEHP的降解率比DBP降解率的增幅更大,这可能是因为PS也会与产生的SO4·−和·OH进行反应,从而减弱了自由基的利用效率,导致PS浓度较大时,PAEs的降解效率明显减慢. 结果表明,在热活化的条件下,增加PS的量会增加SO4·−和·OH的生成,且更容易与PAEs接触发生反应,从而提高了PAEs的降解率. 但是在实际应用时考虑到成本选择PS的浓度为42 mmol·L−1时就能达到降解目的,加入过多的PS并没有起到相应的效果.
2.5 pH对PAEs降解的影响
pH对水中污染物的降解也有很大的影响. 图5是在不同pH下热活化下30 min时PS对PAEs的去除情况. 结果表明,当污染物溶液的pH越大,DBP和DEHP的降解率越高. 从图5可以看出,DBP和DEHP在碱性(pH=10)的条件下,30 min时的降解率最高,此时DBP的降解率达到了89.2%,DEHP的降解率达到了27.3%. 在酸性(pH=2)条件下的降解率最低,此时DBP和DEHP的降解率分别为79.9%和23.6%. 这与吴楠等[37]的研究结果一致,碱热活化过硫酸钠对有机物的降解效果优于单一碱活化或热活化方式. 由Zhang等[27]的研究结果表明,在 pH = 2时,SO4·−是氧化PAEs的主要物种,当pH = 7时,SO4·−和·OH时氧化PAEs的主要物种,且·OH占主导地位,因此PAEs在中性时降解效果优于酸性可能是因为·OH对PAEs的降解效果更好.
2.6 不同助溶剂添加量对PAEs降解的影响
上述结果表明即使在最优条件下,DBP降解到一定程度就基本不再降解,而DEHP在PS浓度为210 mmol·L−1时才降解了不到50%. 推测PAEs的溶解性较差,一部分PAEs无法和SO4·−进行接触而导致. 因此研究了助溶剂在热活化PS降解PAEs体系中的影响,图6显示了在不同助溶剂添加量时PAEs的降解情况. 从图6(a)可以看出,随着助溶剂添加量的增加,PAEs的降解率随之增加. 当助溶剂的添加量从5%增加到10%、20%和30%时,30 min时DBP的降解率分别达到了83.8%、99.2%和100%. 从图6(b)可以看出,在助溶剂的添加量增加到10%、20%时,DEHP的降解率分别是助溶剂添加量为5%的1.55、2.97倍;在添加量为30%时,DEHP的降解率达到了92.8%. 从图中可以明显看出,助溶剂的添加对DEHP降解率的影响更大. Wang等[38]利用UV/PS体系对DBP进行降解,在最佳条件下,DBP的降解率在20 min达到了94.7%. 而本研究在添加30%助溶剂时可以让DBP在20 min时降解99.2%,在30 min时全部降解. 图6表明,DBP和DEHP的降解率和助溶剂的添加量呈正相关关系,助溶剂的添加量对PAEs的降解起着决定性的影响,进一步说明PAEs的溶解度对其降解有着明显的影响. 低分子量PAEs(DBP)的脱除效率高于高分子量PAEs(DEHP),这是由于其水溶性较高,使得DBP更容易释放到存在丰富·OH的可溶性相,并在热活化PS条件下进行降解,这一结果与Hung等[39]一致. 由于DEHP的水溶性更差,且与水接触少,大量的DEHP无法与水相中的自由基接触,导致自由基无法降解DEHP,再加入助溶剂后,DEHP会存在于两相中,进一步与自由基进行接触,所以导致DEHP的进一步降解,而DBP本身水溶性大于DEHP的水溶液,与水接触多,因此在同样的PS浓度下,DBP能够接触到更多的自由基,从而有着更高的降解率. 因此,低分子量PAEs的降解比高分子量PAEs的降解更彻底.
2.7 热活化PS降解PAEs的产物分析
为了探索热活化PS氧化降解PAEs的过程,以DBP为例,采用GC-MS对溶液进行全扫描分析,在检测中检测到了苯酚、甲酸丁酯一些开链化合物以及大量的邻苯二甲酸酐、邻苯二甲酸等物质. 推测DBP的链结构首先受到硫酸根自由基和羟基自由基的攻击,DBP主要一部分被分解成了邻苯二甲酸丁酯,进而在·OH的加成反应下生成了邻苯二甲酸,又由于反应过程中快速脱水形成了邻苯二酸酐,这导致邻苯二酸酐大量积累[40]. 邻苯二甲酸在硫酸根自由基攻击下进而生成苯甲酸,最后苯环被打开氧化生成CO2和H2O(途径1). 另一部分DBP在受到硫酸根自由基和羟基自由基的攻击后,DBP被分解为苯甲酸丁酯,然后在羟基自由基加成反应下生成了2 -羟基苯甲酸丁酯,酯链在硫酸根自由基和羟基自由基的作用下不断发生裂解和氢化加成反应,生成苯酚和邻二苯酚等物质[41],最后苯环被打开氧化生成CO2和H2O(途径2)(图7).
3. 结论(Conclusion)
(1)热活化过硫酸钠能有效的去除水中的邻苯二甲酸酯,在80℃,过硫酸钠浓度为84 mmol·L−1,助溶剂的添加量为30%时,DBP的去除率达到了100%,DEHP的去除率达到了92.8%.
(2)适度升高温度和PS浓度有利于提高PAEs的去除率;PAEs的初始浓度与去除率呈反比;pH与PAEs的去除率呈正比;提高PAEs溶解度可以明显提高PAEs的去除率;热活化过硫酸钠对溶解度较好的邻苯二甲酸酯去除率更高.
(3)通过GC/MS对降解产物的分析,推测了DBP的降解途径. 结果表明邻苯二甲酸和邻苯二甲酸酐时DBP降解的主要产物,脱烷基化和羟基化是DBP降解的主要机理.
-
表 1 目标化合物的多反应监测条件
Table 1. MRM parameters for target compounds
化合物Compounds 母离子Precursor ions(m/z) 子离子Product ions (m/z) 解簇电压/VDeclustering potential 碰撞能量/VCollision energy DMP 195.3 163.0* 40 12 195.3 77.1 40 46 DEP 223.1 177.4* 50 25 223.1 149.3 50 12 BBP 313.3 91.3* 68 27 313.3 205.2 68 12 DBP 279.1 149.3* 72 20 279.1 205.2 72 12 DEHP 391.1 167.0* 84 18 391.1 149.0 84 32 DNOP 391.3 261.1* 60 10 391.3 149.0 60 20 表 2 世界其他国家和地区自来水中PAEs含量
Table 2. Concentrations of PAEs in other countries and regions around the world
国家和地区Country and region BBP/(μg·L−1) DBP/(μg·L−1) DEP/(μg·L−1) DMP/(μg·L−1) DNOP/(μg·L−1) DEHP/(μg·L−1) ∑PAEs/(μg·L−1) 参考文献Reference 江苏省Jiangsu nd—7.39(0.71) 0.34—7.40(2.01) nd—6.41(1.40) nd—8.40(1.93) nd—5.23(1.23) nd—6.87(1.93) 4.10—14.23(8.43) 本研究 天津市Tianjin 0.44—0.71 0.38—0.68 — — — 1.10—1.78 1.92—2.78(2.41) [23] 河南省Henan nd 0.93 44.04 38.19 — 12.49 — [24] 武汉市Wuhan — 0.60 0.90 nd — — — [26] 葡萄牙Portugal 0.03 0.52 0.19 0.04 — 0.06 0.02—0.35 [21] 德国Germany 0.05 0.64 0.16 — — 0.06 0.02—0.60 [27] 西班牙Span nd nd—0.91 nd—0.38 nd—0.03 — nd 0.38—0.73 [10] 西班牙Span nd nd 0.19 nd — nd nd—0.19 [28] 法国France nd 0.04 0.03 nd — 0.35 — [22] 希腊Greece — 1.04 0.30 — — 0.93 0.30—1.04 [29] 捷克Czech 0.002 0.05 0.07 0.08 nd 0.66 — [30] 越南Vietnam 0.20—4.21 0.01—2.56 nd—2.57 nd—0.54 nd—1.93 1.01—14.50 2.10—18.00(11.2) [31] 伊朗Iran 0.05—0.15(0.10) nd—0.14(0.09) nd—0.09(0.05) 0.08—0.67(0.37) nd—0.11(0.01) nd—0.38(0.15) 0.07—0.52 [11] 注:nd,未检出,not detected;—,未参与检测,not included;( ),平均值,mean level 表 3 江苏省不同城市居民自来水中PAEs非致癌风险
Table 3. Non-carcinogenic risks of PAEs in residential tap water from different cities in Jiangsu Province
城市 City HIBBP HIDBP HIDEP HIDMP HIDNOP HIDEHP ∑HI 南京Nanjing 1.67×10−5 4.67×10−3 9.36×10−5 na 4.77×10−3 4.17×10−5 9.59×10−3 无锡Wuxi 1.27×10−3 4.72×10−3 2.66×10−4 na 1.07×10−3 9.36×10−4 8.26×10−3 常州Changzhou 1.67×10−5 2.48×10−3 1.23×10−4 na 5.02×10−3 1.64×10−3 9.28×10−3 苏州Suzhou 1.67×10−5 8.69×10−3 4.17×10−5 na 8.33×10−5 3.60×10−3 1.24×10−2 南通Nantong 1.67×10−5 1.58×10−2 4.17×10−5 na 1.26×10−2 3.09×10−3 3.15×10−2 扬州Yangzhou 3.97×10−4 1.15×10−2 4.17×10−5 na 6.66×10−3 1.97×10−3 2.06×10−2 镇江Zhenjiang 1.55×10−4 8.65×10−3 2.86×10−4 na 8.33×10−5 1.18×10−3 1.04×10−2 泰州Taizhou 3.24×10−4 1.60×10−2 4.17×10−5 na 5.91×10−3 2.73×10−3 2.50×10−2 注:na,无参考数据,no reference data -
[1] ZHANG Z M, ZHANG H H, ZHANG J, et al. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area [J]. The Science of the Total Environment, 2018, 619/620: 93-102. doi: 10.1016/j.scitotenv.2017.11.070 [2] HIS Markit, Plasticizers-Chemical Economics Handbook (CEH). [EB/OL]. [2022-3-4]. https://www.spglobal.com/commodityinsights/en/ci/products/plasticizers-chemical-economics-handbook.html [3] HASSANZADEH N, ESMAILI SARI A, KHODABANDEH S, et al. Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran) [J]. Marine Pollution Bulletin, 2014, 89(1/2): 128-135. [4] LÜ H, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: A review [J]. Environmental Research, 2018, 164: 417-429. doi: 10.1016/j.envres.2018.03.013 [5] LUO Q, LIU Z H, YIN H, et al. Migration and potential risk of trace phthalates in bottled water: A global situation [J]. Water Research, 2018, 147: 362-372. doi: 10.1016/j.watres.2018.10.002 [6] YANG X, CHEN D W, LV B, et al. Dietary exposure of the Chinese population to phthalate esters by a total diet study [J]. Food Control, 2018, 89: 314-321. doi: 10.1016/j.foodcont.2017.11.019 [7] LIOU S H, YANG G C C, WANG C L, et al. Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects [J]. Journal of Hazardous Materials, 2014, 277: 169-179. doi: 10.1016/j.jhazmat.2014.02.024 [8] HEINEMEYER G, SOMMERFELD C, SPRINGER A, et al. Estimation of dietary intake of bis(2-ethylhexyl)phthalate (DEHP) by consumption of food in the German population [J]. International Journal of Hygiene and Environmental Health, 2013, 216(4): 472-480. doi: 10.1016/j.ijheh.2013.01.001 [9] 韩文辉, 赵颖, 党晋华, 等. 汾河流域邻苯二甲酸酯的分布特征及生态风险评价 [J]. 环境化学, 2017, 36(6): 1377-1387. doi: 10.7524/j.issn.0254-6108.2017.06.2016092204 HAN W H, ZHAO Y, DANG J H, et al. Distribution and ecological risk evaluation of phthalate esters in Fenhe River Basin [J]. Environmental Chemistry, 2017, 36(6): 1377-1387(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.06.2016092204
[10] DOMÍNGUEZ-MORUECO N, GONZÁLEZ-ALONSO S, VALCÁRCEL Y. Phthalate occurrence in rivers and tap water from central Spain [J]. The Science of the Total Environment, 2014, 500/501: 139-146. doi: 10.1016/j.scitotenv.2014.08.098 [11] ABTAHI M, DOBARADARAN S, TORABBEIGI M, et al. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran [J]. Environmental Research, 2019, 173: 469-479. doi: 10.1016/j.envres.2019.03.071 [12] DEBLONDE T, COSSU-LEGUILLE C, HARTEMANN P. Emerging pollutants in wastewater: A review of the literature [J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 442-448. doi: 10.1016/j.ijheh.2011.08.002 [13] CHEN X P, XU S S, TAN T F, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures [J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3156-3168. doi: 10.3390/ijerph110303156 [14] 章勇, 张蓓蓓, 赵永刚, 等. 液相色谱/串联质谱法测定水中邻苯二甲酸酯类化合物 [J]. 分析试验室, 2014, 33(3): 303-307. doi: 10.13595/j.cnki.issn1000-0720.2014.0068 ZHANG Y, ZHANG B B, ZHAO Y G, et al. Determination of six phthalate acid ester residues in water by ultra performance liquid chromatographytandem mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2014, 33(3): 303-307(in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2014.0068
[15] U. S. , Food and Drug Administration, Guidance for Industry: bottled water quality standard; establishing an allowable level for di(2-ethylhexyl) phthalate. 21CFR165.110(b). [EB/OL]. [2022-3-16]. https://www.fda.gov/media/84475/download [16] 丁梦雨, 康启越, 张释义, 等. 全国23个城市水源水中邻苯二甲酸酯代谢物浓度调查 [J]. 中国环境科学, 2019, 39(10): 4205-4211. doi: 10.3969/j.issn.1000-6923.2019.10.021 DING M Y, KANG Q Y, ZHANG S Y, et al. National survey of phthalate metabolites in drinking source water of 23 cities in China [J]. China Environmental Science, 2019, 39(10): 4205-4211(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.10.021
[17] 贺涛, 白小舰, 陈隽, 等. 饮用水源地塑化剂类污染物环境健康风险评估[J]. 中国环境科学, 2013, 33(S1): 26-31. HE T, BAI X J, CHEN J, et al. Environmental health risk assessment of plasticizer contaminants in drinking water source[J]. China Environmental Science, 2013, 33(Sup 1): 26-31(in Chinese).
[18] ZHANG F H, ZHANG M, ZHU Y, et al. Investigation on the pollution status of phthalates in drinking water and source water of Hefei city [J]. Environment Monitoring and Assessment, 2008, 20(2): 22-24. [19] 于云江, 叶昊, 杨彦, 等. 太湖流域(苏南地区)经口介质中邻苯二甲酸酯的生物有效性及人体暴露评估 [J]. 环境化学, 2014, 33(2): 194-205. doi: 10.7524/j.issn.0254-6108.2014.02.007 YU Y J, YE H, YANG Y, et al. The bioaccessibility and exposure assessment of PAEs via oral media in Taihu Lake Basin of south Jiangsu Province [J]. Environmental Chemistry, 2014, 33(2): 194-205(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.02.007
[20] LI Z K, CHANG F Y, SHI P, et al. Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea [J]. Chemosphere, 2018, 206: 655-662. doi: 10.1016/j.chemosphere.2018.05.064 [21] SERÔDIO P, NOGUEIRA J M F. Considerations on ultra-trace analysis of phthalates in drinking water [J]. Water Research, 2006, 40(13): 2572-2582. doi: 10.1016/j.watres.2006.05.002 [22] MARTINE B, MARIE-JEANNE T, CENDRINE D, et al. Assessment of adult human exposure to phthalate esters in the urban centre of Paris (France) [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 91-96. doi: 10.1007/s00128-012-0859-5 [23] WANG C C, HUANG P P, QIU C S, et al. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China [J]. Journal of Hazardous Materials, 2021, 408: 124891. doi: 10.1016/j.jhazmat.2020.124891 [24] TANG C Y, LI A Q, GUAN Y B, et al. Influence of polluted SY river on child grows and sex hormones [J]. Biomedical and Environmental Sciences, 2012, 25(3): 291-296. [25] YU H, HU J Y, JIN X H, et al. , Monitoring of phthalates in raw water and treatment process of a water plant in north China [J]. Water Supply Drain, 2005, 31(06): 20-23. [26] XU J, LIANG P, ZHANG T Z. Dynamic liquid-phase microextraction of three phthalate esters from water samples and determination by gas chromatography [J]. Analytica Chimica Acta, 2007, 597(1): 1-5. doi: 10.1016/j.aca.2007.06.047 [27] LUKS-BETLEJ K, POPP P, JANOSZKA B, et al. Solid-phase microextraction of phthalates from water [J]. Journal of Chromatography. A, 2001, 938(1/2): 93-101. [28] REGUEIRO J, LLOMPART M, GARCIA-JARES C, et al. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters [J]. Journal of Chromatography. A, 2008, 1190(1/2): 27-38. [29] PSILLAKIS E, KALOGERAKIS N. Hollow-fibre liquid-phase microextraction of phthalate esters from water [J]. Journal of Chromatography. A, 2003, 999(1/2): 145-153. [30] PROKŮPKOVÁ G, HOLADOVÁ K, POUSTKA J, et al. Development of a solid-phase microextraction method for the determination of phthalic acid esters in water [J]. Analytica Chimica Acta, 2002, 457(2): 211-223. doi: 10.1016/S0003-2670(02)00020-X [31] LE T M, NGUYEN H, NGUYEN V K, et al. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam [J]. The Science of the Total Environment, 2021, 788: 147831. doi: 10.1016/j.scitotenv.2021.147831 [32] SHI W, HU X X, ZHANG F X, et al. Occurrence of thyroid hormone activities in drinking water from Eastern China: Contributions of phthalate esters [J]. Environmental Science & Technology, 2012, 46(3): 1811-1818. [33] SALAZAR-BELTRÁN D, HINOJOSA-REYES L, RUIZ-RUIZ E, et al. Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with UV detection [J]. Talanta, 2017, 168: 291-297. doi: 10.1016/j.talanta.2017.03.060 -